
CMSC 412 Project #5
File System

Due Thursday, May 1 at 5:00pm

Introduction
The purpose of this project is to add a new filesystem to GeekOS, as well as the standard operations for
file management.

This project will be done in teams, but the teams will be different than they were for project #4.
Also there are different variations of the project for each team. Make sure to get your team
specific variation (it will be emailed to you).

CFS - Chameleon FileSystem
The main part of this project is to develop a new filesystem for the GeekOS. This filesystem will reside
on the second IDE disk drive in the QEMU emulator. This will allow you to continue to use your
existing PFAT drive to load user programs while you test your filesystem. The second IDE disk's image
is called diskd.img.

CFS will provide a filesystem that includes multiple directories and long file name support.

The Mount system call allows you to associate a filesystem with a place in the file name hierarchy. The
Mount call is implemented as part of the VFS code we supply.

Then you can mount the CFS file system on drive 1 onto /d, for instance.

VFS and file operations
Since GEEKOS will have two types of filesystems (PFAT and CFS), it has a virtual filesystem layer
(VFS) to handle sending requests to an appropriate filesystem (see figure below). We have provided an
implementation of the VFS layer in the file vfs.c. The VFS layer will call the appropriate CFS routines
when a file operation refers a file in the CFS filesystem.

Most of the System Call layer is already implemented in syscall.c and the PFAT in pfat.c. Thus the
only component you need to take care of is the CFS one.

Each user space process will have a file descriptor table that keeps track of which files that process can
currently read and write. Any user process should be able to have up to 10 files open at once. The file
descriptors for a user process are kept in the files[MAX_OPEN_FILES] array in struct
User_Context. Note that not all the entries in the files are open files, since usually a process has
less than 10 files open at once. If the field openFile.fsType == FS_TYPE_NONE that represents a free
slot (file descriptor not used). But the good news is that file descriptor management is already
implemented for you (see Open() function in vfs.c).

Your filesystem should support fixed length filenames (at most 64 bytes, including a null at the end for a
file/directory name). A full path to a file will be no more than 1024 characters.

You should keep track of free disk blocks using a bit vector (as described in class). A library called
bitset is provided (see bitset.h and bitset.c) that manages a set of bits and provides functions to find
bits that are 0 (i.e. correspond to free disk blocks).

All disk allocations will be in units of 4KB (i.e. 8 physical disk blocks). Thus one bit in a bitset
corresponds to a 4KB block. A bitset that is 8192 bits (1024 bytes) large will obviously keep track of
8192 * 4KB = 32 MB of data.

Directory Structure
See the recitation slides for details on directory structure. Each directory in CFS takes up a single disk
block. The structure of the directory is defined in cfs.h. A directory is an array of CFSfileNode (55
elements, since they have to fit in a single 4KB block). Each filenode can represent either a file in the
directory or a subdirectory.

Each file also has an inode (CFSiNode) associated with it. The inode for a directory is distinguished by
the isDirectory bit. The location of the block that holds the data for the directory will be stored in the

first entry in the blocks array of the directory's filenode (hence entries blocks[1]..blocks[7] are
unused).

Files
Unlike directories, that have a fixed size of one blocks (irrespective of how many files the hold), files
can take up an arbitrary number of disk blocks. You will use a version of indexed allocation to represent
the data blocks of your filesystem. The blocks field (CFSiNode, cfs.h) keeps track of data blocks for a
file. The first eight 4KB-blocks are direct blocks, the ninth points to a single indirect block, the tenth to a
double indirect block. See the recitation slides for a detailed layout.

New System Calls
You have to implement the semantics of the new system calls as described below. As you see, the
semantics is very similar to the UNIX one.

 All of these functions vector through the VFS layer before you implement them at the CFS level. So
the functions names are all of the form CFS_<function>. So the Mount call you implement is
CFS_Mount in cfs.c

 You can look in pfat.c to see how a complete implementation of a filesystem using the VFS layer

works. Be sure to look at the use of VFS functionality such as Allocate_File, which will be critical
to use.

System Call
User Function

Return
on
success

Return
on
failure

Reasons for
failure

Comment

SYS_MOUNT

Mount(char *dev, char
*prefix, char *fstype)

0 -1

 a filesystem
already mounted
under name
 illegal value for
one of the
parameters

Your Mount function should not "validate" the
filesystem settings except for magic and version
fields, and that block size is support-able (a
multiple of 512, or 512/1024/4096 at least). Other
items, e.g., the number and start location of
inodes and the total number of blocks, can be
arbitrary.

SYS_OPEN

Open(char *name, int
permissions)

new file
descriptor
number

-1

 name does not
exist (if
permissions
don't include
O_CREATE)
 path to name
does not exist (if
permissions
include

 there's no create syscall, so setting
O_CREATE will create the file. If the file
exists, the call succeeds (return >= 0) but its
data contents is not affected.
 Should NOT create directories recursively
if needed, e.g.
Open("/d/d1/d2/d3/xFile", O_CREATE),
will NOT create d1 inside of d, d2 inside of

O_CREATE)
 O_WRITE and
O_CREATE not
allowed for
directories, use
CreateDirectory
instead

d1, etc. if they don't exist already. If the
leading path /d/d1/d2/d3 does not exist, the
syscall fails, returning -1
 The permissions values are flags and may
be or'ed together in a call. For example:

 O_CREATE|O_READ
 O_READ|O_WRITE
 O_CREATE|O_READ|O_WRITE

SYS_OPEN_DIRECTORY
Open_Directory(char
*name)

New file
descriptor
number

-1

 name does not
exist
 name is not a
directory

SYS_CLOSE
Close(int fd)

0 -1

 fd not within 0-
9
 fd is not an
open file

SYS_DELETE
Delete(char *name)

0 -1

 name does not
exist
 name is a non-
empty directory

if Delete(file) is called and file is still
open in other threads or even in the thread
that called Delete(), all the subsequent
operations on that file (except Close())
should fail

SYS_READ
Read(int fd, char *buffer,
int length)

number
of bytes
read

-1

 fd not within 0-
9
 fd is not an
open file
 fd was not open
with O_READ
flag

 it's OK if return value < length, for
instance reading close to end of file
 increase the filePos, if successful

There is special behavior when SYS_READ
is called on a directory:

 The data put into the buffer should be
formatted as an array of dirEntry
structs.

 The length argument specifies the
number of dirEntries to return

 The return value equals the number of
dirEntries read

dirEntry is defined in fileio.h

SYS_READ_ENTRY
Read_Entry(int fd, struct
VFS_Dir_Entry *dirent)

1 -1

 fd is not a
directory

 file pointer is
at end of

directory

SYS_WRITE
Write(int fd, char *buffer,
int length)

number
of bytes
written

-1

 fd not within 0-
9
 fd is not an
open file
 fd was not open
with O_WRITE
flag
 fd is a directory

 increases filePos is successful
 "Grow on write"- allocate blocks "on the
fly" if past end of file

SYS_STAT
Stat(char *file, fileStat
*stat)

0 -1 file is not
found, readable

SYS_FSTAT
Stat(int fd, fileStat *stat)

0 -1

 fd not within 0-
9
 fd is not an
open file

SYS_SEEK
Seek(int fd, int offset)

0 -1

 fd not within 0-
9
 fd is not an
open file
 offset >
fileSize

offset is an absolute position; could be
equal to fileSize, then Write appends, see
above

SYS_CREATEDIR
CreateDirectory(char
*name)

0 -1

 name already
exists, as file or
directory
 regular file
encountered on
the path to name

Should create directories recursively if
needed, e.g.
CreateDirectory("/d/d1/d2/d3/d4"),
will create d1 inside of d, d2 inside of d1, etc.
if they don't exist already. This operation
should be atomic, in the sense that either the
whole directory chain is created or no
directory is created.

SYS_FORMAT
Format(int drive)

0 -1

 illegal value for
drive (it must
work with 1,
higher is optional)
 drive is in use,
i.e. mounted

formats a drive with CFS; don't need to
support formatting with PFAT ; don't need to
format in init code; so you can save your data
between sessions

SYS_RENAME
Rename(char *old, char
*new)

0 -1

 Old file does
not exist

 New file does
exist

Renames a file form old to new. The names
will be within the same file system (i.e. we
will not rename form /c/myfile to /d/myfile).

SYS_LINK
Link(char *old, char *new)

0 -1 Old file does
not exist

Creates a hard link from one old to new.
Hard links have separate directory entries but

 New file does
exist

share the same inode. Hard links are only
within a partition/filesystem.

SYS_SYMLINK 0 -1

 Old file does
not exist

 New file does
exist

Creates a symbolic link from old to new.
The contents of the new file are the name of
the old file. Symbolic links may span
multiple partitions/filesystems.

Disk Layout
Number of Blocks (8 512 bye sectors) Purpose
1 Superblock
Disk size/(4096*8) Free blocks
(numInodes*sizeof(CFSiNode))/4096 Inodes
Rest of disk files

A guideline is provided above. First block (0) is called SUPERBLOCK (defined in cfs.h as cfsHeader),
and contains filesystem housekeeping data. Blocks >= 1 contain files and directories. It contains:

 The Magic number at the very beginning should be 0x20140000. This tells you that the disk has a
CFS filesystem on it. If you try to mount a drive and you don't find the magic signature, return
error.

 Size is the size of the disk, in 4KB blocks. (32M / 4K = 8K for the example above)
 numInodes indicates	the	number	of	inodes	that	are	on	the	disk	(determined	when	the	file	

system	is	formatted,	must	be	at	least	512	–	probably	much	more)
 firstInodeBlock indicates	the	block	number	where	the	first	inode	is	stored	

(numInodes	follow	in	the	block(s)	right	after	that)
 firstFreeInode indicates	the	inode	number	of	the	first	free	inode	on	the	disk.

When you do a Format() , you make a raw disk usable with CFS. That is:

1. Get drive's size, convert it in # of blocks. IDE_getNumBlocks() in ide.c tells you that.
2. Figure out Free Blocks Bitmap size, mark them all free.
3. Create a valid, but empty directory. That will be the root directory (inode #0)
4. Mark superblock, inodes, freemap, and block for root directory as used in the Free Blocks

Bitmap
5. If everything went OK, write the Magic. Now the disk is ready to be mounted and used.

Notes

You do not need to consider situations where two processes have the same file open. You do not need to
consider situations where one process opens the same file twice without closing it in between.

Too allow you to cache information, the VFS layer includes a Sync function. When the Sync function is
called, all changed state needs to be saved to disk (i.e. the machine can be rebooted after it). You may
choose to make all operations synchronous, in that case sync will be a no-op.

If a read() is called on a directory, the data returned should be in the form of an array of dirEntry
structures. The length argument and the return value will indicate the number of entries to read and the
number of entries that were read, rather than the number of bytes.

Project Variants
There are five a/b variants of the project. For each variant, your team will be assigned a specific option (a or b)
that you will implement. The options are:

Case Sensitive File Names/Lower Case File Names

In the A option all file names are case sensitive.

In the B option all file names should be converted to lower case before being used.

Buffer Cache/No Buffer Cache

In the A option you will use the Buffer Cache API to access the disk drive. The relevant functions are:

struct FS_Buffer_Cache *Create_FS_Buffer_Cache(struct Block_Device *dev, uint_t
fsBlockSize);
int Sync_FS_Buffer_Cache(struct FS_Buffer_Cache *cache);
int Destroy_FS_Buffer_Cache(struct FS_Buffer_Cache *cache);

int Get_FS_Buffer(struct FS_Buffer_Cache *cache, ulong_t fsBlockNum, struct FS_Buffer
**pBuf);
void Modify_FS_Buffer(struct FS_Buffer_Cache *cache, struct FS_Buffer *buf);
int Sync_FS_Buffer(struct FS_Buffer_Cache *cache, struct FS_Buffer *buf);
int Release_FS_Buffer(struct FS_Buffer_Cache *cache, struct FS_Buffer *buf);

In the B option, use the raw IDE functions to access the disk drive. The relevant functions are:

 int Block_Read(struct Block_Device *dev, int blockNum, void *buf);

int Block_Write(struct Block_Device *dev, int blockNum, void *buf);
int Get_Num_Blocks(struct Block_Device *dev);

Trash Can/Backup File

In the A option, when a file is deleted, it is moved into the directory /TRASH (which you should create
as part of formatting the disk drive). If there is already a file with that name in the trash, the older one
should be deleted and the newly deleted file placed in trash. The trash can does not have sub-directories
so if the file /d/dir/oldFile is deleted, it should end up as /TRASH/oldFile).

In the B option, when a file (but not a directory) is opened for writing and it already exists, a backup
copy of the file should be made in the same directory with the suffix .BU added to the file name. If
there is already a file with the .BU suffix, it should be deleted and then the copy made of the file being
opened. All file names we will use will have enough room for the .BU suffix to be added.

Symbolic Links/Hard Links

In the A option, you will add the system call SymLink to the file system. SymLink will create symbolic
links to a file. The contents of a symbolic link file is the name of the file to symbolically link to. The
file system knows it is a symbolic link since the isSymbolicLink field is set in the inode. When you
open a file (or directory), you will check if it is a symbolic link and if so, read the contents of the file
(the name of the linked file) and open that instead. This process can iterate several times until a non-
symbolically linked file is reached.

In the B option, you will add the system call Link to the file system. The Link call creates a hard link to
the file. In a hard link, each file has a directory entry but the point to a single shared inode. To
correctly handle deleting inodes, you will need to maintain a reference count in the inode (the refCount
field is provided for that purpose).

Recursive Directory Creation/Recursive File Deletion

In the A option, you will add a new mode to the Open system call (O_RECURSIVE). If this mode is set,
and an attempt is made to create a file in a directory that does not exist, you will create the directory
before opening the file. This call is recursive so on an empy file system and open of /d/dir1/dir2/file will
first create /d/dir1 and then /d/dir1/dir2 before creating the file.

In the B option, you will implement the recursive option to the Delete system call. When true is passed
to this option, a delete of a directory will recursively delete all the files in that directory before deleting
the directory.

Requirements
 Make sure your Mount() works well, so that we can test your project. If we cannot Mount() a CFS,
we cannot grade your project.
 You might also want to mount "/d" (dee) automatically in Main() to speed up your testing, but the
code you submit should not mount "/d" automatically. "/c" (cee) should be mounted automatically in
Main() though.

 You should support disk sizes of at least 32 MB. More than 32 MB is optional. Following the
procedure described in the "How to create an arbitrary size big diskd.img" section above, in your
submitted project, when someone types gmake, a 32 MB file should be created.
 You should support file sizes of at least 5 MB (double indirect threshold crossed, yes). More than 5
MB is optional.

Testing
As you saw at the top, in src/user there are some programs that can be used to test your file
management syscalls: rm.c, cp,c, ls.c, mkdir.c, mount.c, nsp5test.c.

