
1CMSC 412 – S14 (lect 17)

Announcements
 Reading Chapter 12
 Project #4 is Due Friday at 5:00 PM

2CMSC 412 – S14 (lect 17)

Unix directories - links
 Each file has unique inode but it may have multiple

directory entries in the same filesystem to reference
inode

 Each directory entry creates a hard link of a filename
to the file’s inode
– Number of links to file are kept in reference count variable in

inode
– If links are removed, file is deleted when number of links

becomes zero

 Symbolic or soft link
– Implemented as a file that contains a pathname
– Symbolic links do not have an effect on inode reference

count

3CMSC 412 – S14 (lect 17)

File Lookup (/usr/bin/vi)

Indirect
Index

Root inode =2

usrDirectory Entry

binDirectory Entry

viDirectory Entry

Inode

Inode

Data Block

4CMSC 412 – S14 (lect 17)

Using UNIX filesystem data structures
 Example: find /usr/bin/vi

– from Leffler, McKusick, Karels and Quarterman
– Search root directory of filesystem to find /usr

• root directory inode is, by convention, stored in inode #2
• inode shows where data blocks are for root directory - these

blocks (not the inode itself) must be retrieved and searched for
entry user

• we discover that the directory user’s inode is inode #4
– Search user for bin

• access blocks pointed to by inode #4 and search contents of
blocks for entry that gives us bin’s inode

• we discover that bin’s inode is inode #7
– Search bin for vi

• access blocks pointed to by inode #7 and search contents of
block for an entry that gives us vi’s inode

• we discover that vi’s inode is inode #7
– Access inode #7 - this is vi’s inode

5CMSC 412 – S14 (lect 17)

How to Improve Speed?

 Use A Cache
 Name-to-Inode lookup

– Hash on full path name
– Find inode without and disk accesses on a hit

6CMSC 412 – S14 (lect 17)

Mount System Call

 How to attach a file system into a name space?
 Simple Idea:

– use letters C, D, E, etc.
– use volume names (VMS) – fixed length string

 Better Idea:
– Allow attachment at arbitrary points in namespace
– Designate one tree as the “root” file system
– Others are attached to the root

 Mount used in:
– UNIX
– Windows (NTFS mount points)
– GeekOS

7CMSC 412 – S14 (lect 17)

Log Structured File Systems

 Key Idea
– Use transactions like model for filesystem updates

 Write data to a log (also called a journal)
– Records meta data changes
– Records data blocks written
– File operation is committed once it is to the log
– Partial updates to log are lost on failure

 Next Step
– Eliminate the filesystem and just keep the log
– Requires a process called a cleaner

• Copies old data from log to head of log to allow compaction

8CMSC 412 – S14 (lect 17)

NTFS
 File system may

– Be a partition (fraction) of a disk
– May spam multiple disks

 Clusters
– Group sectors into a larger group (typically 4KB)
– Logical cluster numbers (0…N) describe where a cluster is

 File consists of a set of attributes
– Attributes

• arbitrary sized
• Linear ordering from 0…n

– Examples
• Filename
• File data
• Security
• Mac Resource fork

9CMSC 412 – S14 (lect 17)

NTFS Files
 Each file is stored in an entry in the Master File Table

(MFT)
– Each entry 1-4KB
– Small attributes stored directly in MFT
– Larger attributes are stored in one or more extents

(contiguous clusters on the disk)

 Special Files
– MFT – file 0
– Copy of first 16 entries in MFT
– Log file – log of changes to file system
– Attribution definition table
– Root directory
– Bitmap free list
– Boot file (must be at a standard disk address)
– Bad cluster file

