Announcements

- Project #4 Due next week
- Reading
 - Chapter 4 (4.3)
Collision Detection

- If a sender senses a collision
 - stop sending at once
 - apply random backoff

- “contention” period
 - after contention period, there will be no collision
 - send for for 2τ (max propagation delay)
 - need 2τ since might be a collision at far end at $\tau - \varepsilon$
Collision Free Protocols

- **Use an allocation scheme**
 - must be dynamic (based on load) or we are reduced to TDM
- **Bit Map Reservation Protocol**
 - round of allocation (contention period)
 - everyone who indicated a desire to send goes in turn
 - requires an overhead of one bit per **per station** per round
- **Binary Countdown**
 - reservation round send your host address
 - uses a “wired or” to compute winner
 - as soon as a station senses a 1 where it sent 0 it backs off
 - winner sends packet
 - gives higher priority to higher numbered hosts
 - can “rotate” station number after successful transmission
Wireless Shared Channels

- Every node may not be in range of every other node
 - a is in range to send to b, but not c
 - b can send to a or c
 - c can send to b

- Collisions
 - carrier sense will not work due to range
 - must avoid any host sending that is in range of sender or receiver
Wireless Networks (MACA)

- Stations send data into the air
 - not all stations can “see” all other stations
- Need to avoid collisions between sender and receiver
 - possible for the sender to not be able to sense collision
- Use a two stage protocol
 - send a RTS (request to send)
 - receiver responds CLS (clear to send)
- Hosts that hear a RTS or CLS wait and don’t send
 - collisions still possible since two RTS frames may collide
Ethernet Cable Options

- **10base5: Thicknet - first Ethernet**
 - Thick cable, doesn’t bend well
 - vampire taps used to “tap” the network
 - max run is 500 meters

- **10Base2: Thin coax (cheaper net),**
 - uses “T” connectors
 - max run is 200 meters

- **10baseT: twisted pair**
 - uses a central hub
 - easier to find faults and problems
 - max run is 100 meters to hub
Manchester Encoding

- **Problem: How to send zero/ones?**
 - need to know timing information
 - when does on bit end?
- **Answer: Force many transitions**
 - every bit is half low and half high
 - 1 is high then low
 - 0 is low then high
 - but this doubles bandwidth
- **Differential Manchester Encoding**
 - better noise immunity
 - 0 is a transition at the start, 1 none
 - both transition during the middle
Ethernet Frame Format

<table>
<thead>
<tr>
<th>Bytes</th>
<th>7</th>
<th>1</th>
<th>2 or 6</th>
<th>2 or 6</th>
<th>2</th>
<th>0-1500</th>
<th>0-46</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Preamble</td>
<td>Destination address</td>
<td>Source address</td>
<td>Data</td>
<td>Pad</td>
<td>Checksum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Preamble used to sync clock**
- **Addresses**
 - 48 bits
 - if it starts with a 0 it is globally unique (assigned by IEEE)
 - if it starts with a 1 it is locally unique
- **Length**
 - 0 to 1500 bytes
 - **min** length is 46 bytes
 - ensures frame reaches end of cable before end of frame is sent
- **Checksum**
 - 32 bit CRC to detect garbled data at link level
Collision Management

- Binary Exponential Backoff
 - after collision, divide into slot times
 - after first collision, wait either 0 or 1 slot times
 - after second collision, wait either 0, 1, 2, or 3 slot times
 - limited to 1023 slots
 - after 16 collisions, link layer gives up

- Performance
 - each station wants to transmit with probability p, then
 - $A = k \left(p^1 (1-p)^{k-1} \right)$
 - $A \rightarrow 1/e$ as $k \rightarrow \infty$
 - probability a contention interval has j slots is $A(1-A)^{j-1}$
 - mean number of slots per contention is:
 \[\sum_{j=0}^{\infty} jA(1-A)^{j-1} = \frac{1}{A} \]
 mean contention interval is then $2\tau/A$