Announcements

- **Midterms**
 - Mt #1 Tuesday March 6
 - Mt #2 Tuesday April 15
 - Final project design due *April 11*

- **Midterm #1**
 - Chapters 1 & 2
 - Chapter 5 (to 5.2)
Congestion

- **Too much traffic can destroy performance**
 - goal is to permit the network to operate near link capacity
 - can reach a knee in the packets sent vs. delivered curve
- **Sources**
 - all traffic is destined for a single out link
 - backup in traffic consumes buffers
 - other (cross traffic) will not get through due to lack of buffers
 - slow router CPU
 - can’t service all requests at link speed
 - links still backup
- **Often feeds on itself**
 - queuing delays can cause packets to timeout
 - introduces more traffic due to re-transmissions
Congestion Control

- Two possible approaches
 - open loop: prevent congestion from every happening
 - tends to be conservative and result in under utilization
 - closed loop: detect and correct
 - some congestion will still occur until it is corrected

- Open loop
 - request resources before using them
 - global (or regional) resource allocation
 - responds yes or no to each request for service

- Closed loop
 - monitor network to detect congestion
 - pass information back to location where action can be taken
 - adjust system operation to correct the problem
Responding to Congestion

- **Add more resources**
 - dialup network: start making additional connections
 - SMDS: request additional bandwidth from provider
 - split traffic: use all routes not just optimal

- **Decrease load**
 - deny service to some users: based on priorities
 - degrade service to some or all users
 - require users to schedule their traffic
Traffic Shaping

- **Traffic tends to be bursty**
 - great variation between min and max bandwidth used
 - this uncertainty leads to inefficient use of the network

- **Flow Specification**
 - user proposes a specific probability distribution
 - maximum packet size
 - transmission rate (min, max, or mean)
 - maximum delay
 - maximum delay variation (jitter)
 - quality guarantee (how strong is this agreement)
 - network can
 - agree to request
 - refuse it
 - counter offer
Leaky Bucket

- buffer accepts traffic at link rate
 - buffer has a bounded size (limits burst size that is accepted)
- output is limited to a lower rate
 - traffic is constrained to this rate

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.
Token Bucket

- Bucket hold tokens (generated one every T seconds)
- Can save up to a fixed limit of n tokens
- When traffic arrives, it must have a token to be sent

- **Max burst rate**
 - C - capacity of bucket
 - S - burst length in seconds
 - M - max output rate
 - p - token credit rate
 - $C + pS = MS$

From: *Computer Networks*, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.
Congestion Control with Virtual Circuits

- **Admission control**
 - once traffic reaches a threshold, don’t admit more VCs
 - doesn’t correct current problem, but prevents additional congestion
- **Alter routes**
 - admit new connections
 - route them around “trouble” areas
- **Negotiate traffic**
 - establish parameters for volume and shape of traffic
Choke Packets

- **Monitor link utilization**
 - keep an estimate \((u)\) of average utilization over time
 - \(u_{\text{new}} = au_{\text{old}} + (1 - a)f\)
 - \(f\) is a 0/1 sampling of link state
 - \(a\) is a parameter to control history
 - can also use queue length or buffer utilization

- **When utilization is above a threshold**
 - for each new packet to be sent over congested link
 - send “choke” packet back to sender
 - tag forwarded data packet to prevent more coke packets
 - when sender receives choke packet
 - must reduce rate to “choked” destination

- **Hop-by-hop coke**
 - on path back to sender, each router reduces traffic
 - consumes buffer space along path to sender
 - provides faster relief to congested router/link
Fair Queuing

- **Local (per router) congestion control**
 - each output link has n queues, one for each sender
 - need to limit max queue size or buffers will be exhausted
 - use round-robin to select next packet to queue
 - can use per-packet or per-byte

```
<table>
<thead>
<tr>
<th>Packet</th>
<th>Finishing time</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>8</td>
</tr>
<tr>
<td>B</td>
<td>16</td>
</tr>
<tr>
<td>D</td>
<td>17</td>
</tr>
<tr>
<td>E</td>
<td>18</td>
</tr>
<tr>
<td>A</td>
<td>20</td>
</tr>
</tbody>
</table>
```

- **Weighted Fair Queuing**
 - can give different links different priorities
 - give higher priority length multiple slots per round

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.
Load Shedding

- When all else fails, routers drop (discard) packets
- Policy question: what packets to drop?
 - oldest ones: they are likely to be useless now
 - newest ones: helps to close open window in file transfer
 - less important ones
 - requires cooperation of application
 - in MPEG I frames are more important than B frames
 - drop all related packets
 - fragmentation: loss of one packet renders others useless
 - requires information from higher levels
- Preemptive shedding
 - when traffic starts to get high, dropping packets can prevent additional congestion
RSVP - Multicast Bandwidth Reservation

- Receivers send request to reserve BW up spanning tree
- Routers propagate request if request up tree
 - only sent if greater than prev. request for this group
- Dest. can request BW for multiple alternative sources
 - routers only allocate bandwidth for maximum channel request

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.