Announcements

- Reading Chapters 15
 - problems: 15.1, 15.2, 15.5, 15.8
Access Matrix

- Abstraction of protection for objects in a system.
 - Rows are domains (users or groups of users)
 - Columns are objects (files, printers, etc.)
 - Items are methods permitted by a domain on an objects
 • read, write, execute, print, delete, …

- Representing the Table
 - simple representation (dense matrix) is large
 - sparse representation possible: each non-zero in the matrix
 - observation: same column used frequently
 • represent groups of users with a name and just store that
 - create a default policy for some objects without a value

- Revocation of access
 - when are access rights checked?
 - Selective revocation vs. global
Access Matrix

<table>
<thead>
<tr>
<th></th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>Laser Printer</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>read</td>
<td></td>
<td>execute</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td></td>
<td></td>
<td>execute</td>
<td>print</td>
</tr>
<tr>
<td>D3</td>
<td>read, write</td>
<td></td>
<td>execute</td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td></td>
<td></td>
<td>execute</td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td></td>
<td>delete</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Rows represent users or groups of users
- Columns represent files, printers, etc.
Capabilities

- **Un-forgeable Key to access something**
- **Implementation: a string**
 - I.e. a long numeric sequence for a copier)
- **Implementation: A protected memory region**
 - tag memory (or procedures) with access rights
 - example - x86 call gate abstraction
 - permit rights amplification
Monitoring

- **Record (log) significant events**
 - attempts to login to the system
 - changes to selected files or directories

- **Possible to compromise the log**
 - the user or software breaking in could delete all or part of the logs
 - could record logs to non-erasable storage
 - have a line printer attached to the machine
 - use WORM drives
 - send data to a secure remote host
Encryption: protecting info from being read

- Given a message \(m \)
 - use a key \(k \), and function \(E_k \) to compute \(E_k(m) \)
 - store or send only \(E_k(m) \)
 - use a second second key \(k \) and function \(D_{k'} \) such that
 - \(D_{k'}(E_k(m)) = m \)
 - \(E_k \) and \(D_{k'} \) need not be kept a secret

- If \(k = k' \) it’s called private key encryption
 - need to keep \(k \) secret
 - example DES

- if \(k \neq k' \), it’s called public key encryption
 - need only keep one of them secret
 - if \(k' \) is secret, anyone can send a private message
 - if \(k \) is secret, it is possible to “sign” a message
 - still need a way to authenticate \(k \) or \(k' \) for a user
 - example RSA
Transposition Cipher

- Block of text is used to break up digrams
- To Break:
 - each letter is itself, so normal distribution of letters is seen
 - guess number of columns (verify with known plaintext)
 - order columns using trigram frequency

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.
DES

- Block cipher: uses 56 bit keys, 64 bits of data
- Uses 16 stages of substitution
- Variations
 - cipher block chaining: xor output of block n with into block n+1
 - cipher feedback mode: use 64bit shift register
 • can produce one byte at a time
One Time Pad

- Key Idea: randomness in key
- Create a random string as long as the message
 - each party has the pad
 - xor each bit of the message with the a bit of the key
- Almost impossible to break
- Some practical problems
 - need to ensure key is not captured
 - a one bit drop will corrupt the rest of the message
Networks are divided into layers

● ISO - seven layer reference model
 – Application (end application)
 • firewalls work at this layer
 – Presentation (encryption or compression)
 – Session (end-to-end connections)
 – Transport (splitting data into packets)
 – Network (routing packets)
 • routers work at this layer
 – Link (moves frames and detects errors)
 • bridges at this layer
 – Physical (EE type stuff)

● TCP/IP - three layer model
 – link, network, transport/session/presentation
Networks

- Communication channels between semi-autonomous computers
- Attached to host system by an adapter
Networks

- **Topology**
 - Fully connected - link between all sites
 - Partially connected
 - links between subset of sites
 - can be an arbitrary graph
 - Hierarchical networks
 - network topology looks like a tree
 - internal nodes route messages between different subtrees
 - if an internal node fails, children can not communicate with each other
 - star network - hierarchical network with single internal node
Network Topologies

- **Tree (TMC CM-5)**

- **Mesh**
 - 2-d Intel Parago
 - 3-d Cray T3E

- **Star (Ethernet 10Base-T, physical only)**