Announcements

- **Midterms**
 - Mt #1 Tuesday March 6
 - Mt #2 Tuesday April 15
 - Final project design due **April 11**

- **Project partner sign-up sheet**
 - it was passed around
Optimality Principal

- If J is on the optimal route from I to K
 - then the optimal route from I to K shares the optimal route from J to K
- transitive result of this is a sink tree
 - can construct a tree from all nodes to a specific node

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.
Shortest Path Routing

- **Graph Representation**
 - nodes are routers
 - arcs are links
 - to get between two routes, select a the shortest path
 - need to decide metric to use for minimization

- **Dijkstra’s Algorithm**
 select source as current node
 while current node is not destination
 foreach neighbor of current
 if route via current is better update its tentative route
 label node with <distance, current Node>
 find tentative node with shortest route
 mark a permanent
 make it current
Shortest Path Example

(a) $A \rightarrow B \rightarrow C \rightarrow D$

(b) $A \rightarrow E \rightarrow F \rightarrow D$

(c) $A \rightarrow B \rightarrow C \rightarrow H$

(d) $A \rightarrow B \rightarrow C \rightarrow H$

(e) $A \rightarrow B \rightarrow C \rightarrow G$

(f) $A \rightarrow B \rightarrow C \rightarrow H$

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.
Flood Routing

- Every Incoming packet is resent on every outbound link
- generates many duplicate packets
- potentially infinite packets unless they are damped
 - multiple paths to the same destination result in loops
 - can use a lifetime (max hops) to damp traffic
 - can also keep track in routers if the packet has been seen
- good metric to compare algorithms
 - flooding always chooses the shortest path
 - must ignore overhead and congestion due to flooding
Flow-Based Routing

- **Compute optimal routes off-line if we know *in advance***:
 - link capacity
 - topology
 - traffic for each <src,dest> pair

- **Testing a routing table**:
 - given a tentative routing table
 - for each link we can compute mean delay
 \[
 T = \frac{1}{\mu C - \lambda}
 \]
 - C is link capacity bps, 1/\mu is mean packet size, \lambda is actual traffic in packets/sec
 - then compute overall utilization (as mean or max of delays)
 - possible to exhaustively try all routing tables this way
Distance Vector Routing

- Also known as Bellman-Ford or Ford-Fulkerson
 - original ARPANET routing algorithm
 - early versions of IPX and DECnet used it too
- Each router keeps a table of tuples about all other routers
 - outbound link to use to that router
 - metric (hops, etc.) to that router
 - routers also must know “distance” to each neighbor
- Every T sec., each router sends its table to its neighbors
 - each router then updates its table based on the new info
- Problems:
 - fast response to good news
 - slow response to bad news
 - takes max hops rounds to learn of a downed host
 - known as count-to-infinity problem
Link State Routing

● **Used on the ARPANET after 1979**
● **Each Router:**
 – computes metric to neighbors and sends to *every* other router
 – each router computes the shortest path based on received data
● **Needs to estimate time to neighbor**
 – best approach is send an **ECHO** packet and time response
● **Distributing Info to other routers**
 – each router may have a different view of the topology
 – simple idea: use flooding
 – refinements
 • use age sequence number to damp old packets
 • use acks to permit reliable delivery of routing info
Hierarchical Routing

- Routing grows more complex with more routers
 - takes more space to store routing tables
 - requires more time to compute routes
 - uses more link bandwidth to update routes

- Solution:
 - divide the world into several hierarchies
 - Do I really care that router z at foo U just went down?
 - only store info about
 - your local area
 - how to get to higher up routers
 - optimal number of levels for an N router network is \(\ln N \)
 - requires a total of \(e \ln N \) entries per router
Routing for Mobility

- Or What happens when computers move?
- Two types of mobility:
 - migratory: on the net in many locations but not while in motion
 - roaming: on the net while in motion
- Basic idea:
 - everyone has a home
 - you spend much of your time near home
 - when not at home, they know where to find you
 - home agents: know where you are (or that you are missing)
 - foreign agents: inform home agents of your location
 - informs users that future communication should be sent via them (this is a huge potential security hole)
Broadcast Routing

- Sometimes information needs to go to everyone
 - routing updates in link-state
 - stock data, weather data, etc.
- sender iterates over all destinations
 - wastes bandwidth
 - sender must know who is interested
- flooding
 - see routing updates for issues
- multi-destination routing
 - routers support having multiple destinations
 - routers copy output packets to correct link(s)
- spanning tree
 - contains subset of graph with no loops
 - efficient use of bandwidth
 - requires info to be present in routers (but it is for link state)
Routing Broadcast Traffic (cont.)

- **Reverse path forwarding**
 - check link a packet arrives on
 - if the inbound link is the one the router would use to the source, then
 - forward it out all other links
 - else
 - discard the packet
 - requires no special data sorted in each router

From: *Computer Networks, 3rd Ed.* by Andrew S. Tanenbaum, (c)1996 Prentice Hall.
Multicast Routing

- Specify a (relatively) small list of hosts to receive traffic
 - may need to exchange traffic as a group
 - must create/destroy group
- Using spanning trees
 - prune links that are have no members of multicast group
 - for distance-vector use a variation on reverse path forwarding
 - when a router gets a message it doesn’t need it send a prune message back
 - recursively prunes back un-needed subnets
- core-based trees
 - one tree for group not one per group member
 - hosts send to “core” and it multicasts it out