Announcements

- Homework #3 is

- Reading
 - Today: 3.5-3.6
Error Detection

- **Less bits are required**
 - if errors are infrequent, then this works better
 - assumes that retransmission is possible

- **Cyclic Redundancy Codes (CRC)**
 - Use a generator function $G(x)$ of degree r
 - let M' be the message with r 0’s on the end of it
 - divide M' into $G(x)$ and compute remainder
 - use this as the r bit CRC code
 - a code with r bits will detect all burst errors less than r bits
 - several G’s are standardized
 - CRC-12 = $x^{12} + x^{11} + x^3 + x^2 + x + 1$
 - CRC-16 = $x^{16} + x^{15} + x^2 + 1$
 - CRC-CCITT = $x^{16} + x^{12} + x^5 + 1$
 - 16 bit CRC will catch
 - all single and double bit errors
 - all errors with an odd number of bits
 - all burst errors of length less than 16
CRC Example

Frame: 1101011011
Generator: 10011
Message after appending 4 zero bits: 11010110000

Transmitted frame: 11010110111110
PPP Protocol

- **Link Protocol for Serial Lines**
 - Supports multiple network protocols: IP, IPX, CLNP, ...
 - designed for dialup or leased lines

- **Link Establishment**
 - configure-request: list of proposed options and values
 - configure- {ack/ nack}: will (won’t) use the requested option
 - NCP protocol
 - per network level protocol
 - used to establish network attributes (e.g. addresses)

<table>
<thead>
<tr>
<th>flag</th>
<th>Address</th>
<th>control</th>
<th>protocol</th>
<th>payload</th>
<th>checksum</th>
<th>flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>01111110</td>
<td>11111110</td>
<td>0001110</td>
<td>01111110</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From: *Computer Networks, 3rd Ed.* by Andrew S. Tanenbaum, (c)1996 Prentice Hall.
ATM Datalink Protocol

- **Header**
 - use CRC over the 32 bits of the header

- **How to find cell boundary?**
 - use shifty register to check for valid checksum
 - 1/256 chance of a random match
 - use HUNT mode to increase chances
 - after a good cell, skip to the next cell boundary
 - must receive δ cells with checksum matches

- **Detecting loss of synchronization**
 - one bad cell is probably an error
 - many bad cells is likely a slip (loss of sync)
 - if α bad cells are seen in a row, switch to hunt mode
Medium Access Layer

- **Broadcast Networks**
 - share a common resource for communication
 - bus, wire, air, etc.
 - need to coordination access to this resource

- **Limits of Static Channel Allocation**
 - suitable for constant rate traffic of similar speeds
 - however, bursty traffic results in poor channel utilization
 - consider one queue vs. separate queues for each person
 - n queues with bursty arrival have mean delay n times 1 queue

- **Dynamic Allocation**
 - only use channel when have something to send
 - need to control access to the channel
Shared Channel Model

- **Station model**
 - N independent stations
 - each wants to send λ frames per second
 - a station may not send another frame until the first is sent

- **Single Channel Assumption**
 - all stations communicate over a single shared channel

- **Collisions:** two stations attempt to send at once
 - neither transmission succeeds

- **Time**
 - continuous time: frame transmissions can start anytime
 - discrete time: clock ensures all sends initiate at the start of a slot

- **Carrier Sense**
 - stations can tell if channel is in use before sending
 - stations must wait to know if channel was in use
Aloha

- **Stations**
 - ground based radio stations on islands

- **Pure Aloha**
 - send data a will, collisions will happen
 - on collision, wait a random amount of time & try again
 - use standard, fixed size packets
 - what is channel efficiency?
 - assume S_{new} frames per frame time
 - assume G total frames trying to be sent per frame time
 - $S = GP_0$
 - probability of k frames generated during a frame time
 - $Pr[k] = G^k e^{-G}/k!$
 - $P_o = e^{-2G}$, so $S = Ge^{-2G}$
Performance of Aloha

Collides with the start of the shaded frame
Collides with the end of the shaded frame

t_0, $t_0 + t$, $t_0 + 2t$, $t_0 + 3t$

Vulnerable

S (throughput per frame time)

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.

Slotted ALOHA: $S = Ge^{-G}$
Pure ALOHA: $S = Ge^{-2G}$

G (attempts per packet time)

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.
Aloha (cont.)

- **Slotted Aloha**
 - Use a central clock
 - Each station only sends at the start of frame
 - Reduces collision window by 1/2
 - \[S = G e^{-G} \]
Carrier Sense Multiple Access

- **look before you leap!**
 - don’t send if someone else is sending

- **collisions are still possible**
 - propagation delay induces uncertainty into sensing
 - possible two hosts both start sending at the same time

- **persistence: when to send after detecting channel in use**
 - 1-persistent
 - as soon as the channel is free, starting sending
 - nonpersistent CSMA
 - if channel is sensed busy, wait a random time and try again
 - p-persistent CSMA
 - if slot is idle send with probability p, else wait for next idle slot