
1
1

1CMSC 412 – S16 (Final Review)

Announcements

� Final is Firday at 8:00 in this room

� Course evaluations are on the web, please complete

2CMSC 412 – S16 (Final Review)

What is an Operating System?

� Resource Manager

– Resources include: CPU, memory, disk, network

– OS allocates and de-allocates these resources

� Virtual Machine

– provides an abstraction of a larger (or just different machine)

– Examples:

• Virtual memory - looks like more memory

• Java - pseudo machine that looks like a stack machine

• IBM VM - a complete virtual machine (can boot multiple
copies of an OS on it)

� Multiplexor

– allows sharing of resources and protection

– motivation is cost: consider a $40M supercomputer

2
2

3CMSC 412 – S16 (Final Review)

What is an OS (cont)?

� Provider of Services

– includes most of the things in the above definition

– provide “common” subroutines for the programmer

• windowing systems

• memory management

� The software that is always loaded/running

– generally refers to the Os kernel.

• small protected piece of software

� All of these definitions are correct

– but not all operating have all of these features

4CMSC 412 – S16 (Final Review)

System Calls

� Provide the interface between application programs
and the kernel

� Are like procedure calls

– take parameters

– calling routine waits for response

� Permit application programs to access protected
resources

load r0, x
system call 10

User Program Operating System
(kernel)

Code for
sys call 10

register r0

3
3

5CMSC 412 – S16 (Final Review)

System Call Mechanism

� Use numbers to indicate what call is made

� Parameters are passed in registers or on the stack

� Why do we use indirection of system call numbers
rather than directly calling a kernel subroutine?

– provides protection since the only routines available are
those that are export

– permits changing the size and location of system call
implementations without having to re-link application
programs

6CMSC 412 – S16 (Final Review)

Policy vs. Mechanism

� Policy - what to do

– users should not be able to read other users files

� Mechanism- how to accomplish the goal

– file protection properties are checked on open system call

� Want to be able to change policy without having to
change mechanism

– change default file protection

� Extreme examples of each:

– micro-kernel OS - all mechanism, no policy

– MACOS - policy and mechanism are bound together

4
4

7CMSC 412 – S16 (Final Review)

Processes

� What is a process?

– a program in execution

– “An execution stream in the context of a particular state”

– a piece of code along with all the things the code can affect
or be affected by.

• this is a bit too general. It includes all files and
transitively all other processes

– only one thing happens at a time within a process

� What’s not a process?

– program on a disk - a process is an active object, but a
program is just a file

8CMSC 412 – S16 (Final Review)

Process Creation
� Who creates processes?

– answer: other processes

– operations is called fork (or spawn)

– what about the first process?

� Have a tree of processes

• parent-child relationship between processes

� what resources does the child get?

• new resources from the OS

• a copy of the parent resources

• a subset of the parent resources

� What program does the child run?

• a copy of the parent (UNIX fork)

– a process may change its program (execve call in
UNIX)

• a new program specified at creation (VMS spawn)

5
5

9CMSC 412 – S16 (Final Review)

Critical Section Problem
� processes must

– request permission to enter the region

– notify when leaving the region

� protocol needs to

– provide mutual exclusion

• only one process at a time in the critical section

– ensure progress

• no process outside a CS may block another process

– guarantee bounded waiting time

• limited number of times other processes can enter the
critical section while another process is waiting

– not depend on number or speed of CPUs

• or other hardware resources

� May assume that some instructions are atomic

– typically load, store, and test word instructions

10CMSC 412 – S16 (Final Review)

Deadlocks

� System contains finite set of resources
– Process requests resource before using it, must release

resource after use

– Process is in a deadlock state when every process in the set
is waiting for an event that can be caused only by another
process in the set

� 4 necessary deadlock conditions:

– Mutual exclusion - at least one resource must be
held in a non-sharable mode

– Hold and wait

– No preemption

– Circular wait

6
6

11CMSC 412 – S16 (Final Review)

Deadlock Prevention
� Ensure that one conditions for deadlock never holds

� Hold and wait

– guarantee that when a process requests a
resource, it does not hold any other resources

– Each process could be allocated all needed
resources before beginning execution

� Mutual exclusion

– Sharable resources

� Circular wait

– make sure that each process claims all resources in
increasing order of resource type enumeration

� No Premption

– virutalize resources and permit them to be prempted. For
example, CPU can be prempted.

12CMSC 412 – S16 (Final Review)

Banker’s Algorithm

� Each process must declare the maximum number of
instances of each resource type it may need

� Maximum cannot exceed resources available to
system

� Variables: (n is the number of processes, m is
the number of resource types)
– Available - vector of length m indicating the number of

available resources of each type

– Max - n by m matrix defining the maximum demand of each
process

– Allocation - n by m matrix defining number of resources of
each type currently allocated to each process

– Need: n by m matrix indicating remaining resource needs of
each process

7
7

13CMSC 412 – S16 (Final Review)

Short-term scheduling algorithms
� First-Come, First-Served (FCFS, or FIFO)

– as process becomes ready, join Ready queue, scheduler
always selects process that has been in queue longest

� Round-Robin (RR)

– use preemption, based on clock - time slicing

� Shortest Process Next (SPN)

– non-preemptive

– select process with shortest expected processing time

� Shortest Remaining Time (SRT)

– preemptive version of SPN

– scheduler chooses process with shortest expected
remaining process time

� Priorities

– assign each process a priority, and scheduler always
chooses process of higher priority over one of lower priority

14CMSC 412 – S16 (Final Review)

Managing Memory

� Main memory is big, but what if we run out

– use virtual memory

– keep part of memory on disk

• bigger than main memory

• slower than main memory

� Want to have several program in memory at once

– keeps processor busy while one process waits for I/O

– need to protect processes from each other

– have several tasks running at once

• compiler, editor, debugger

• word processing, spreadsheet, drawing program

� Use virtual addresses

– look like normal addresses

– hardware translates them to physical addresses

8
8

15CMSC 412 – S16 (Final Review)

Paging
� Divide physical memory into fixed sized chunks

called pages

– typical pages are 512 bytes to 64k bytes

– When a process is to be executed, load the pages that are

actually used into memory

� Have a table to map virtual pages to physical pages

� Consider a 32 bit addresses

– 4096 byte pages (12 bits for the page)

– 20 bits for the page number

Page
Table

Main
Memory

+

Virtual Address Location Present Rd/Write

20 bits

12 bits

16CMSC 412 – S16 (Final Review)

Inverted Page Tables

� Solution to the page table size problem

� One entry per page frame of physical memory

<process-id, page-number>

– each entry lists process associated with the page and the
page number

– when a memory reference:

• <process-id,page-number,offset>occurs, the inverted
page table is searched (usually with the help of a
hashing mechanism)

• if a match is found in entry i in the inverted page table,
the physical address <i,offset> is generated

– The inverted page table does not store information about
pages that are not in memory

• page tables are used to maintain this information

• page table need only be consulted when a page is
brought in from disk

9
9

17CMSC 412 – S16 (Final Review)

What Happens when a virtual address
has no physical address?

� called a page fault

– a trap into the operating system from the hardware

� caused by: the first use of a page

– called demand paging

– the operating system allocates a physical page and the
process continues

– read code from disk or init data page to zero

� caused by: a reference to an address that is not valid

– program is terminated with a “segmentation violation”

� caused by: a page that is currently on disk

– read page from disk and load it into a physical page, and
continue the program

� causde by: a copy on write page

18CMSC 412 – S16 (Final Review)

Page State (hardware view)
� Page frame number (location in memory or on disk)

� Valid Bit

– indicates if a page is present in memory or stored on disk

� A modify or dirty bit

– set by hardware on write to a page

– indicates whether the contents of a page have been modified
since the page was last loaded into main memory

– if a page has not been modified, the page does not have to
be written to disk before the page frame can be reused

� Reference bit

– set by the hardware on read/write

– cleared by OS

– can be used to approximate LRU page replacement

� Protection attributes

– read, write, execute

10
10

19CMSC 412 – S16 (Final Review)

Page Replacement Algorithms

� FIFO

– Replace the page that was brought in longest ago

– However

• old pages may be great pages (frequently used)

• number of page faults may increase when one increases
number of page frames (discouraging!)

– called belady’s anomaly

– 1,2,3,4,1,2,5,1,2,3,4,5 (consider 3 vs. 4 frames)

� Optimal

– Replace the page that will be used furthest in the future

– Good algorithm(!) but requires knowledge of the future

– With good compiler assistance, knowledge of the future is
sometimes possible

20CMSC 412 – S16 (Final Review)

Page Replacement Algorithms

� LRU

– Replace the page that was actually used longest ago

– Implementation of LRU can be a bit expensive

• e.g. maintain a stack of nodes representing pages and
put page on top of stack when the page is accessed

• maintain a time stamp associated with each page

� Approximate LRU algorithms

– maintain reference bit(s) which are set whenever a page is
used

– at the end of a given time period, reference bits are cleared

11
11

21CMSC 412 – S16 (Final Review)

Working Sets and Page Replacement

� Programs usually display reference locality

– temporal locality

• repeated access to the same memory location

– spatial locality

• consecutive memory locations access nearby memory
locations

– memory hierarchy design relies heavily on locality reference

• sequence of nested storage media

� Working set

– set of pages referenced in the last delta references

Small

Very Fast
Large

Very Slow

Working Set Size

22CMSC 412 – S16 (Final Review)

File Abstraction
� What is a file?

– A named collection of information stored on secondary
storage

� Properties of a file

– non-volatile

– can read, read, or update it

– has meta-data to describe attributes of the file

� File Attributes

– name: a way to describe the file

– type: some information about what is stored in the file

– location: how to find the file on disk

– size: number of bytes

– protection: access control

• may be different for read, write, execute, append, etc.

– time: access, modification, creation

– version: how many times has the file changed

12
12

23CMSC 412 – S16 (Final Review)

Tree Directories
� create a tree of files

� each directory can contain files or directory entries

� each process has a current directory

– can name files relative to that directory

– can change directories as needed

a b

hollings user1 user2

vi gdb one tocc x y

system users mail

z

24CMSC 412 – S16 (Final Review)

File Protection
� How to give access to some users and not others?

� Access types:

– read, write, execute, append, delete, list

– rename: often based on protection of directory

– copy: usually the same as read

� Degree of control

– access lists

• list for each user for each file the permitted operations

– groups

• enumerate users in a list called a group

• provide same protection to all members of the group

• depending on system:

– files may be in one or many groups

– users may be in one or many groups

– per file passwords (tedious and a security problem)

13
13

25CMSC 412 – S16 (Final Review)

Filesystems

� Raw Disks can be viewed as:

– a linear array of fixed sized units of allocation, called blocks

• assume that blocks are error free (for now)

• typical block size is 512 to 4096 bytes

– can update a block in place, but must write the entire block

– can access any block in any desired order

• blocks must be read as a unit

• for performance reasons may care about “near” vs. “far”
blocks (but that is covered in a future lecture)

� A Filesystem:

– provides a hierarchical namespace via directories

– permits files of variable size to be stored

– provides disk protection by restricting access to files based
on permissions

26CMSC 412 – S16 (Final Review)

Allocation Methods

� How do we select a free disk block to use?

� Contiguous allocation

– allocate a contiguous chunk of space to a file

– directory entry indicates the starting block and the length of
the file

– easy to implement, but

• how to satisfy a given sized request from a list of free
holes?

• two options

– first fit (find the first gap that fits)

– best fit (find the smallest gaps that is large enough)

• What happens if one wants to append to file?

– from time to time, one will need to repack files

14
14

27CMSC 412 – S16 (Final Review)

Indexed Allocation

� Bring all pointers together in an index block

– Each file has its own index block - ith entry of index block
points to ith block making up the file

� How large to make an index block?

– unless one only wants to support fixed size files, index block
scheme needs to be extensible

� Linked scheme:

– maintain a linked list of indexed blocks

� Multilevel index:

– Index block can point to other index blocks (which point to
index blocks), which point to files

� Hybrid multi-level index

– first n blocks are from a fixed index

– next m blocks from an indirect index

– next o blocks from a double indirect index

28CMSC 412 – S16 (Final Review)

Hybrid Multi-level Index (UNIX)
� Observations

– most files are small

– most of the space on the disk is consumed by large files

� Want a flexible way to support different sized

– assume 4096 byte block

– first 12 blocks (48KB) are from a fixed index

– next 1024 blocks (1MB) from an indirect index

– next 10242 blocks (1GB) from a double indirect index

– final 10243 blocks (1TB) from a triple indirect index
directory entry

Indirect
Index

double indirect index

15
15

29CMSC 412 – S16 (Final Review)

Disk Cache

� Buffer in main memory for disk sectors

� Cache contains copy of some of the sectors on a
disk. When I/O request is made for a sector, a check
is made to find out if sector is in the disk cache

� Replacement strategy:

– Least recently used: block that has been in the cache
longest with no reference gets replaced

– Least frequently used: block that experiences fewest
references gets replaced

30CMSC 412 – S16 (Final Review)

Disk Scheduling

� First come, first served

– ordering may lead to lots of disk head movement

� Shortest seek time first: select request with the
minimum seek time from current head position

– potential problem with distant tracks not getting service for
an indefinite period

� Scan scheduling

– read-write head starts at one end of the disk, moves to the
other, servicing requests as it reaches each track

� C-Scan (circular scan)

– disk head sweeps in only one direction

– when the disk head reaches one end, it returns to the other

16
16

31CMSC 412 – S16 (Final Review)

Who do you trust?

� It’s easy to get paranoid

� Do I trust a login prompt?

� Do I trust the OS that I got from the vendor?

� Do I trust the system staff?

– should I encrypt all my files?

� Networking

– do you trust the network provider?

– do you trust the phone company?

� How do you bootstrap security?

– always need one “out of band” transfer to get going

32CMSC 412 – S16 (Final Review)

Authentication
� How does the computer know who is using it?

– need to exchange some information to verify the user

– types of information exchanged:

• pins

– numeric passwords

– too short to be secure in most cases

• passwords

– a string of letters and numbers

– often easy to guess

• challenge/response pairs

– user needs to be apply to apply a specific algorithm

– often involve use of a calculator like device

– can be combined with passwords

• unique attributes of the person

– i.e. signature, thumb print, DNA?

– sometimes these features can change during life

17
17

33CMSC 412 – S16 (Final Review)

Encryption: protecting info from being read
� Given a message m

– use a key k, and function Ek to compute Ek(m)

– store or send only Ek(m)

– use a second second key k and function Dk’ such that

• Dk’(Ek(m)) = m

– Ek and Dk’ need not be kept a secrete

� If k=k’ it’s called private key encryption

– need to keep k secret

– example DES

� if k != k’, it’s called public key encryption

– need only keep one of them secret

– if k’ is secret, anyone can send a private message

– if k is secret, it is possible to “sign” a message

– still need a way to authenticate k or k’ for a user

– example RSA

34CMSC 412 – S16 (Final Review)

Sending Data

� Data is split into packets

– limited size units of sending information

– can be

• fixed sized (ATM)

• variable size (Ethernet)

� Need to provide a destination for the packet

– need to identify two levels of information

• machine to send data to

• comm abstraction (e.g. process) to get data

– address may be:

• a globally unique destination

– for example every host has a unique id

• may unique between hops

– unique id between two switches

18
18

35CMSC 412 – S16 (Final Review)

Ethernet

� 10 Mbps (to 100 Mbps)

� mili-second latency

� limited to several kilometers in distance

� variable sized units of transmission

� bus based protocol

– requests to use the network can collide

� addresses are 48 bits

– unique to each interface

Computer Computer

36CMSC 412 – S16 (Final Review)

Encapsulation
How do we send higher layer packets over lower layers?

� Higher level info is opaque to lower layers

– it’s just data to be moved from one point to another

� Higher levels may support larger sizes than lower

– could need to fragment a higher level packet

• split into several lower level packets

• need to re-assemble at the end

– examples:

• ATM cells are 48 bytes, but IP packets can be 64K

• IP packets are 64K, but files are megabytes

IP Header IP Data Area

Frame Data Area
Frame

Header

19
19

37CMSC 412 – S16 (Final Review)

Routing
� How does a packet find its destination?

– problem is called routing

� Several options:

– source routing

• end points know how to get everywhere

• each packet is given a list of hops before it is sent

– hop-by-hop

• each host knows for each destination how to get one
more hop in the right direction

� Can route packets:

– per session

• each packet in a connection takes same path

– per packet

• packets may take different routes

• possible to have out of order delivery

