Announcements

● Reading 5 (5.1-5.3,5.6)
● Midterm #1 is March 5 in class
 – covers material through and including lecture 09
 • problems at the end of the chapters
 • synchronization problems
 • questions about the project
 – Suggestions for study
 • see problems on web page
CPU Scheduling

- **Manage CPU to achieve several objectives:**
 - maximize CPU utilization
 - minimize response time
 - maximize throughput
 - minimize turnaround time

- **Multiprogrammed OS**
 - multiple processes in executable state at same time
 - scheduling picks the one that will run at any give time (on a uniprocessor)

- **Processes use the CPU in bursts**
 - may be short or long depending on the job
Types of Scheduling

- At least 4 types:
 - long-term - add to pool of processes to be executed
 - medium-term - add to number of processes partially or fully in main memory
 - short-term - which available process will be executed by the processor
 - I/O - which process’s pending I/O request will be handled by an available I/O device

- Scheduling changes the state of a process
Process State Transitions

- New
- Ready, suspend
- Blocked, suspend
- Ready
- Running
- Blocked
- Exit

State transitions:
- Long-term scheduling: New → Ready, suspend
- Short-term scheduling: Ready → Running
- Medium-term scheduling: Ready → Blocked
- Event wait: Blocked → Exit
- Exit state
Long-term scheduling

- Determine which programs admitted to system for processing - controls degree of multiprogramming
- Once admitted, program becomes a process, either:
 - added to queue for short-term scheduler
 - swapped out (to disk), so added to queue for medium-term scheduler
- Batch Jobs
 - Can system take a new process?
 - more processes implies less time for each existing one
 - add job(s) when a process terminates, or if percentage of processor idle time is greater than some threshold
 - Which job to turn into a process
 - first-come, first-serve (FCFS), or to manage overall system performance (e.g. based on priority, expected execution time, I/O requirements, etc.)
Medium vs. Short Term Scheduling

● Medium-term scheduling
 – Part of swapping function between main memory and disk
 • based on how many processes the OS wants available at any one time
 • must consider memory management if no virtual memory (VM), so look at memory requirements of swapped out processes

● Short-term scheduling (dispatcher)
 – Executes most frequently, to decide which process to execute next
 – Invoked whenever event occurs that interrupts current process or provides an opportunity to preempt current one in favor of another
 – Events: clock interrupt, I/O interrupt, OS call, signal
Scheduling criteria

- **Per processor, or system oriented**
 - CPU utilization
 - maximize, to keep as busy as possible
 - throughput
 - maximize, number of processes completed per time unit

- **Per process, or user oriented**
 - turnaround time
 - minimize, time of submission to time of completion.
 - waiting time
 - minimize, time spent in ready queue - affected solely by scheduling policy
 - response time
 - minimize, time to produce first output
 - most important for interactive OS
Scheduling criteria
non-performance related

- **Per process**
 - predictability
 • job should run in about the same amount of time, regardless of total system load

- **Per processor**
 - fairness
 • don’t starve any processes, treat them all the same
 - enforce priorities
 • favor higher priority processes
 - balance resources
 • keep all resources busy
Short-term scheduling algorithms

- **First-Come, First-Served (FCFS, or FIFO)**
 - as process becomes ready, join Ready queue, scheduler always selects process that has been in queue longest
 - better for long processes than short ones
 - favors CPU-bound over I/O-bound processes
 - need priorities, on uniprocessor, to make it effective
Algorithms (cont.)

- **Round-Robin (RR)**
 - use preemption, based on clock - time slicing
 - generate interrupt at periodic intervals
 - when interrupt occurs, place running process in Ready queue, select next process to run using FCFS
 - what’s the length of a time slice
 - short means short processes move through quickly, but high overhead to deal with clock interrupts and scheduling
 - guideline is time slice should be slightly greater than time of “typical job”
 - problem dealing with CPU and I/O bound processes
Algorithms (cont.)

- **Shortest Process Next (SPN)**
 - non-preemptive
 - select process with shortest expected processing time
 - improves response time, but increases its variability, reducing predictability - provably decreases average waiting time
 - problem is estimating required processing time
 - risk of starving longer processes, as long as there are shorter processes around
 - not good for time sharing - non-preemptive
Algorithms (cont.)

● Shortest Remaining Time (SRT)
 – preemptive version of SPN
 – scheduler chooses process with shortest expected remaining process time
 – still need estimate of processing time, and can starve longer processes
 • no bias in favor of longer processes, as in FCFS
 • no extra interrupts as in RR, so reduced overhead
 – must record elapsed service times
 – should give better turnaround time than SPN
Priority Based Scheduling

- **Priorities**
 - assign each process a priority, and scheduler always chooses process of higher priority over one of lower priority

- **More than one ready queue, ordered by priorities**

```
| RQ0 | RQ1 | ... | RQn |
```

- Event Occurs
- Blocked queue
- Preemption
- Event Wait
- Dispatch
- Release
- Admit