Announcements

- Reading
 - Today: Chapter 6 (6.6)

- Be sure to get the newer version of the net-config module
TCP Congestion Control

- **Detecting Congestion**
 - In general it is difficult
 - But, consider why a packet might be dropped
 - link error - but links are very reliable now
 - buffer overflow --> congestion
 - Use re-transmission timeouts as an estimate of congestion

- **Dealing with Congestion**
 - add a second window (congestion window)
 - limit transmissions to min(recv window, congestion window)
 - start with congestion window = max segment window
 - initial max segment is one kilo-byte
 - on a ACK without a timeout
 - if window < threshold, increment by one max segment
 - otherwise increment by initial max segment
 - on timeout
 - cut threshold in half
 - set window size to initial max segment
TCP Congestion Window

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.
TCP Timer Management

● Problem: How to pick timeout value?
 – need to estimate round-trip latency
 – need low variance in round trip latency

● Solution: dynamic estimates of RTT
 – \(RTT = \alpha RTT + (1 - \alpha) M \)
 M time of an ACK
 \(\alpha = \frac{7}{8} \)
 – Need to pick retransmission time
 • old policy, use \(\text{Timeout} = RTT \beta \), with \(\beta = 2 \)
 • estimate standard deviation of RTT using mean deviation
 \(D = \alpha D + (1 - \alpha) | RTT - M | \)
 \(\text{Timeout} = RTT + 4 * D \)
 – How to update RTT on retransmission's
 • double Timeout on a retransmission
Other TCP Timers

- **Persistence Timer**
 - Prevents deadlock due to dropped window packets
 - This is a problem if the window is set to 0
- **Keepalive Timer**
 - Prevents half dead connections
 - May consume bandwidth
 - May kill live connections when net hiccups
- **TIMED Wait**
 - Prevents re-use of a connection before max packet life is over
 - Set to twice max packet lifetime
Performance Issues

- **Broadcast storms**
 - response to a broadcast packet sent by many hosts
 - caused by:
 - bad parameter resulting in an error message
 - asking a question everyone has the answer to

- **Reboot storms**
 - RARP queries
 - file servers responding to page requests

- **Delay-bandwidth product**
 - need to buffer at least as many bytes as can be “in flight”

- **Jitter**
 - keep standard deviation of packet arrivals low
 - important for continuous media traffic
How to Measure Performance

- Ensure sample size is large
 - repeat experiments for several iterations
- Make sure samples are representative
 - consider time of day, location, day of week, etc.
- Watch for clock resolution/accuracy
 - don’t use two clocks at opposite ends of the network
 - if the clock resolution is poor, aggregate over multiple iterations
- Know what you are measuring
 - is a cache going to distort results?
 - is the hardware, OS, device driver, compiler the same?
- Careful not to extrapolate too far
 - results generally hold for an operating region, not all values