Announcements

● Reading
 – Chapter 4.5 & 7.1

● Midterm #2 was returned

● No office hours next week for Dr. Hollingsworth

● Project #4
 – Due Thursday at 5 PM
Midterm Results

<table>
<thead>
<tr>
<th></th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
<th>Tot</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>max</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td>92</td>
</tr>
<tr>
<td>avg</td>
<td>17</td>
<td>8</td>
<td>10</td>
<td>5</td>
<td>11</td>
<td>14</td>
<td>64.0</td>
</tr>
<tr>
<td>std</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.1</td>
</tr>
</tbody>
</table>
Collision Free Protocols

- **Use an allocation scheme**
 - must be dynamic (based on load) or we are reduced to TDM

- **Bit Map Reservation Protocol**
 - round of allocation (contention period)
 - everyone who indicated a desire to send goes in turn
 - requires an overhead of one bit per **per station** per round

- **Binary Countdown**
 - reservation round send your host address
 - uses a “wired or” to compute winner
 - as soon as a station senses a 1 where it sent 0 it backs off
 - winner sends packet
 - gives higher priority to higher numbered hosts
 - can “rotate” station number after successful transmission
Wireless Networks (MACA)

- Stations send data into the air
 - not all stations can “see” all other stations
- Need to avoid collisions between sender and receiver
 - possible for the sender to not be able to sense collision
- Use a two stage protocol
 - send a RTS (request to send)
 - receiver responds CLS (clear to send)
- Hosts that hear a RTS or CLS wait and don’t send
 - collisions still possible since two RTS frames may collide
Wireless Shared Channels

- Every node may not be in range of every other node
 - a is in range to send to b, but not c
 - b can send to a or c
 - c can send to b
- Collisions
 - carrier sense will not work due to range
 - must avoid any host sending that is in range of sender or receiver
FDDI

- **Fiber base ring**
 - two rings, one clockwise the other counter clockwise
 - use LEDs to send data

- **Encoding**
 - uses 4 of 5 encoding
 - looses self clocking property of Manchester encoding
 - uses long frame header to compensate

- **Supports Synchronous traffic**
 - each sync frame has 96 bytes of data every 125μs
 - supports 4 T-1 lines
 - up to 16 synchronous slots may be used

- **Timers**
 - token holding timer: forces a node to give up the token
 - token rotation timers: recovers from lost token if its not seen
HIPPI

- **KISS based path to almost 1Gbps**
 - no options
 - use copper interface
- **Parallel Connection**
 - 32 bits wide
 - 18 control bits
 - 50 twisted pair wires
- **Connections**
 - uses a cross-bar switch
 - sends in groups of 256 words
- **Error checking**
 - parity bit per word
 - parity word at the end of each frame
 - over the vertical 256 bits
Issues
- secrecy: can someone read a message
- authentication: determine who you are communicating with
 - this can be one way or two way
- nonrepudiation: verify that something send can’t be recanted
- integrity: a third party can’t change a message in flight
- denial of service: make the system unavailable to others

Threat Model
- must consider acceptable risks
 - value of item to be protected
 - $2,000 of computer time to steal 50 cents of data
 - this is a sufficient deter someone
 - but computers keep getting faster
- who do you trust?
 - employees
 - vendor of security software
 - network provider
Where to Provide Security?

- Short Answers: at all levels
- physical:
 - wrap gas or tripwires around cable
- link:
 - encryption protects the wire but not the router
- network:
 - firewalls filter packets
 - end-to-end encryption
- session/presentation:
 - “secure” socket layer
- application:
 - PGP signed messages
 - application specific authentication
Other Attacks

- **Random Messages**
 - Will a random message likely be a valid message
 - Need to have redundancy in the message
 - *tension* more redundancy ease cryptoanalysis

- **Replay Attacks**
 - can the same message be sent twice?
 - transfer $10,000 from Smith to Jones
 - make an exact copy of a metro fare card
 - need to ensure messages apply exactly once
 - use a timestamped lifetime
 - sequence numbers
Digital Water Marks

- **Issue**: If I have a copy of a digital object, I can make many
 - if you pay per-copy for the object, how to you prevent copies?
- **Goal**: Track where an object came from
 - make every object unique
 - the objects should not appear different
Cryptography

- **Terms**
 - plaintext (P): the raw message to be sent
 - key (K): data used to protect one or more messages
 - ciphertext (C): output of applying key to plaintext
 - encrypt (E): a function to combine the key and plaintext
 - decrypt (D): a function to combine ciphertext and key
 - may be the same as E
 - $C = E_k(P)$ and $D_k(E_k(P)) = P$

- **Substitution Cipher**
 - **Ceaser Cipher**
 - shift letters by a constant amount
 - key is how many letters to shift
 - **Monoalphabetic substitution**
 - for each letter pick some a different letter to use
 - key is 26 characters representing substitution
 - can use properties of language to break it
Transposition Cipher

- Block of text is used to break up digrams
- To Break:
 - each letter is itself, so normal distribution of letters is seen
 - guess number of columns (verify with known plaintext)
 - order columns using trigram frequency

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.
One Time Pad

- Key Idea: randomness in key
- Create a random string as long as the message
 - each party has the pad
 - xor each bit of the message with the a bit of the key
- Almost impossible to break
- Some practical problems
 - need to ensure key is not captured
 - a one bit drop will corrupt the rest of the message
- Pseudo-random is not good enough
 - Japanese JN-25 during WWII was pseudo random onetime pad