Announcements

- This Lecture was presented by Dr. Shankar
- These are my lecture notes for similar topics, but not the ones used during this lecture.
Traffic Shaping

- **Traffic tends to be bursty**
 - great variation between min and max bandwidth used
 - this uncertainty leads to inefficient use of the network

- **Flow Specification**
 - user proposes a specific probability distribution
 - maximum packet size
 - transmission rate (min, max, or mean)
 - maximum delay
 - maximum delay variation (jitter)
 - quality guarantee (how strong is this agreement)
 - network can
 - agree to request
 - refuse it
 - counter offer
Leaky Bucket

- buffer accepts traffic at link rate
 - buffer has a bounded size (limits burst size that is accepted)
- output is limited to a lower rate
 - traffic is constrained to this rate

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.

CMSC 417 - F99 (lect 6) copyright 1996-1999 Jeffrey K. Hollingsworth
Token Bucket

- Bucket holds tokens (generated one every T seconds)
- Can save up to a fixed limit of n tokens
- When traffic arrives, it must have a token to be sent

Max burst rate

- C - capacity of bucket
- S - burst length in seconds
- M - max output rate
- p - token credit rate

$$C + pS = MS$$
Congestion Control with Virtual Circuits

- **Admission control**
 - once traffic reaches a threshold, don’t admit more VCs
 - doesn’t correct current problem, but prevents additional congestion

- **Alter routes**
 - admit new connections
 - route them around “trouble” areas

- **Negotiate traffic**
 - establish parameters for volume and shape of traffic
Congestion Control with Virtual Circuits

- **Admission control**
 - once traffic reaches a threshold, don’t admit more VCs
 - doesn’t correct current problem, but prevents additional congestion

- **Alter routes**
 - admit new connections
 - route them around “trouble” areas

- **Negotiate traffic**
 - establish parameters for volume and shape of traffic
Fair Queuing

- **Local (per router) congestion control**
 - each output link has n queues, one for each sender
 - need to limit max queue size or buffers will be exhausted
 - use round-robin to select next packet to queue
 - can use per-packet or per-byte

From: *Computer Networks*, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.

- **Weighted Fair Queuing**
 - can give different links different priorities
 - give higher priority length multiple slots per round

From: *Computer Networks*, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.