
1
1

1CMSC 412 – S14 (lect 3)

Announcements
 Program #0

– Due on Friday

– Limit should return 0 when called with correct parameters

– Calling limit resets the counter, so a Limit(0,4) will be killed
on the 5th system call after Limit.

 Reading
– Today: Processes - Chapter 3 (ch 4, 6th Ed)

– Thursday: Threads - Chapter 4 (ch 5, 6th Ed)

2CMSC 412 – S14 (lect 3)

Hardware Protection

 Need to protect programs from each other

 Processor has modes
– user mode and supervisor (monitor, privileged)

– operations permitted in user mode are a subset of supervisor
mode

 Memory Protection
– control access to memory

– only part of the memory is available

• can be done with base/bound registers

 I/O Protection
– I/O devices can only be accessed in supervisor mode

 Processor Protection
– Periodic timer returns processor to supervisor mode

2
2

3CMSC 412 – S14 (lect 3)

Operating System Structure

 Simple Structure (or no structure)
– any part of the system may use the functionality of the rest of

the system

– MS-DOS (user programs can call low level I/O routines)

 Layered Structure
– layer n can only see the functionality that layer n-1 exports

– provides good abstraction from the lower level details

• new hardware can be added if it provides the interface
required of a particular layer

– system call interface is an example of layering

– can be slow if there are too many layers

 Hybrid Approach
– most real systems fall somewhere in the middle

4CMSC 412 – S14 (lect 3)

Policy vs. Mechanism

 Policy - what to do
– users should not be able to read other users files

 Mechanism- how to accomplish the goal
– file protection properties are checked on open system call

 Want to be able to change policy without having to
change mechanism
– change default file protection

 Extreme examples of each:
– micro-kernel OS - all mechanism, no policy

– MACOS - policy and mechanism are bound together

3
3

5CMSC 412 – S14 (lect 3)

Multi-programming

 Systems that permit more than one process at once
– virtually all computers today

 Permits more efficient use of resources
– while one process is waiting another can run

 Provides natural abstraction of different activities
– windowing system

– editor

– mail daemon

 Preemptive vs. non-preemptive muti-programming
– preemptive means that a process can be forced off the

processor by the OS

– provides processor protection

6CMSC 412 – S14 (lect 3)

Process State Transitions

new

readyready runningrunning

waitingwaiting

terminatedterminated

admitted

interrupt

dispatch

I/O request or event waitI/O request or
event wait done

Kill

exit

4
4

7CMSC 412 – S14 (lect 3)

Components of a Process

 Memory Segments
– Program - often called the text segment

– Data - global variables

– Stack - contains activation records

 Processor Registers
– program counter - next instruction to execute

– general purpose CPU registers

– processor status word

• results of compare operations

– floating point registers

8CMSC 412 – S14 (lect 3)

Process Control Block
 Stores all of the information about a process
 PCB contains

– process state: new, ready, etc.
– processor registers
– Memory Management Information

• page tables, and limit registers for segments
– CPU scheduling information

• process priority
• pointers to process queues

– Accounting information
• time used (and limits)
• files used
• program owner

– I/O status information
• list of open files
• pending I/O operations

