Announcements

- **Reading**
 - Today: 6.5-6.6
 - Thursday: 3.1-3.3

- **Suggested problems:**
 - chapter 6: 1, 5, 13, 18, 22, 31, 32, 34
TCP Congestion Control

- **Detecting Congestion**
 - In general it is difficult
 - But, consider why a packet might be dropped
 - link error - but links are very reliable now
 - buffer overflow --> congestion
 - Use re-transmission timeouts as an estimate of congestion

- **Dealing with Congestion**
 - add a second window (congestion window)
 - limit transmissions to min(recv window, congestion window)
 - start with congestion window = max segment window
 - initial max segment is one kilo-byte
 - on a ACK without a timeout
 - if window < threshold, increment by one max segment
 - otherwise increment by initial max segment
 - on timeout
 - cut threshold in half
 - set window size to initial max segment
TCP Congestion Window

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.
TCP Timer Management

- Problem: How to pick timeout value?
 - need to estimate round-trip latency
 - need low variance in round trip latency

- Solution: dynamic estimates of RTT
 - \(RTT = \alpha RTT + (1 - \alpha) M \)
 - \(M \) time of an ACK
 - \(\alpha = 7/8 \)
 - Need to pick retransmission time
 - old policy, use \(\text{Timeout} = RTT \beta \), with \(\beta = 2 \)
 - estimate standard deviation of RTT using mean deviation
 \(D = \alpha D + (1 - \alpha) |RTT - M| \)
 \(\text{Timeout} = RTT + 4 \times D \)
 - How to update RTT on retransmission's
 - double Timeout on a retransmission
Other TCP Timers

- **Persistence Timer**
 - Prevents deadlock due to dropped window packets
 - This is a problem if the window is set to 0
- **Keepalive Timer**
 - Prevents half dead connections
 - May consume bandwidth
 - May kill live connections when net hiccups
- **TIMED Wait**
 - Prevents re-use of a connection before max packet life is over
 - Set to twice max packet lifetime
Performance Issues

- **Broadcast storms**
 - response to a broadcast packet sent by many hosts
 - caused by:
 - bad parameter resulting in an error message
 - asking a question everyone has the answer to

- **Reboot storms**
 - RARP queries
 - file servers responding to page requests

- **Delay-bandwidth product**
 - need to buffer at least as many bytes as can be “in flight”

- **Jitter**
 - keep standard deviation of packet arrivals low
 - important for continuous media traffic
How to Measure Performance

- Ensure sample size is large
 - repeat experiments for several iterations
- Make sure samples are representative
 - consider time of day, location, day of week, etc.
- Watch for clock resolution/accuracy
 - don’t use two clocks at opposite ends of the network
 - if the clock resolution is poor, aggregate over multiple iterations
- Know what you are measuring
 - is a cache going to distort results?
 - is the hardware, OS, device driver, compiler the same?
- Careful not to extrapolate too far
 - results generally hold for an operating region, not all values
How to Design in Performance

- **CPU Speed is more important than link speed**
 - protocol processing time is the critical time for most networks
 - use simple algorithms for your network

- **Reduce packet count**
 - there is a large per packet cost in most levels
 - big packets amortize this overhead over more bytes

- **Minimize Context Switches**
 - user/kernel boundary crossings are expensive
 - require many cache misses, pipeline stalls, etc.
 - send large units of data

- **Minimize Copying**
 - each copy is extra time
 - memory operations are often 10 times slower than other insns
How To Design In Performance (cont.)

- **Bandwidth is growing, but latency isn’t shrinking as fast**
 - fundamental limits of how many rounds trips are possible
 - need to design to transfer large requests
- **Congestion Avoidance beats Recovery**
 - getting the network out of a bad state will take time
 - better to prevent getting it there in the first place
- **Avoid Timeouts**
 - use NACKs to get info back
 - use long values for timeouts
 - timeouts result in:
 - interrupts (slow for the processor)
 - re-transmission (slow for the link)
- **Make The Common Case Run Fast**
 - data transmission is more common than connect
Project Proposal Comments

- **Common problems**
 - missing detail on most parts (esp protocol state machine)
 - synchronization and threads missing
 - what will be a thread?
 - how will data structures be shared (and protected)?

- **“See Me” designation**
 - need to meet to clarify details of your project
 - schedule meeting???