Announcements

- **Reading:**
 - Today: Chapter 8.4-8.6 (8th Ed)

- **Midterm:**
 - Thursday
Managing Memory

• Main memory is big, but what if we run out
 – use virtual memory
 – keep part of memory on disk
 • bigger than main memory
 • slower than main memory

• Want to have several program in memory at once
 – keeps processor busy while one process waits for I/O
 – need to protect processes from each other
 – have several tasks running at once
 • compiler, editor, debugger
 • word processing, spreadsheet, drawing program

• Use virtual addresses
 – look like normal addresses
 – hardware translates them to physical addresses
Advantages of Virtual Addressing

- Can assign non-contiguous regions of physical memory to programs
- A program can only gain access to its mapped pages
- Can have more virtual pages than the size of physical memory
 - pages that are not in memory can be stored on disk
- Every program can start at (virtual) address 0
Paging

- Divide physical memory into fixed sized chunks called *pages*
 - typical pages are 512 bytes to 64KB bytes
 - When a process is to be executed, load the pages that are *actually used* into memory
- Have a table to map virtual pages to physical pages
- Consider a 32 bit addresses
 - 4096 byte pages (12 bits for the page)
 - 20 bits for the page number
Problems with Page Tables

- One page table can get very big
 - 2^{20} entries (for most programs, most items are empty)
- solution1: use a hierarchy of page tables
Faster Mapping from Virtual to Physical Addresses

- need hardware to map between physical and virtual addresses
 - can require multiple memory references
 - this can be slow
- answer: build a cache of these mappings
 - called a translation look-aside buffer (TLB)
 - associative table of virtual to physical mappings
 - typically 16-64 entries

<table>
<thead>
<tr>
<th>Virtual Page</th>
<th>Physical Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 bits</td>
<td>20 bits</td>
</tr>
</tbody>
</table>

For Intel x86
Super Pages

- **TLB Entries**
 - Tend to be limited in number
 - Can only refer to one page

- **Idea**
 - Create bigger pages
 - 4MB instead of 4KB
 - One TLB entry covers more memory