e Program #1

Announcements

— Due Today at 5:00 pm

e Reading

— Continue scheduling

CMSC 412 — S14 (lect6)




In Class Exercise

e Give each group 15 minutes
— to finish up their scheduling algorithm.

— The algorithm should take a list of runnable processes and
pick one to run next

— Any criteria can be used

— May keep data about processes, but need to describe what it
IS

e Have each group describe their algorithm
— Ask the others if it does what they claim it does
— Offer your own critiques of the algorithm

— If one of the groups repeats another, still have them describe
it

« Look for any differences in how it achieves its goal

CMSC 412 — S14 (lect6)




Scheduling criteria

e Per processor, or system oriented
— CPU utilization
e maximize, to keep as busy as possible
— throughput
* maximize, number of processes completed per time unit

e Per process, or user oriented

— turnaround time
* minimize, time of submission to time of completion.

— waiting time
* minimize, time spent in ready queue - affected solely by

scheduling policy

— response time
* minimize, time to produce first output
e most important for interactive OS

CMSC 412 — S14 (lect6)




Short-term scheduling algorithms

e First-Come, First-Served (FCFS, or FIFO)

— as process becomes ready, join Ready queue, scheduler
always selects process that has been in queue longest

— better for long processes than short ones
— favors CPU-bound over I/O-bound processes
— need priorities, on uniprocessor, to make it effective

CMSC 412 — S14 (lect6)




Algorithms (cont.)

e Round-Robin (RR)

— use preemption, based on clock - time slicing
e generate interrupt at periodic intervals

— when interrupt occurs, place running process in Ready
gueue, select next process to run using FCFS

— what'’s the length of a time slice

« short means short processes move through quickly, but
high overhead to deal with clock interrupts and
scheduling

 guideline is time slice should be slightly greater than time
of “typical job” CPU burst

— problem dealing with CPU and 1/0O bound processes

CMSC 412 — S14 (lect6)




e Priorities

Priority Based Scheduling

— assign each process a priority, and scheduler always
chooses process of higher priority over one of lower priority

e More than one ready queue, ordered by priorities

Occurs

CMSC 412 — S14 (lect6)

Blocked queue

0 i
; L Ispatch >@£ﬂ_&a§e
Admit :
RON
< Preemption
- Event Wait
Event




Priority Algorithms

e Fixed Queues

— processes are statically assigned to a queue
— sample gueues: system, foreground, background

e Multilevel Feedback
— processes are dynamically assigned to queues
— penalize jobs that have been running longer
— preemptive, with dynamic priority
— have N ready gqueues (RQO-RQN),
o start process in RQO
e if quantum expires, moved to I + 1 queue

CMSC 412 — S14 (lect6)




Feedback scheduling (cont.)

— problem: turnaround time for longer processes

e can increase greatly, even starve them, if new short jobs
regularly enter system

— solutionl: vary preemption times according to queue
e processes in lower priority queues have longer time slices
— solution2: promote a process to higher priority queue

e after it spends a certain amount of time waiting for service in its
current queue, it moves up

— solution3: allocate fixed share of CPU time to jobs
o If a process doesn’t use its share, give it to other processes
e variation on this idea: lottery scheduling
— assign a process “tickets” (# of tickets is share)

— pick random number and run the process with the winning
ticket.

CMSC 412 — S14 (lect6)




UNIX System V

e Multilevel feedback, with
— RR within each priority queue
— 10ms second preemption
— priority based on process type and execution history, lower
value is higher priority
e priority recomputed once per second, and scheduler
selects new process to run

e For process |, P(i) = Base + CPU(i-1)/2 + nice
— P(i) is priority of process j at interval i
— Base is base priority of process |
— CPU(®) =U@)/2 + CPU(i-1)/2
* U(i) is CPU use of process j in interval |

« exponentially weighted average CPU use of process |
through interval i

— nice Is user-controllable adjustment factor

CMSC 412 — S14 (lect6)




UNIX (cont.)

e Base priority divides all processes into (non-
overlapping) fixed bands of decreasing priority levels

— swapper, block 1/O device control, file manipulation,
character 1/O device control, user processes

e bands optimize access to block devices (disk), allow
OS to respond quickly to system calls

e penalizes CPU-bound processes w.r.t. I/0O bound
e targets general-purpose time sharing environment

CMSC 412 — S14 (lect6)

10




Example: Windows NT/XP

e Target:
— single user, in highly interactive environment
— aserver
e preemptive scheduler with multiple priority levels

e flexible system of priorities, RR within each, plus
dynamic variation on basis of current thread activity
for some levels

e 2 priority bands, real-time and variable, each with 16
levels

— real-time ones have higher priority, since require immediate
attention(e.g. communication, real-time task)

CMSC 412 — S14 (lect6) 11




Windows NT/XP (cont.)

e In real-time class, all threads have fixed priority that
never changes

e In variable class, priority begins at an initial value,
and can change, up or down
— FIFO queue at each level, but thread can switch queues

e Dynamic priority for a thread can be from 2 to 15
— If thread interrupted because time slice is up, priority lowered
— If interrupted to wait on I/O event, priority raised
— favors 1/0-bound over CPU-bound threads

— for I/0O bound threads, priority raised more for interactive
waits (e.g. keyboard, display) than for other I/O (e.g. disk)

CMSC 412 — S14 (lect6) 12




Multi-Processor Scheduling

e Multiple processes need to be scheduled together
— Called gang-scheduling
— Allowing communicating processes to interact w/o/ waiting

e Try to schedule processes back to same processor
— Called affinity scheduling

* Maintain a small ready queue per processor
* Go to global queue if nothing local is ready

CMSC 412 — S14 (lect6)

13




