
1CMSC 412 – S10 (lect 12)

Announcements
Midterm #1
– Scores on grades.cs.umd.edu
– Will return booklets and go over more on Thursday
– Must submit requests for re-grades via grade web site by

4/1/10 (no fooling!)

Project #4
– Handout is on the Web site
– Will require more coding than previous ones – start early!

2CMSC 412 – S10 (lect 12)

Sharing Memory
Pages can be shared
– several processes may share the same code or data
– several pages can be associated with the same page frame
– given read-only data, sharing is always safe

when writes occur, decide if processes share data
– operating systems often implement “copy on write” - pages

are shared until a process carries out a write
• when a shared page is written, a new page frame is

allocated
• writing process owns the modified page
• all other sharing processes own the original page

– page could be shared
• processes use semaphores or other means to coordinate

access

3CMSC 412 – S10 (lect 12)

Sharing Memory
Pages can be shared
– several processes may share the same code or data
– several pages can be associated with the same page frame
– given read-only data, sharing is always safe

when writes occur, decide if processes share data
– operating systems often implement “copy on write” - pages

are shared until a process carries out a write
• when a shared page is written, a new page frame is

allocated
• writing process owns the modified page
• all other sharing processes own the original page

– page could be shared
• processes use semaphores or other means to coordinate

access

4CMSC 412 – S10 (lect 12)

Page Sharing

Page
Directory

Page
DirectoryPage Table Page

Frames Page Table

P1 P2

Shared
Pages

5CMSC 412 – S10 (lect 12)

What Happens when a virtual address
has no physical address?

called a page fault
– a trap into the operating system from the hardware

caused by: the first use of a page
– called demand paging
– the operating system allocates a physical page and the

process continues
– read code from disk or init data page to zero

caused by: a reference to an address that is not valid
– program is terminated with a “segmentation violation”

caused by: a page that is currently on disk
– read page from disk and load it into a physical page, and

continue the program

causde by: a copy on write page

6CMSC 412 – S10 (lect 12)

– NOACCESS: attempts to read, write or execute will cause an access
violation

– READONLY: attempts to write or execute memory in this region cause
an access violation

– READWRITE: attempts to execute memory in this region cause an
access violation

– EXECUTE: Attempts to read or write memory in this region cause an
access violation

– EXECUTE_READ: Attempts to write to memory in this region cause an
access violation

– EXECUTE_READ_WRITE: Do anything to this page
– WRITE_COPY: Attempts to write will cause the system to give a

process its own copy of the page. Attempts to execute cause access
violation

– EXECUTE_WRITE_COPY: Attempts to write will cause the system to
give a process its own copy of a page. Can’t cause an access violation

OS Protection attributes (Win32)

7CMSC 412 – S10 (lect 12)

Handling a page fault

1) Check if the reference is valid
– if not, terminate the process

2) Find a page frame to allocate for the new process
– for now we assume there is a free page frame.

3) Schedule a read operation to load the page from disk
– we can run other processes while waiting for this to complete

4) Modify the page table entry to the page
5) Restart the faulting instruction

– hardware normally will abort the instruction so we just return
from the trap to the correct location.

8CMSC 412 – S10 (lect 12)

Page Fault – Page is Paged out

Page
Directory Page Table Page

Frames

P1

Reference
To this page 1) Fault

2) Read from Disk

3) Make
Entry

4) Continue

9CMSC 412 – S10 (lect 12)

Page State (hardware view)
Page frame number (location in memory or on disk)
Valid Bit
– indicates if a page is present in memory or stored on disk

A modify or dirty bit
– set by hardware on write to a page
– indicates whether the contents of a page have been modified

since the page was last loaded into main memory
– if a page has not been modified, the page does not have to

be written to disk before the page frame can be reused
Reference bit
– set by the hardware on read/write
– cleared by OS
– can be used to approximate LRU page replacement

Protection attributes
– read, write, execute

10CMSC 412 – S10 (lect 12)

What happens when we fault and there
are no more physical pages?

Need to remove a page from main memory
– if it is “dirty” we must store it to disk first.

• dirty pages have been modified since they were last
stored on disk.

How to we pick a page?
– Need to choose an appropriate algorithm

• should it be global?
• should it be local (one owned by the faulting process)

11CMSC 412 – S10 (lect 12)

Page Replacement Algorithms
FIFO
– Replace the page that was brought in longest ago
– However

• old pages may be great pages (frequently used)
• number of page faults may increase when one increases number of

page frames (discouraging!)
– called belady’s anomaly
– 1,2,3,4,1,2,5,1,2,3,4,5 (consider 3 vs. 4 frames)

Optimal
– Replace the page that will be used furthest in the future
– Good algorithm(!) but requires knowledge of the future
– With good compiler assistance, knowledge of the future is

sometimes possible

12CMSC 412 – S10 (lect 12)

Page Replacement Algorithms

LRU
– Replace the page that was actually used longest ago
– Implementation of LRU can be a bit expensive

• e.g. maintain a stack of nodes representing pages and
put page on top of stack when the page is accessed

• maintain a time stamp associated with each page

Approximate LRU algorithms
– maintain reference bit(s) which are set whenever a page is

used
– at the end of a given time period, reference bits are cleared

13CMSC 412 – S10 (lect 12)

FIFO Example (3 frames)
– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

• access 1 - (1) fault
• access 2 - (1,2) fault
• access 3- (1,2,3) fault
• access 4 - (2,3,4) fault, replacement
• access 1 - (3,4,1) fault, replacement
• access 2 - (4,1,2) fault, replacement
• access 5 - (1,2,5) fault, replacement
• access 1- (1,2,5)
• access 2 - (1,2,5)
• access 3 - (2,5,3) fault, replacement
• access 4 - (5,3,4) fault, replacement
• access 5 - (5,3,4)

– 9 page faults

14CMSC 412 – S10 (lect 12)

Page Replacement Algorithms
FIFO
– Replace the page that was brought in longest ago
– However

• old pages may be great pages (frequently used)
• number of page faults may increase when one increases number of

page frames (discouraging!)
– called belady’s anomaly
– 1,2,3,4,1,2,5,1,2,3,4,5 (consider 3 vs. 4 frames)

Optimal
– Replace the page that will be used furthest in the future
– Good algorithm(!) but requires knowledge of the future
– With good compiler assistance, knowledge of the future is

sometimes possible

15CMSC 412 – S10 (lect 12)

Page Replacement Algorithms

LRU
– Replace the page that was actually used longest ago
– Implementation of LRU can be a bit expensive

• e.g. maintain a stack of nodes representing pages and
put page on top of stack when the page is accessed

• maintain a time stamp associated with each page

Approximate LRU algorithms
– maintain reference bit(s) which are set whenever a page is

used
– at the end of a given time period, reference bits are cleared

16CMSC 412 – S10 (lect 12)

FIFO Example (3 frames)
– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

• access 1 - (1) fault
• access 2 - (1,2) fault
• access 3- (1,2,3) fault
• access 4 - (2,3,4) fault, replacement
• access 1 - (3,4,1) fault, replacement
• access 2 - (4,1,2) fault, replacement
• access 5 - (1,2,5) fault, replacement
• access 1- (1,2,5)
• access 2 - (1,2,5)
• access 3 - (2,5,3) fault, replacement
• access 4 - (5,3,4) fault, replacement
• access 5 - (5,3,4)

– 9 page faults

17CMSC 412 – S10 (lect 12)

LRU Example (3 frames)

– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
• access 1 - (1) fault
• access 2 - (1,2) fault
• access 3- (1,2,3) fault
• access 4 - (2,3,4) fault, replacement
• access 1 - (3,4,1) fault, replacement
• access 2 - (4,1,2) fault, replacement
• access 5 - (1,2,5) fault, replacement
• access 1- (2,5,1)
• access 2 - (5,1,2)
• access 3 - (1,2,3) fault, replacement
• access 4 - (2,3,4) fault, replacement
• access 5 - (3,4,5) fault, replacement

– 10 page faults

18CMSC 412 – S10 (lect 12)

LRU Example (4 frames)
– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

• access 1 - (1) fault
• access 2 - (1,2) fault
• access 3- (1,2,3) fault
• access 4 - (1,2,3,4) fault, replacement
• access 1 - (2,3,4,1)
• access 2 - (3,4,1,2)
• access 5 - (4,1,2,5) fault, replacement
• access 1- (4,2,5,1)
• access 2 - (4,5,1,2)
• access 3 - (5,1,2,3) fault, replacement
• access 4 - (1,2,3,4) fault, replacement
• access 5 - (2,3,4,5) fault, replacement

– 8 faults

19CMSC 412 – S10 (lect 12)

FIFO Example (4 frames)
– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

• access 1 - (1) fault
• access 2 - (1,2) fault
• access 3- (1,2,3) fault
• access 4 - (1,2,3,4) fault, replacement
• access 1 - (1,2,3,4)
• access 2 - (1,2,3,4)
• access 5 - (2,3,4,5) fault, replacement
• access 1- (3,4,5,1) fault, replacement
• access 2 - (4,5,1,2) fault, replacement
• access 3 - (5,1,2,3) fault, replacement
• access 4 - (1,2,3,4) fault, replacement
• access 5 - (2,3,4,5) fault, replacement

– 10 Page faults

20CMSC 412 – S10 (lect 12)

Thrashing

Virtual memory is not “free”
– can allocate so much virtual memory that the system spends

all its time getting pages
– the situation is called thrashing
– need to select one or more processes to swap out

Swapping
– write all of the memory of a process out to disk
– don’t run the process for a period of time
– part of medium term scheduling

How do we know when we are thrashing?
– check CPU utilization?
– check paging rate?
– Answer: need to look at both

• low CPU utilization plus high paging rate --> thrashing

21CMSC 412 – S10 (lect 12)

Working Sets and Page Replacement

Programs usually display reference locality
– temporal locality

• repeated access to the same memory location
– spatial locality

• consecutive memory locations access nearby memory
locations

– memory hierarchy design relies heavily on locality reference
• sequence of nested storage media

Working set
– set of pages referenced in the last delta references

Small
Very Fast

Large
Very Slow

Working Set Size

22CMSC 412 – S10 (lect 12)

Improving Heap Locality

Malloc (or new) don’t ensure locality among requests
– Two calls to malloc could get memory on different cache

lines, pages, etc.

Option 1:
– Malloc a large chunk of memory and parcel it out yourself

Option 2:
– Add a “near” hint parameter to malloc
– Indicates that memory should be allocated near the target

location
• It’s only a performance hint, and malloc can ignore it
• Allows locality improvement without major changes

23CMSC 412 – S10 (lect 12)

Preventing Thrashing

Need to ensure that we can keep the working set in
memory
– if the working sets of the processes in memory exceed total

page frames, then we need to swap a process out

How do we compute the working set?
– can approximate it using a reference bit

24CMSC 412 – S10 (lect 12)

Implementation Issues

How big should a page be?
– want to trade cost of fault vs. fragmentation

• cost of fault is: trap + seek + latency + transfer
– Does the OS page size have to equal the HW page size?

• no, just needs to be a multiple of it

How does I/O relate to paging
– if we request I/O for a process, need to lock the page

• if not, the I/O device can overwrite the page

Can the kernel be paged?
– most of it can be.
– what about the code for the page fault handler?

