Announcements

● Program #1
 – Is on the web

● Reading
 – Scheduling
 • Chapter 6 (6th ed) or Chapter 5 (8th ed)

● CS Corporate Open House
 – Feb 18th 5:30-8:00 CSIC
 – Bring Resumes
Project Background

- **Role of libuser.c**
 - system call routines
 - _Entry
 - Calls Main
 - Calls Exit
 - Useful functions

- **buildFat**
 - Standalone program to build diskc.img (floppy disk)
 - Needs to contain:
 - Bootinfo
 - Kernel
 - User programs
Why did booting get slow in GeekOS?

- **Short answer** $O(N^2)$ algorithm got in the kernel
 - List.h – add routines checked if items were already on list
 - Changed qemu command line to use default 128MB of memory vs. old 10MB.
 - $(128/10)^2 = 163$ times slower

- **Fix is available**
 - Svn update from project directory
Selecting a process to run

- called scheduling
- can simply pick the first item in the queue
 - called round-robin scheduling
 - is round-robin scheduling fair?
- can use more complex schemes
 - we will study these in the future
- use alarm interrupts to switch between processes
 - when time is up, a process is put back on the end of the ready queue
 - frequency of these interrupts is an important parameter
 - typically 3-10ms on modern systems
 - need to balance overhead of switching vs. responsiveness
CPU Scheduling

- **Manage CPU to achieve several objectives:**
 - maximize CPU utilization
 - minimize response time
 - maximize throughput
 - minimize turnaround time

- **Multiprogrammed OS**
 - multiple processes in executable state at same time
 - scheduling picks the one that will run at any give time (on a uniprocessor)

- **Processes use the CPU in bursts**
 - may be short or long depending on the job
Types of Scheduling

- At least 4 types:
 - long-term - add to pool of processes to be executed
 - medium-term - add to number of processes partially or fully in main memory
 - short-term - which available process will be executed by the processor
 - I/O - which process’s pending I/O request will be handled by an available I/O device

- Scheduling changes the state of a process
Scheduling criteria

- **Per processor, or system oriented**
 - CPU utilization
 - maximize, to keep as busy as possible
 - throughput
 - maximize, number of processes completed per time unit

- **Per process, or user oriented**
 - turnaround time
 - minimize, time of submission to time of completion.
 - waiting time
 - minimize, time spent in ready queue - affected solely by scheduling policy
 - response time
 - minimize, time to produce first output
 - most important for interactive OS
Scheduling criteria
non-performance related

- **Per process**
 - predictability
 - job should run in about the same amount of time, regardless of total system load

- **Per processor**
 - fairness
 - don’t starve any processes, treat them all the same
 - enforce priorities
 - favor higher priority processes
 - balance resources
 - keep all resources busy
Medium vs. Short Term Scheduling

- **Medium-term scheduling**
 - Part of swapping function between main memory and disk
 - based on how many processes the OS wants available at any one time
 - must consider memory management if no virtual memory (VM), so look at memory requirements of swapped out processes

- **Short-term scheduling (dispatcher)**
 - Executes most frequently, to decide which process to execute next
 - Invoked whenever event occurs that interrupts current process or provides an opportunity to preempt current one in favor of another
 - Events: clock interrupt, I/O interrupt, OS call, signal
Long-term scheduling

- Determine which programs admitted to system for processing - controls degree of multiprogramming
- Once admitted, program becomes a process, either:
 - added to queue for short-term scheduler
 - swapped out (to disk), so added to queue for medium-term scheduler
- Batch Jobs
 - Can system take a new process?
 - more processes implies less time for each existing one
 - add job(s) when a process terminates, or if percentage of processor idle time is greater than some threshold
 - Which job to turn into a process
 - first-come, first-serve (FCFS), or to manage overall system performance (e.g. based on priority, expected execution time, I/O requirements, etc.)
Process State Transitions

New

Ready, suspend

Blocked, suspend

Ready

Blocked

Running

Exit

Long-term scheduling

Short-term scheduling

Medium-term scheduling

Event wait

Short-term scheduling

Event wait

CMSC 412 – S10 (lect 5)
Short-term scheduling algorithms

- **First-Come, First-Served (FCFS, or FIFO)**
 - as process becomes ready, join Ready queue, scheduler always selects process that has been in queue longest
 - better for long processes than short ones
 - favors CPU-bound over I/O-bound processes
 - need priorities, on uniprocessor, to make it effective
Algorithms (cont.)

- **Round-Robin (RR)**
 - use preemption, based on clock - time slicing
 - generate interrupt at periodic intervals
 - when interrupt occurs, place running process in Ready queue, select next process to run using FCFS
 - what’s the length of a time slice
 - short means short processes move through quickly, but high overhead to deal with clock interrupts and scheduling
 - guideline is time slice should be slightly greater than time of “typical job” CPU burst
 - problem dealing with CPU and I/O bound processes