Announcements

- Reading Chapters 11 (11.6) and 12 (12.1-12.7)
 - suggested problems: 12.6 and 12.8
- Midterm #2
 - it’s next week (4/11/96)
 - covers material through and including today’s lecture
Magnetic Disks

Collection of platters (1-20)
Rotate at 3600-7200 RPM
Size - usually 2.5-3.5 inch
Usually 500-2500 tracks per platter
Track consists of around 64 sectors
Access Times

- **Seek**: Move disk arm over appropriate track
 - Seek times vary depending on locality - seek times are order of milliseconds

- **Rotational delay**: Wait time until desired information is under disk arm
 - A disk that rotates at 7200 RPM will take 8.3 ms to complete a full rotation

- **Transfer time**: time taken to transfer a block of bits (usually a sector)
 - Depends on recording density of track, rotation speed, block size
 - Achieved transfer rate for many blocks can also be influenced by other system bottlenecks (software, hardware)
 - Rates range from 2 to 8 MB per second
Disk Scheduling

- **First come, first served**
 - ordering may lead to lots of disk head movement
 - i.e. 1, 190, 3, 170, 4, 160 etc.
 - total number of tracks traversed: 863

- **Shortest seek time first**: select request with the minimum seek time from current head position
 - move head to closest track
 - i.e. 1, 3, 4, 160, 190
 - total number of tracks traversed: 189
 - potential problem with distant tracks not getting service for an indefinite period
Disk Scheduling

- **Scan scheduling** - read-write head starts at one end of the disk, moves to the other, servicing requests as it reaches each track
 - Consider example: 1, 190, 3, 170, 4, 160
 - If head starts at track 64 and moves towards 0, the ordering would be 4,3,1,160,170,190
 - Total distance 265

- **C-Scan (circular scan)**
 - Disk head sweeps in only one direction
 - When the disk head reaches one end, it returns to the other
 - Consider example: 1, 190, 3, 170, 4, 160
 - If head starts at track 64 and moves towards 0, the ordering would be 4,3,1,190,170,160
 - Total distance 282
Disk Cache

- Buffer in main memory for disk sectors
- Cache contains copy of some of the sectors on a disk. When I/O request is made for a sector, a check is made to find out if sector is in the disk cache
- Replacement strategy:
 - Least recently used: block that has been in the cache longest with no reference gets replaced
 - Least frequently used: block that experiences fewest references gets replaced
Bad Blocks

● Some blocks on a disk may not work
 – could be bad from the start (when disk is installed)
 – could go bad during use

● Two options to manage bad blocks
 – disk drive maps the blocks to "replacement" blocks
 • special blocks that are held in reserve for this purpose
 – OS keeps track of where the bad blocks are located and avoids them

● Replacement blocks
 – can be located in tracks at one location, or around the disk
 – provide correct behavior, but change disk performance

● Even if the disk re-maps bad blocks
 – OS could loose data stored on disk
 – needs to be able to recover filesystem from partial update
- Multiple lists: 4.3 BSD Unix has an LRU list and an AGE list
 - LRU list contains blocks that have been used
 - AGE list contains unproven blocks such as blocks that were prefetched because they were contiguous with blocks that had been requested (read-ahead)
 - When a new block (called a buffer in UNIX) is needed, the AGE list is searched first, only if the AGE list is empty does the LRU list get searched
Booting the OS

- How does the OS get loaded and started?
- Process is called booting
 - want to use the OS to load itself
 - but what loads the OS?
- ROM monitor
 - knows how to read from a fixed location on disk and jump into it
- Bootstrap program
 - knows how to load a program from the filesystem and jump into it
- Alternative:
 - put more info into ROM about booting
 - MAC OS has most of the info in ROM
 - hard to change OS without changing ROMs
Swap Space

- Where is swap space located?
 - Is it a “normal” file in the filesystem?
 - Is it in a special location on disk?
- “normal” file
 - simple, just looks like a file
 - easy to change size
 - use normal tools
 - slow since it requires all of the filesystem overhead
- separate disk partition
 - faster
 - harder to change size (need a new partition)
Backups

- Disks can fail, so need to provide a way to copy them
- Two types of backups
 - full backup (all of the data on disks)
 - incremental (data that has changed since last backup)
 - can mark changed files with a field
 - can use the data of the file compared to the last backup
 - permits several levels of backup
- Does the system need to be shutdown for backups?
 - what if a file is moved during a backup?
 - it could get copied 0, 1, or 2 times.
 - easiest answer is to shutdown the machine from dumps