Announcements

- Reading
 - Today: Chapter 2 (2.1-2.2)
How to Design in Performance

- **CPU Speed is more important than link speed**
 - protocol processing time is the critical time for most networks
 - use simple algorithms for your network

- **Reduce packet count**
 - there is a large per packet cost in most levels
 - big packets amortize this overhead over more bytes

- **Minimize Context Switches**
 - user/kernel boundary crossings are expensive
 - require many cache misses, pipeline stalls, etc.
 - send large units of data

- **Minimize Copying**
 - each copy is extra time
 - memory operations are often 10 times slower than other insns
How To Design In Performance (cont.)

- Bandwidth is growing, but latency isn’t shrinking as fast
 - fundamental limits of how many rounds trips are possible
 - need to design to transfer large requests
- Congestion Avoidance beats Recovery
 - getting the network out of a bad state will take time
 - better to prevent getting it there in the first place
- Avoid Timeouts
 - use NACKs to get info back
 - use long values for timeouts
 - timeouts result in:
 - interrupts (slow for the processor)
 - re-transmission (slow for the link)
- Make The Common Case Run Fast
 - data transmission is more common than connect
Sending Information

- **data is sent by varying a value over time**
 - can model this as a single valued function f(t)
 - the physical property that is changed could be
 - current
 - voltage
- **goal is to analyze the properties of this function**
 - how much energy is required?
 - how does the physical media affect the signal
Fourier Analysis

- Any periodic function $g(t)$ can be represented by
 - a constant term
 - a series (possibly infinite) of sines and cosines
 • a signal has a fundamental frequency $f=1/T$
 • each term is called a harmonic
 \[
 G(t) = \frac{1}{2} c + \sum_{n=1}^{\infty} a_n \sin(2\pi nft) + \sum_{n=1}^{\infty} b_n \cos(2\pi nft)
 \]
 - finite functions can be repeated forever
 • effectively any signal is finite so it has a Fourier transform
How many Harmonics do we need?

- **Adding Harmonics**
 - reduce error in regenerated signal
 - requires additional bandwidth

figure copyright, 1996, Andrew S. Tanenbaum
Importance of Harmonics

- **Bandwidth limits**
 - physical circuits often only pass up to a cutoff frequency
 - sometimes limit bandwidth (it costs money)

- **Non-Uniform Attenuation**
 - not all frequencies pass equally well
 - 60 Hz is a bad frequency due to electrical circuits
 - try to ensure that the “important” parts get through
 - this is called distortion
 - exactly like bad sound when you turn up the stereo amp
Why baud may not equal bits/sec

- **baud is number of changes per second**
 - if the signal has 0/1 volts then bits/baud == 1
 - but if 0, 1, 2, 3, 4, 5, 6, and 7 volts used then 3 bits/baud

- **limit on baud per second over a phone line**
 - phone lines are limited to about 3khz
 - so only harmonics less than 3,000 will get sent
 - for 9600Bps the first harmonic is at 1,200
 - only two harmonics will be sent
 - not possible to send past 38.4kBps
 - but Baud is not bit/sec
Max Data Rates Over A Channel

- **Shannon/Nyquist limit**
 - max data rate is $2H \log_2 V$ bits/sec
 - H - bandwidth of the channel
 - V - number of levels used to encode data
 - for example, a noiseless 3khz channel can carry
 - 6,000 bps for binary traffic but
 - 12,000 pbs for quadary (4 level) traffic

- **What about noise?**
 - noise is measured as the ratio of signal to noise power
 - normally measured in db or $10 \log_{10}(S/N)$
 - Shannon limit:
 - max bits/sec = $H \log_2 (1+S/N)$
 - 3khz, 30dB channel limited to 30,0000 bps
Transmission Media

- **Magnetic Media**
 - tapes hold 40GB today
 - a van can carry 2,000 tapes (or 80 TB)
 - want to move data from DC to Baltimore
 - 80 TB/hour = 166 Gb/sec
 - what about latency?
 - get all 80TB at once
 - need to read/write all of these tapes

- **Twisted Pair**
 - copper wires (1.5 Mbps long hall)
 - 100Mbps with two pairs for short distances
 - some experimental versions go to 1Gbps