Announcements

- **Reading**
 - Today: 6.1-6.2.6
 - Thursday: 6.3-6.4
Transport Layer

- **Goal:** provide error free end-to-end delivery of data
 - provide in-order delivery over unreliable network layer

- **Issues:**
 - checking packet integrity
 - re-transmission of lost or corrupt packets
 - connection establishment and management
 - addresses
 - need to define a host plus process
 - typical abstraction is <host, port>
Duplicate Packets

- **Issue:** packets can be lost or duplicated
 - need to detect duplicates
 - need to re-send lost packets
 - but how do we know they are not just delayed?

- **Solution 1**
 - use a sequence number
 - each new packet uses a new sequence number
 - can detect arrival of stale packets
 - problem: when node crashes, sequence number resets

- **Solution 2**
 - use a clock for the sequence number
 - clocks don’t reset on reboot, so we never lose sequence #
 - use a max lifetime for a packet
 - permits clocks to roll over
 - can get into forbidden region
Three-way Handshake

- **Use different sequence number spaces for each direction**
- **Three messages used**
 - Connection Request
 - send initial sequence number from caller to callee
 - Connection Request Acknowledgment
 - send ACK of initial sequence number from caller to callee
 - send initial sequence number from callee to caller
 - First Data TPDU
 - send ACK of initial sequence number from callee to caller
- **Each Side Selects an initial number**
 - it knows that the number is not currently valid
 - uses time of day
 - limits number of connects per unit time, but not data!
Example of Three-way Handshake

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.
Closing a Connection

- To prevent data loss,
 - both sides must agree they are done
- **Problem: how to agree**
 - possible that “I am done” messages will get lost
 - possible that “I ACK you are done” messages will get lost
- **Solution:**
 - initiator sends Disconnect Request, start DR timer
 - when initiated party receives DR, send DR and start DR timer
 - when initiator gets DR back, send ACK and release connection
 - when initiated gets ACK, release connection
 - if initiator times out, send new DR
 - if initiated times out, release connection
Connection Close Example

(a) Connection close example.

(b) Connection close example with ACK.

(c) Connection close example with lost.

(d) Connection close example with lost and timeout.

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.
Lingering Half-Duplex Connections

- If a party (or a link) dies
 - can be left with dead connections
- Solution: use keep-alive packets
 - every n seconds, send a packet
 - if no packet is received after n * m seconds, cleanup
Sliding Window Protocol

- **Need to**
 - have multiple outstanding packets
 - limit total number of outstanding packets
 - permit re-transmissions to occur
- **Sliding Window**
 - permit at most N outstanding packets
 - when packet is ACK’d advance window to first non-ACK’d packet
- **Retransmission**
 - Go-back N
 - when a packet is lost, restart from that packet
 - provides in-order delivery, but wastes bandwidth
 - Selective Retransmission
 - use timeout to re-sent lost packet
 - use NACK as a hint that something was lost
Sliding Window Example

(a) Timeout interval

Error Frames discarded by data link layer

(b) Timeout interval

Error

Buffered by data link layer

Packets 2-8 passed to network layer

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.
Buffer Management

● **Unreliable Network**
 – sender must buffer all un-acked packets
 – receiver can buffer if space is available
 • if not, drop packet and wait to re-transmission

● **Buffer Size**
 – does one size fit all?
 • are TPDUs of uniform size?
 – might use a fixed size buffer smaller than max TPDU
 • requires support for multiple buffers per TPDU

● **Possible to decouple buffer allocation from window**
 – ACKs contain both buffer credits and ACKSs

● **Buffer Copies**
 – possible for each layer to copy the buffer, but this is slow
 – handoff pointers to data, but requires coordination between layers