Announcements

- Project #4 Due this week
- Midterm #2 – Week from today in class
- No Tuesday office hours this week
Collision Management

- **Binary Exponential Backoff**
 - after collision, divide into slot times
 - after first collision, wait either 0 or 1 slot times
 - after second collision, wait either 0, 1, 2, or 3 slot times
 - limited to 1023 slots
 - after 16 collisions, link layer gives up

- **Performance**
 - each station wants to transmit with probability \(p \), then
 - \(A = k \left[p \right]^{1} \left[1-p \right]^{k-1} \)
 - \(A \rightarrow 1/e \) as \(k \rightarrow \infty \)
 - probability a contention interval has \(j \) slots is \(A \left[1-A \right]^{j-1} \)
 - mean number of slots per contention is:

 \[
 \sum_{j=1}^{\infty} jA(1-A)^{j-1} = \frac{1}{A}
 \]

 mean contention interval is then \(2\tau/A \)
Ethernet Performance (cont.)

- Ethernet Channel efficiency is then:

\[
\frac{P}{P + \frac{2\pi}{A}} = \frac{1}{1 + \frac{2BLe}{cF}}
\]

B = bandwidth
L = cable length
c = speed of light
F = frame length

- Traffic models
 - traditional analysis assume Poisson arrival
 - recent studies have demonstrated self similar properties
 - traffic variance does not decrease with wider samples
Variations on Ethernet

- **Traditional Ethernet is a bus**
 - limited to one host at a time

- **Switched Ethernet**
 - make hub smarter
 - different ports can each form their own Ethernet segment
 - frames for other segment travel over backplane
 - individual stations retain the same card and cabling

- **Token Bus**
 - rings have bounded worst case times
 - token bus forms a logical ring out of a single bus
Bridges

- Split one logical LAN into multiple physical LANs
 - permit mixing types of 802.X networks
 - 100 Megabit Ethernet with 10Mbps
 - token ring with Ethernet
 - extend the physical network
 - limits on cable length
 - improve security
 - reduce traffic

- Forward traffic between the physical layers
 - regenerate the signal
 - convert between 802.X formats
 - this is non-trivial
Learning Bridges

- **Transparent to users**
 - traffic just gets to the correct location
 - no software configuration required

- **Selectively forward traffic among segments**
 - used 48bit Ethernet addresses
 - at first, forward all traffic via flooding
 - use **source** address to learn where a host is located
 - do not forward a packet if the destination is known to be on the local network

- **need to have a spanning tree to prevent loops**
 - use lowest serial number to elect root
 - compute shortest path to root as the spanning tree
 - some bridge may be disabled to ensure a tree
Source Routing Bridge

- Each host knows how to reach other hosts
 - it builds a full path to that host
- Every LAN and bridge has a number
 - a LAN has a 12 bit identifier
 - a bridge a 4 bit id
- To discover a route
 - broadcast a discovery packet
 - destination responds
 - bridges fill in their information in the response
 - results in a full path to the remote destination
Source vs. Transparent Bridges

- **Source Bridges**
 - always use optimal routes
 - could exploit multiple paths between two LANs for load sharing

- **Transparent Bridges**
 - require no changes to nodes
 - nodes are now more complex
 - no need to configure the bridges
 - source bridges need LAN and Bridge IDs
FDDI

- Fiber base ring
 - two rings, one clockwise the other counter clockwise
 - use LEDs to send data

- Encoding
 - uses 4 of 5 encoding
 - loses self clocking property of Manchester encoding
 - uses long frame header to compensate

- Supports Synchronous traffic
 - each sync frame has 96 bytes of data every 125µs
 - supports 4 T-1 lines
 - up to 16 synchronous slots may be used

- Timers
 - token holding timer: forces a node to give up the token
 - token rotation timers: recovers from lost token if its not seen
Fast Ethernet

- **Based on hubs**
 - advantages of hubs rendered bus cables useless
 - limits cable length to 100 meters for copper
 - can be switched or use a single collision domain

- **Signals**
 - 100Base-T4
 - uses 4 pair cat 3 wiring
 - 33Mbps in each direction and two reversible channels
 - 25Mhz with trinary signaling and 4 bits per baud
 - 100Base-TX
 - two pairs of cat 5 wiring
 - 125Mhz with 4bits our of 5 for data
Hippi

- **KISS based path to almost 1Gbps**
 - no options
 - use copper interface
- **Parallel Connection**
 - 32 bits wide
 - 18 control bits
 - 50 twisted pair wires
- **Connections**
 - uses a cross-bar switch
 - sends in groups of 256 words
- **Error checking**
 - parity bit per word
 - parity word at the end of each frame
 - over the vertical 256 bits