Announcements

- **Reading**
 - Chapter 6 (6.3 & 6.4)
- **Project #3**
 - Is on the web
- **Midterm #1**
 - Last day to request a re-grade is Th 10/18
TCP Protocol

- **TSAPs**
 - Use `<host, port>` combination
 - Well known ports provide services
 - first 256 ports
 - SMTP 25, Telnet 23, Ftp 21, HTTP 80

- **Provides a byte stream**
 - this is **not** a message stream
 - a message (single call to send) may be split, merged, etc.

- **Urgent Data field**
 - provides cut through delivery *within* a transport connection
 - used to send breaks or other high priority info
TCP Packet Format

- Permits ACKs to be piggy packed
 - ACK is next byte expected
 - ACK is only valid if ACK bit is set
- Sequence number
 - first byte in packet
- Also used for connection establishment

<table>
<thead>
<tr>
<th>Source Port</th>
<th>Destination Port</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequence Number</td>
<td></td>
</tr>
<tr>
<td>Acknowledgment Number</td>
<td></td>
</tr>
<tr>
<td>Window Size</td>
<td>Urgent Pointer</td>
</tr>
<tr>
<td>Checksum</td>
<td></td>
</tr>
<tr>
<td>0 Or More Options</td>
<td></td>
</tr>
</tbody>
</table>

32 bits
TCP Connection Management

- Three-way Handshake
- Initial Sequence Numbers
 - Use a 4 micro-second clock
 - hosts must wait T (120 seconds) before a reboot
- Connection Closure
 - Each side uses a FIN and FIN_ACK message
 - A FIN times out after $2T$ (240 seconds)
 - Keep alives used to timeout half dead connections
TCP Flow Control

- **Use Variable Sized Sliding Window**
 - ACK indicates start of window
 - Window size indicates current size of window
- **Receiver can send a window of 0**
 - indicates that it want to pause connection
 - urgent data need not follow this request
- **Window size of 16 bits is too small**
 - 64K Bytes
 - only a small fraction of the in-flight bytes when
 - bandwidth is high
 - delay is high
 - solution: window shift option:
 - bit shift window up to 16 bits
 - permits up to 2^{32} byte windows
 - reduces window granularity
TCP Congestion Control

- **Detecting Congestion**
 - In general it is difficult
 - But, consider why a packet might be dropped
 - link error - but links are very reliable now
 - buffer overflow --> congestion
 - Use re-transmission timeouts as an estimate of congestion
- **Dealing with Congestion**
 - add a second window (congestion window)
 - limit transmissions to min(recv window, congestion window)
 - start with congestion window = max segment window
 - initial max segment is one kilo-byte
 - on a ACK without a timeout
 - if window < threshold, increment by one max segment
 - otherwise increment by initial max segment
 - on timeout
 - cut threshold in half
 - set window size to initial max segment
TCP Congestion Window

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.