
1CMSC 412 – S14 (lect 15)

Announcements
 Project #4 due in 10 days

– Should have all of the virtual -> mapping working by today
– Should have the user program running from 0x8000 0000 by

Thursday

 Reading Chapter 12

2CMSC 412 – S14 (lect 15)

Filesystems

 Raw Disks can be viewed as:
– a linear array of fixed sized units of allocation, called blocks

• assume that blocks are error free (for now)
• typical block size is 512 to 4096 bytes

– can update a block in place, but must write the entire block
– can access any block in any desired order

• blocks must be read as a unit
• for performance reasons may care about “near” vs. “far”

blocks (but that is covered in a future lecture)

 A Filesystem:
– provides a hierarchical namespace via directories
– permits files of variable size to be stored
– provides disk protection by restricting access to files based

on permissions

3CMSC 412 – S14 (lect 15)

Allocation Methods
 How do we select a free disk block to use?
 Contiguous allocation

– allocate a contiguous chunk of space to a file
– directory entry indicates the starting block and the length of the file
– easy to implement, but

• how to satisfy a given sized request from a list of free holes?
• two options

– first fit (find the first gap that fits)
– best fit (find the smallest gaps that is large enough)

• What happens if one wants to append to file?
– from time to time, one will need to repack files

4CMSC 412 – S14 (lect 15)

Linked Allocation
 Each file is a linked list of disk blocks, blocks can be

located anywhere
– Directory contains a pointer to the first and last block of a file
– Each block contains a pointer to the next block
– This is essentially a linked-list data structure

 Problems:
– Best for sequential access data structures

• requires sequential access whether you want to or not!
– Reliability - one bad sector and all portions of your file

downstream are lost
 Useful fix:

– Maintain a separate data structure just to keep track of
linked lists

– Data-structure includes pointers to actual blocks

5CMSC 412 – S14 (lect 15)

Indexed Allocation
 Bring all pointers together in an index block

– Each file has its own index block - ith entry of index block points to
ith block making up the file

 How large to make an index block?
– To avoid a fixed maximum file size, index block must be extensible

 Linked scheme:
– maintain a linked list of indexed blocks

 Multilevel index:
– Index block can point to other index blocks (which point to index

blocks), which point to files
 Hybrid multi-level index

– first n blocks are from a fixed index
– next m blocks from an indirect index
– next o blocks from a double indirect index

6CMSC 412 – S14 (lect 15)

Hybrid Multi-level Index (UNIX)
 Observations

– most files are small
– most of the space on the disk is consumed by large files

 Want a flexible way to support different sized
– assume 4096 byte block
– first 12 blocks (48 KB) are from a fixed index
– next 1024 blocks (4 MB) from an indirect index
– next 10242 blocks (4 GB) from a double indirect index
– final 10243 blocks (4 TB) from a triple indirect index

directory entry

Indirect
Index

double indirect index

7CMSC 412 – S14 (lect 15)

Modified Linked Allocation (FAT)
 Section of disk contains a table

– called the file allocate table (FAT)
– used in MS-DOS

 Directory entry contains the block number of the first
block in the file

 Table entry contains the number of the next block in
the file

 Last block has a end-of-file value as a table entry
directory entry

ith block corresponds to the ith FAT entry

last entry
(for a file)
has EOF ptr FAT

8CMSC 412 – S14 (lect 15)

Performance Issues

 FAT
– simple, easy to implement
– faster to traverse than linked allocation
– random access requires following links
– files can’t have holes in them

 Hybrid indirect
– fast access to any part of the file
– files can have holes in them
– more complex

