Announcements

- Project #6 is available
- Reading Chapter 14 (Distributed Systems)
Monitoring

- **Record (log) significant events**
 - attempts to login to the system
 - changes to selected files or directories

- **Possible to compromise the log**
 - the user or software breaking in could delete all or part of the logs
 - could record logs to non-erasable storage
 - have a line printer attached to the machine
 - use WORM drives
 - send data to a secure remote host
Tripwire

- **Compute a set of expectorations about system**
 - Hash of file contents
 - Dates on files
- **Store database of values**
 - On read-only media
 - Offline
- **Periodically**
 - Compare database to current system
 - Report any differences
Encryption: protecting info from being read

- **Given a message** \(m \)
 - use a key \(k \), and function \(E_k \) to compute \(E_k(m) \)
 - store or send only \(E_k(m) \)
 - use a second second key \(k' \) and function \(D_{k'} \) such that
 - \(D_{k'}(E_k(m)) = m \)
 - \(E_k \) and \(D_{k'} \) need not be kept a secret

- **If** \(k = k' \) it’s called **private key encryption**
 - need to keep \(k \) secret
 - example DES

- **if** \(k \neq k' \), it’s called **public key encryption**
 - need only keep one of them secret
 - if \(k' \) is secret, anyone can send a private message
 - if \(k \) is secret, it is possible to “sign” a message
 - still need a way to authenticate \(k \) or \(k' \) for a user
 - example RSA
Public Key Encryption

- **Split into public and private keys**
 - public key used to encrypt messages
 - publish this key widely
 - private key used to decrypt messages
 - keep this key a secret

- **RSA**
 - algorithm for computing public/private key pairs
 - based on problems involved in factoring large primes
 - for an n bit message P, $C = (P^e \mod n)$, and $P = (C^d \mod n)$

- **Other Public Key Algorithms**
 - knapsack
 - given a large collection of objects with different weights
 - public key is the total weight of a subset of the objects
 - private key is the list of objects
Transposition Cipher

- **To Break:**
 - each letter is itself, so normal distribution of letters is seen
 - guess number of columns (verify with known plaintext)
 - order columns using trigram frequency
- **Block of text is used to break up digrams**

From: *Computer Networks*, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.
DES

- Block cipher: uses 56 bit keys, 64 bits of data
- Uses 16 stages of substitution
- Variations
 - cipher block chaining: xor output of block n with into block n+1
 - cipher feedback mode: use 64bit shift register
 - can produce one byte at a time

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.
One Time Pad

- **Key Idea:** randomness in key
- **Create a random string as long as the message**
 - each party has the pad
 - xor each bit of the message with the a bit of the key
- **Almost impossible to break**
- **Some practical problems**
 - need to ensure key is not captured
 - a one bit drop will corrupt the rest of the message
Secure Socket Layer

- **Goal:**
 - Provide secure access to remote services
 - Authenticate remote servers to local users
 - Allow remote systems to authenticate users
 - Permit encrypted communication

- **Approach**
 - Public Key Cryptography
 - Certificates (signed by certificate authorities)
 - Server sends:
 - Certificate (signed use CA’s private key)
 - Certificate contains server’s public key
 - Client responds by encrypting reply using servers public key
 - Server checks response with private key
Sending Data

- **Data is split into packets**
 - limited size units of sending information
 - can be
 - fixed sized (ATM)
 - variable size (Ethernet)

- **Need to provide a destination for the packet**
 - need to identify two levels of information
 - machine to send data to
 - comm abstraction (e.g. process) to get data
 - address may be:
 - a globally unique destination
 - for example every host has a unique id
 - may unique between hops
 - unique id between two switches
Ethernet

- 10 Mbps (to 100 Mbps)
- milisecond latency
- limited to several kilometers in distance
- variable sized units of transmission
- bus based protocol
 - requests to use the network can collide
- addresses are 48 bits
 - unique to each interface
Hub based Ethernet

- Logically it is still a bus
- Physically, it is a star configuration
 - the hub is at the center of the network
- Hubs provide:
 - better control of hosts
 - possible to restrict traffic to only the desired target
 - can shutdown a host’s connection at the hub if its Ethernet device is misbehaving
 - easier wiring
 - can use normal telephone wire to connect links (called 10 base-T)
- 100 Megabit Ethernet
 - is only available with Hubs
 - requires different hubs than 10base-T
Ethernet Collisions

- If one host is sending, other hosts must wait
 - called Carrier Sense with Multiple Access (CSMA)
- Possible for two hosts to try to send at once
 - each host can detect this event (cd- Collision Detection)
 - both hosts must re-send information
 - if they both try immediately, will collide again
 - instead each waits a random interval then tries again
- Only provides statistical guarantee of transmission
 - however, the probability of success if higher than the probability of hardware failures and other events
ATM (Asynchronous Transfer Mode)

- 155Mbps and up
- fixed sized unit of transmission called a cell
 - cells are 48 bytes plus 5 bytes header
- switch based protocol
- for both local area and wide area networking
- addresses are VCI
 - virtual circuit ids
TCP/IP Protocol

- Name for a family of Network and Transport layers
 - can run over many link layers:
 - Arpanet, Ethernet, Token Ring, SLIP/PPP, T1/T3, etc.

- IP - Internet Protocol
 - network level packet oriented protocol
 - 32 bit host addresses (dotted quad 128.8.128.84)
 - 8 bit protocol field (e.g. TCP, UDP, ICMP)

- TCP - Transmission Control Protocol
 - transport protocol
 - end-to-end reliable byte streams
 - provides ports for application specific end-points

- UDP - user datagram protocol
 - transport protocol
 - unreliable packet service
 - provides ports for application specific end-points
TCP/IP History

- **Arpanet was the origin of today’s Internet**
 - started in 1969 to connect universities and DoD sites
 - early example of packet switched network
 - original links were 64kbps and 9.6kbps

- **Current TCP protocol**
 - started in use Jan 1, 1983
 - This was a *flag day*
 - all systems had to change to the new protocol at once
 - with the modern Internet this would be **hard** to do
Subnet Addressing

- Single site which has many physical networks
 - Only local routers know about all the physical nets
 - Site chooses part of address that distinguishes between physical networks
- subnet mask: splits the IP address into two parts
- Common Class B site mask 255.255.255.0
 - use 3rd byte to represent physical net
 - use 4th byte to represent host

vanilla scheme

subnet scheme
Encapsulation

How do we send higher layer packets over lower layers?

- **Higher level info is opaque to lower layers**
 - it’s just data to be moved from one point to another

 IP Header | IP Data Area

- **Higher levels may support larger sizes than lower**
 - could need to *fragment* a higher level packet
 - split into several lower level packets
 - need to re-assemble at the end
 - examples:
 - ATM cells are 48 bytes, but IP packets can be 64K
 - IP packets are 64K, but files are megabytes