
CMSC412, Spring 2010

Project 2 Roadmap

CMSC412, Spring 2010

Background – Context Switching

• One processor and multiple threads running concurrently –

How?!!

• Give each thread a small time quantum to run.

• When this quantum expires, or the thread blocks, contextcontext--

switchswitch to a different thread.

1. Where should I save the thread context during a context-switch?

2. What should this context consist of?

CMSC412, Spring 2010

Background – Kernel Stack

• User process is a kernel thread with USER_CONTEXT
structure.

• Store the current context (state) before context switching.

• Where is the kernel stack?
struct Kernel_Thread {

unsigned long esp; // Stack pointer (absolute)

void* stackPage; //The beginning of the stack

.........................

};

• esp points at the end of the stack (stack grows down from
higher to lower address)

CMSC412, Spring 2010

Background – User Processes

• Two stacks: kernel stack and user stack.

• User Stack (store local variables)

• Start_User_Thread:

set up the kernel stack to look as if the thread had

previously been running and then context-switched to

the ready queue.

CMSC412, Spring 2010

User Stack Location

Interrupt_State

Stack Data Selector (data selector)

Stack Pointer (end of data memory)

Eflags

Text Selector (code selector)

Program Counter (entry addr)

Error Code (0)

Interrupt Number (0)

EAX (0)

EBX (0)

ECX (0)

EDX (0)

ESI (Argument Block address)

EDI (0)

EBP (0)

DS (data selector)

ES (data selector)

FS (data selector)

GS (data selector)

Background – Context Information

•The items at the top are pushed

first.

•Program Counter �EIP

•User stack pointer points to the
end of the DS.

•Stack grows down from higher

address to lower address.

User Stack Location

Interrupt_State

Stack Data Selector (data selector)

Stack Pointer (end of data memory)

Eflags

Text Selector (code selector)

Program Counter (entry addr)

Error Code (0)

Interrupt Number (0)

EAX (0)

EBX (0)

ECX (0)

EDX (0)

ESI (Argument Block address)

EDI (0)

EBP (0)

DS (data selector)

ES (data selector)

FS (data selector)

GS (data selector)

CMSC412, Spring 2010

Project 2: Signals

• Signals are to user processes what interrupts are

to the kernel .

• Process temporarily stop what it is doing, and is

instead redirected to the signal handler.

• When the handler completes, the process goes

back to what it was doing (unless another signal

is pending!)

CMSC412, Spring 2010

Signals

Process A

CS

….

Kill(A, SIGUSR1)

……

….

X = x + 1;

OR Get_Key()

……

1. Process A is executing then either

finishes quantum OR blocked

1. Process B is now executing and

sends a signal to A.

Process B

CS

SIGUSR1 Handler

Memory

1. Process A is executing again.

However, control is transferred to

SIGUSR1 handler.

1. SIGUSR1 handler finishes. Then

control transfers to Process A

again (if no other signal pending).

CMSC412, Spring 2010

Project Requirements

1.Add the code to handle signals.

2.System calls.

3.Background processes are NOT

detached.

Look for TODO macroLook for TODO macro

CMSC412, Spring 2010

Supported Signals

1. SIGKILL: treated as Sys_Kill of project1.

2. SIGUSR1 & SIGUSR2

3. SIGCHLD

• Background processes are NOT detached any

more (refCount = 2).

• Sent to a parent when the background child dies.

• Default handler = reap the child

CMSC412, Spring 2010

System Calls

• Sys_Signal: register a signal handler

• Sys_RegDeliver: initialize signal handling for a process

• Sys_Kill: send a signal

• Sys_ReturnSignal: indicate completion of signal handler

• Sys_WaitNoPID: wait for any child process to die

CMSC412, Spring 2010

Sys_ Signal

• Register a signal handler for a process
• state->ebx - pointer to handler function

• state->ecx - signal number

• Returns: 0 on success or error code (< 0) on error

• Calling Sys_Signal with a handler to SIGKILL should result in
an error.

• Initial handler for SIGCHLD (reaps all zombie) is
Def_Child_Handler

• Two predefined handlers:
• SIG_IGN, SIG_DFL (check inlcude/libc/signal.h)

• Used #define to set a fake address

• Should be handled directly from kernel

• Example: Signal(SIGUSR1,SIG_IGN);

CMSC412, Spring 2010

Sys_ RegDeliver

• Register trampoline function:
• calls Sys_ReturnSignal

• Signals cannot be delivered until this is registered.

• state->ebx - pointer to Return_Signal function

• Returns: 0 on success or error code (< 0) on error

CMSC412, Spring 2010

Sys_Kill

• Send a signal to a process

• state->ebx - pid of process

• state->ecx - signal number

• Returns: 0 on success or error code (< 0) on error

CMSC412, Spring 2010

Sys_ReturnSignal

• Complete signal handling for this process.

• No Parameters

• Returns: 0 on success or error code (< 0) on error

• Called by a process immediately after it has handled

a signal.

CMSC412, Spring 2010

Sys_WaitNoPID

• Reap a child process that has died

• state->ebx - pointer to status of process reaped

• Returns: pid of reaped process on success, -1on error.

CMSC412, Spring 2010

Signals Golden Rules

• Any user process stores THREE pointers to handler

functions corresponding to (SIGUSR1, SIGUSR2,

SIGCHLD).

• These pointers could be NULL if there is no registered

handler.

• Any process also stores THREE pointers to the

Ign_Handler, Def_Handler, Signal_Return

• If there no handler registered, the default handler will be

executed.

• Signal handling is non-reentrant.

CMSC412, Spring 2010

Signals Delivery

src/geekos/signal.c

1. Send_Signal

2. Check_Pending_Signal

3. Set_Handler

4. Setup_Frame

5. Complete_Handler

CMSC412, Spring 2010

Check_Pending_Signal

1. A signal is pending for that user process.

2. The process is about to start executing in user

space.

CS register != KERNEL_CS

(see include/geekos/defs.h)

1. The process is not currently handling another

signal.

CMSC412, Spring 2010

Setup_Frame

User Stack Location

(SP)

Interrupt_State

(Context

Information)

Kernel StackKernel Stack

MemoryMemory

Lower

Address

Higher

Address
Interrupt_State

(Context

Information)

• Push a copy of the context from kernel

stack to user stack, Push the Signal

Number.

• Advance user stack pointer in kernel stack.

• Push the address of the “signal

trampoline”.

Signal Trampoline

• Change program counter in kernel stack to

point to signal handler.

Signal Number

Interupt state

CMSC412, Spring 2010

Complete_Handler

User Stack Location

(SP)

Interrupt_State

(Context

Information)

Kernel StackKernel Stack

MemoryMemory

Lower

Address

Higher

Address
Interrupt_State

(Context

Information)

• Copy of the context from user stack to

kernel stack.

• Update user stack pointer in kernel stack.

Signal Trampoline

Signal Number

• User Stack is now as it was before

Will cause

Sys_ReturnSignal

CMSC412, Spring 2010

Project 2 Roadmap++

CMSC412, Spring 2010

HANDLING BBBBBBBBBBBBBB…..

Review

Process A

main() {

for(1000)

Print “A”

Kill(B, SIGUSR1)

}

Process B

function handler() {

Print “HANDLING”

}

main() {

Signal(&handler, SIGUSR1)

for(;;)

Print “B”

}

AABBAABBAABB………

1000 A’S

Output

CMSC412, Spring 2010

System Calls

Sys_Signal: register a signal handler

Sys_Kill: send a signal

Sys_RegDeliver: initialize signal handling for a process

Sys_WaitNoPID: wait for any child process to die

Sys_ReturnSignal: indicate completion of signal handler

CMSC412, Spring 2010

System Calls

Sys_Signal: register a signal handler

Sys_Kill: send a signal

Sys_RegDeliver: initialize signal handling for a process

Sys_WaitNoPID: wait for any child process to die

Sys_ReturnSignal: indicate completion of signal handler

Referenced in user code
Referenced in user code

CMSC412, Spring 2010

HANDLING BBBBBBBBBBBBBB…..

Review

Process A

main() {

for(1000)

Print “A”

Kill(B, SIGUSR1)

}

Process B

function handler() {

Print “HANDLING”

}

main() {

Signal(&handler, SIGUSR1)

for(;;)

Print “B”

}

AABBAABBAABB………

1000 A’S

Output

CMSC412, Spring 2010

System Calls

Sys_Signal: register a signal handler

Sys_Kill: send a signal

Sys_RegDeliver: initialize signal handling for a process

Sys_WaitNoPID: wait for any child process to die

Sys_ReturnSignal: indicate completion of signal handler

CMSC412, Spring 2010

System Calls

Sys_Signal: register a signal handler

Sys_Kill: send a signal

Sys_RegDeliver: initialize signal handling for a process

Sys_WaitNoPID: wait for any child process to die

Sys_ReturnSignal: indicate completion of signal handler

Executed by stub code

once a signal has been

handled

(from trampoline)

CMSC412, Spring 2010

Helper Functions

• Send_Signal

• Set_Handler

• Check_Pending_Signal

• Setup_Frame

• Complete_Handler

CMSC412, Spring 2010

Review

Process B

function handler() {

Print “HANDLING”

}

main() {

Signal(&handler, SIGUSR1)

for(;;)

Print “B”

}

Process A

main() {

for(1000)

Print “A”

Kill(B, SIGUSR1)

}

CMSC412, Spring 2010

Overview

A B

CMSC412, Spring 2010

Overview

A B

RegDeliver RegDeliver

Signal(SIGCHILD) Signal(SIGCHILD, ….)

CMSC412, Spring 2010

Overview

libc

A B

RegDeliver RegDeliver

Signal(SIGCHILD) Signal(SIGCHILD, ….)

CMSC412, Spring 2010

Overview

pointerflag

…

KILL

SIGUSR2

SIGUSR1

SIGCHILD

libc

A B
RegDeliver RegDeliver

Signal(SIGCHILD) Signal(SIGCHILD, ….) Set_handler

CMSC412, Spring 2010

Overview

pointerflag

x

…

KILL

SIGUSR2

SIGUSR1

SIGCHILD

libc

A B
RegDeliver RegDeliver

Signal(SIGCHILD) Signal(SIGCHILD, ….) Set_handler

handler()

CMSC412, Spring 2010

Overview

pointerflag

x

…

KILL

SIGUSR2

SIGUSR1

SIGCHILD

libc

A B
RegDeliver RegDeliver

Signal(SIGCHILD) Signal(SIGCHILD, ….)

Kill Signal

sends signal

entry point

main installs

CMSC412, Spring 2010

Helper Functions

Send_Signal

Set_Handler

Check_Pending_Signal

Setup_Frame

Complete_Handler

Look at Scheduler

CMSC412, Spring 2010

Scheduler: w/o signals

A B

scheduler

Save A’s

state

A

src/geekos/lowlevel.asm

choose B

CMSC412, Spring 2010

Scheduler: w/ signals

A

B’s

user

level

sig.

hand.

B

scheduler

choose B

Check
Pending
Signal

CMSC412, Spring 2010

Check Pending Signal

Boolean output

Determines whether to proceed with signal handling

CMSC412, Spring 2010

Scheduler: w/ signals

A

B’s

user

level

sig.

hand.

B

scheduler

choose B

Check
Pending
Signal

true

false

Setup

Frame

CMSC412, Spring 2010

Setup Frame

Sets up state to enable user-level handling code

execution

CMSC412, Spring 2010

Setup Frame

Sets up state to enable user-level handling code

execution

How are functions called?

CMSC412, Spring 2010

Function Calls

Parameter of return address is stored on the stack so

when finished

• Pop off stack

• Continue execution

Setup Frame

• Enables user stack to keep:

• Interrupt_State Vector

• Return address

CMSC412, Spring 2010

Storing Return Address

Want complete_handler to execute once user level

handling done.

Hack

• Place address of return_signal as return address on

stack

• Now return_signal stred as function

CMSC412, Spring 2010

Scheduler: w/ signals

A

B’s

user

level

sig.

hand.

B

scheduler

Check
Pending
Signal

Setup

Frame

Complete

Handler

