
1CMSC 412 – S16 (lect 5)

Announcements

� Reading

– Project #1 – due in 1 week at 5:00 pm

– Scheduling

• Chapter 6 (6th ed) or Chapter 5 (8th ed)

2CMSC 412 – S16 (lect 5)

Relationship between Kernel mod and
User Mode

User Process

Kernel

User Process

Unique:

Program

Stack

Heap

Unique:

Program

Stack

Heap

Idle Thread

Kernel Threads:

Each has own stack (separate from user mode)

Share heap with other kernel threads

Run same program (kernel) as other kernel threads

System Calls

Initial Thread

Kernel Mode thread of

A user process

3CMSC 412 – S16 (lect 5)

Threads

� processes can be a heavy (expensive) object

� threads are like processes but generally a collection

of threads will share

– memory (except stack)

– open files (and buffered data)

– signals

� can be user or system level

– user level: kernel sees one process

+ easy to implement by users

- I/O management is difficult

- in an multi-processor can’t get parallelism

– system level: kernel schedules threads

4CMSC 412 – S16 (lect 5)

Important Terms

� Threads

– An execution context sharing an address space

� Kernel Threads

– Threads running with kernel privileges

� User Threads

– Threads running in user space

� Processes

– An execution context with an address space

– Visible to and scheduled by the kernel

� Light-Weight Processes

– An execution context sharing an address space

– Visible to and scheduled by the kernel

5CMSC 412 – S16 (lect 5)

Dispatcher

� The inner most part of the OS that runs processes

� Responsible for:

– saving state into PCB when switching to a new process

– selecting a process to run (from the ready queue)

– loading state of another process

� Sometimes called the short term scheduler

– but does more than schedule

� Switching between processes is called context

switching

� One of the most time critical parts of the OS

� Almost never can be written completely in a high

level language

6CMSC 412 – S16 (lect 5)

Selecting a process to run

� called scheduling

� can simply pick the first item in the queue

– called round-robin scheduling

– is round-robin scheduling fair?

� can use more complex schemes

– we will study these in the future

� use alarm interrupts to switch between processes

– when time is up, a process is put back on the end of the
ready queue

– frequency of these interrupts is an important parameter

• typically 10-100ms on systems today

– Time has been getting longer over past 30 years

– need to balance overhead of switching vs. responsiveness

7CMSC 412 – S16 (lect 5)

CPU Scheduling

� Manage CPU to achieve several objectives:

– maximize CPU utilization

– minimize response time

– maximize throughput

– minimize turnaround time

� Multiprogrammed OS

– multiple processes in executable state at same time

– scheduling picks the one that will run at any give time (on a
uniprocessor)

� Processes use the CPU in bursts

– may be short or long depending on the job

8CMSC 412 – S16 (lect 5)

Types of Scheduling

� At least 4 types:

– long-term - add to pool of processes to be executed

– medium-term - add to number of processes partially or fully
in main memory

– short-term - which available process will be executed by the
processor

– I/O - which process’s pending I/O request will be handled by
an available I/O device

� Scheduling changes the state of a process

9CMSC 412 – S16 (lect 5)

Scheduling criteria
� Per processor, or system oriented

– CPU utilization

• maximize, to keep as busy as possible

– throughput

• maximize, number of processes completed per time unit

� Per process, or user oriented

– turnaround time

• minimize, time of submission to time of completion.

– waiting time

• minimize, time spent in ready queue - affected solely by
scheduling policy

– response time

• minimize, time to produce first output

• most important for interactive OS

10CMSC 412 – S16 (lect 5)

Scheduling criteria
non-performance related

� Per process
– predictability

• job should run in about the same amount of time,
regardless of total system load

� Per processor
– fairness

• don’t starve any processes, treat them all the same

– enforce priorities

• favor higher priority processes

– balance resources

• keep all resources busy

