Announcements

- Project Proposals were returned
- Reading
 - Today: 6.4
 - Tuesday: 3.1
Protocol State Machines

- Idle
 - <Connect, ~P1>, A3
 - <timeout, *>, A2
 - <Clear_req, *>, A4
 - <call_req, ~P3>, A4

- Waiting
 - <Connect, ~P1>, A3
 - <Clear_req, *>, A4
 - <DISCON, P4>, A5
 - <Call_acc, *>, A6
 - <SEND, ~P5>, A8

- Established
 - <timeout, *>, A2
 - <DISCON, P4>, A5
 - <SEND, P5>, A7
 - <Clear_req, *>, A10
 - <Credit, *>, A11

- Sending
 - <Clear_req, *>, A10
 - <Credit, *>, A7
 - <DISCON, ~P4>, A6

- Receiving
 - <Clear_req, *>, A10
 - <data, *>, A12

- Queued
 - <LISTEN, P2>, A1
 - <LISTEN, *>, A2
 - <LISTEN, ~P2>, A2

- Disconnecting
 - <clear_Req, *>, A6
 - <clear_Conf, *>, A6
Predicates And State Transitions

<table>
<thead>
<tr>
<th>Pred</th>
<th>Meaning</th>
<th>Act</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Connection table full</td>
<td>A1</td>
<td>Send Call_acc</td>
</tr>
<tr>
<td>P2</td>
<td>Call_req pending</td>
<td>A2</td>
<td>Wait for Call_req</td>
</tr>
<tr>
<td>P3</td>
<td>LISTEN Pending</td>
<td>A3</td>
<td>Send Call_req</td>
</tr>
<tr>
<td>P4</td>
<td>Clear_req Pending</td>
<td>A4</td>
<td>Start Timer</td>
</tr>
<tr>
<td>P5</td>
<td>Credit Available</td>
<td>A5</td>
<td>Send Clear_conf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A6</td>
<td>Send Clear_req</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A7</td>
<td>Send message</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A8</td>
<td>Wait for credit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A9</td>
<td>Send Credit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A10</td>
<td>Set Clr_req_recv flag</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A11</td>
<td>Record credit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A12</td>
<td>Accept message</td>
</tr>
</tbody>
</table>
TCP Protocol

- **TSAPs**
 - Use <host, port> combination
 - Well known ports provide services
 - first 256 ports
 - SMTP 25, Telnet 23, Ftp 21, HTTP 80
- **Provides a byte stream**
 - this is **not** a message stream
 - a message (single call to send) may be split, merged, etc.
- **Urgent Data field**
 - provides cut through delivery *within* a transport connection
 - used to send breaks or other high priority info
TCP Packet Format

- **Permits ACKs to be piggy packed**
 - ACK is next byte expected
 - ACK is only valid if ACK bit is set
- **Sequence number**
 - first byte in packet
- **Also used for connection establishment**

<table>
<thead>
<tr>
<th>Source Port</th>
<th>Destination Port</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequence Number</td>
<td></td>
</tr>
<tr>
<td>Acknowledgment Number</td>
<td>Window Size</td>
</tr>
<tr>
<td>Checksum</td>
<td>Urgent Pointer</td>
</tr>
<tr>
<td>0 Or More Options</td>
<td></td>
</tr>
</tbody>
</table>
TCP Connection Management

- **Three-way Handshake**
- **Initial Sequence Numbers**
 - Use a 4 micro-second clock
 - hosts must wait T (120 seconds) before a reboot
- **Connection Closure**
 - Each side uses a FIN and FIN_ACK message
 - A FIN times out after 2 T (240 seconds)
 - Keep alives used to timeout half dead connections
TCP Flow Control

- **Use Variable Sized Sliding Window**
 - ACK indicates start of window
 - Window size indicates current size of window

- **Receiver can send a window of 0**
 - indicates that it want to pause connection
 - urgent data need not follow this request

- **Window size of 16 bits is too small**
 - 64K Bytes
 - only a small fraction of the in-flight bytes when
 - bandwidth is high
 - delay is high
 - solution: window shift option:
 - bit shift window up to 16 bits
 - permits up to 2^{32} byte windows
 - reduces window granularity
TCP Congestion Control

- **Detecting Congestion**
 - In general it is difficult
 - But, consider why a packet might be dropped
 - link error - but links are very reliable now
 - buffer overflow --> congestion
 - Use re-transmission timeouts as an estimate of congestion

- **Dealing with Congestion**
 - add a second window (congestion window)
 - limit transmissions to min(recv window, congestion window)
 - start with congestion window = max segment window
 - initial max segment is one kilo-byte
 - on a ACK without a timeout
 - if window < threshold, increment by one max segment
 - otherwise increment by initial max segment
 - on timeout
 - cut threshold in half
 - set window size to initial max segment
TCP Congestion Window

From: *Computer Networks, 3rd Ed.* by Andrew S. Tanenbaum, (c)1996 Prentice Hall.