Announcements

- **Reading**
 - Today: 4.1 & 4.2 (skip 4.2.4 and 4.2.5)

- **Second Midterm:**
 - Tuesday April 15
 - covers material from chapters: 1-3, 5-6
 - emphasis on material since last midterm
Medium Access Layer

- **Broadcast Networks**
 - share a common resource for communication
 - bus, wire, air, etc.
 - need to coordination access to this resource

- **Limits of Static Channel Allocation**
 - suitable for constant rate traffic of similar speeds
 - however, bursty traffic results in poor channel utilization
 - consider one queue vs. separate queues for each person
 - n queues with bursty arrival have mean delay n times 1 queue

- **Dynamic Allocation**
 - only use channel when have something to send
 - need to control access to the channel
Shared Channel Model

- **Station model**
 - N independent stations
 - each wants to send λ frames per second
 - a station may not send another frame until the first is sent

- **Single Channel Assumption**
 - all stations communicate over a single shared channel

- **Collisions: two stations attempt to send at once**
 - neither transmission succeeds

- **Time**
 - continuous time: frame transmissions can start anytime
 - discrete time: clock ensures all sends initiate at the start of a slot

- **Carrier Sense**
 - stations can tell if channel is in use before sending
 - stations must wait to know if channel was in use
Aloha

- **Stations**
 - ground based radio stations on islands

- **Pure Aloha**
 - send data at will, collisions will happen
 - on collision, wait a random amount of time & try again
 - use standard, fixed size packets
 - what is channel efficiency?
 - assume S new frames per frame time
 - assume G total frames trying to be sent per frame time
 - \(S = G P_0 \)
 - probability of k frames generated during a frame time
 - \(\Pr[k] = G^k e^{-G} / k! \)
 - \(P_o = e^{-2G}, \) so \(S = Ge^{-2G} \)
Performance of Aloha

Collides with the start of the shaded frame

Collides with the end of the shaded frame

\[t_0 \]

\[t_0 + t \]

\[t_0 + 2t \]

\[t_0 + 3t \]

Vulnerable

Time

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.

Slotted ALOHA: \(S = Ge^{-G} \)

Pure ALOHA: \(S = Ge^{-2G} \)

\(S \) (throughput per frame time)

\(G \) (attempts per packet time)

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.
Aloha (cont.)

● **Slotted Aloha**

 – Use a central clock
 – Each station only sends at the start of frame
 – Reduces collision window by 1/2
 * $S = Ge^{-G}$
Carrier Sense Multiple Access

- **look before you leap!**
 - don’t send if someone else is sending
- **collisions are still possible**
 - propagation delay induces uncertainty into sensing
 - possible two hosts both start sending at the same time
- **persistence: when to send after detecting channel in use**
 - 1-persistent
 - as soon as the channel is free, starting sending
 - nonpersistent CSMA
 - if channel is sensed busy, wait a random time and try again
 - p-persistent CSMA
 - if slot is idle send with probability p, else wait for next idle slot
Impact of Carrier Sense

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.
Collision Detection

- If a sender senses a collision
 - stop sending at once
 - apply random backoff
- “contention” period
 - after contention period, there will be no collision
 - send for for 2τ (max propagation delay)
 - need 2τ since might be a collision at far end at $\tau-\varepsilon$
Collision Free Protocols

- **Use an allocation scheme**
 - must be dynamic (based on load) or we are reduced to TDM

- **Bit Map Reservation Protocol**
 - round of allocation (contention period)
 - everyone who indicated a desire to send goes in turn
 - requires an overhead of one bit per **per station** per round

- **Binary Countdown**
 - reservation round send your host address
 - uses a “wired or” to compute winner
 - as soon as a station senses a 1 where it sent 0 it backs off
 - winner sends packet
 - gives higher priority to higher numbered hosts
 - can “rotate” station number after successful transmission
Wireless Shared Channels

- Every node may not be in range of every other node
 - a is in range to send to b, but not c
 - b can send to a or c
 - c can send to b

- Collisions
 - carrier sense will not work due to range
 - must avoid any host sending that is in range of sender or receiver
Wireless Networks (MACA)

- Stations send data into the air
 - not all stations can “see” all other stations
- Need to avoid collisions between sender and receiver
 - possible for the sender to not be able to sense collision
- Use a two stage protocol
 - send a RTS (request to send)
 - receiver responds CLS (clear to send)
- Hosts that hear a RTS or CLS wait and don’t send
 - collisions still possible since two RTS frames may collide