Announcements

- Project proposal drafts due March 14, 1997
- Midterm #1
 - exam booklets were returned
 - class average was 61.8 (60.5 for undergrads)
 - standard deviation was 14.7 (14.5 for undergrads)
- Reading
 - Today: 5.4-5.5
 - Thursday: 5.6
Internetworking

- **Goals:** provide seamless operation over multiple subnets
 - could be two similar LANs
 - link WANs to LANS
 - link two different LANs together
- **Issues:**
 - packet size limits (different networks may have different limits)
 - quality of service (is it provided, how is it defined)
 - congestion control
 - connection vs. connectionless networks
- **Possible at many levels**
 - physical layer: repeaters
 - link layer: bridges - regenerate traffic, some filtering
 - network: routers - route packets between networks
 - transport: gateway byte streams
 - application: gateway email between two different systems
Firewalls

- **A way to limit information flow**
 - selective forwarding of information based on **policy**
 - policy: rules about what should be permitted
 - mechanism: way to enforce policy

- **Can be implemented at many levels**
 - at higher layers have more information
 - at lower layers can share filtering between multiple higher level entities

- **Possible Layers**
 - link layer: filter based on MAC address
 - network layer: filter based on source/destination, transport
 - transport: filter based on service (e.g. port number)
 - application: filter based on user name in email, based on content
Tunneling

● **Problem**
 – Source and Destination are compatible
 – something in the middle is not compatible

● **Solution: Tunnel though the middle**
 – only multi-protocol routers need to understand conversion
 – possible to tunnel through almost anything
 • can tunnel IP through IP (for mobile computing perhaps)
Internet Routing

- Use two levels of routing
- local (subnet) level routing
- Internet routing between multi-protocol gateways
 - multiple protocol gateways are generally fully connected
 - since they hide the underlying network
 - policies (politics) can dictate acceptable routes
 - don’t route IBM packets of the Microsoft network
 - all packets starting and ending in Canada must stay in Canada
- Can use any of the standard routing algorithms
 - link-state
 - distance vector
Interior Gateway Routing Protocol

- **Designed to Route within a single Autonomous System (AS)**
 - An AS contains
 - areas (collection of one or more subnets)
 - backbone (to interconnect areas within AS)
 - Also Called Open Shortest Path First (OSPF)

- **Divides routers into four classes**
 - Internal - only within the area
 - Area border router - connect two or more areas
 - Backbone routers - connect to backbone
 - AS boundary routers - talk to other AS

- **Exchanges info between adjacent routers**
 - not the same as a neighbor since could have many hops in-between

- **Uses link-state**
 - flooding with sequence numbers
 - supports multiple metrics: throughput, reliability, delay
 - backbone computes inter-area routes
Graph representation of an Autonomous system.

Relationship between areas an ASes
Exterior Gateway Protocol (BGP)

- **Used to route between AS’s**
 - concerned with politics and turf battles
 - supports specific policies
 - don’t send my packets of network X
 - don’t send packets through me
- **Two types of nodes**
 - stub networks (one connection to BGP)
 - multi-connected networks (more than one connection)
 - might also be transit networks (carry traffic for others)
- **Uses Distance Vector**
 - but includes complete path in table and sent to neighbors
 - uses “scoring” function to select among possible routes
Fragmentation

- Sometimes need to split packets into smaller units
 - limits of the hardware being used
 - operating system buffer constraints
 - protocol limits (max permitted packet is x bytes)
 - reduce channel occupancy (head of link blocking)

- Fragmentation
 - where to split it into smaller packets
 - source (requires end-to-end information on max size)
 - when it reaches boundary
 - how to represent split packets
 - need to encode fragment offset

- Reassembly
 - where to re-combine packets
 - destination (may result in poor performance)
 - at the gateway to the subnet that supports the full size