Announcements

- **Reading**
 - Today: 7.1

- **No Office Hours on Wed**
 - will have office hours on Thursday 10:45 to 11:45
DES

- Block cipher: uses 56 bit keys, 64 bits of data
- Uses 16 stages of substitution
- Variations
 - cipher block chaining: xor output of block n with into block n+1
 - cipher feedback mode: use 64bit shift register
 - can produce one byte at a time

From: *Computer Networks*, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.
Public Key Encryption

- Split into public and private keys
 - public key used to encrypt messages
 - publish this key widely
 - private key used to decrypt messages
 - keep this key a secret

- RSA
 - algorithm for computing public/private key pairs
 - based on problems involved in factoring large primes
 - for an n bit message P, $C = (P^e \mod n)$, and $P = (C^d \mod n)$

- Other Public Key Algorithms
 - knapsack
 - given a large collection of objects with different weights
 - public key is the total weight of a subset of the objects
 - private key is the list of objects
Authentication

- Identify the parties that wish to communicate
- Create a session key
 - a random string
 - used only for one session
- Authentication based on Shared Keys
 - each party already shares a private key
 - exchanged via an out of band transmission
 - challenge-response
 - send a random string
 - response is the encryption of the random string with the shared key
Authentication Example

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.
Simplified Protocol

- Only requires three messages
- But it is subject to a “man in the middle attack”

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.
Attacking the Simplified Protocol

- T can get B to respond to its own challenge
- T opens a second session with B
 - it issues B’s session 1 challenge back to B in session 2
Key Distribution Center

- **Problem with Private Key Authentication**
 - Need to establish key
 - for n people need n^2 keys
 - keys must be established via **out-of-band** communication

- **Solution: Key Distribution Center (KDC)**
 - trusted party used to assist in authentication
 - each party establishes a private key with the center

- **have KDC trans-code a message with a session key**
 - A sends to KDC $<A, K_A(B, K_s)>$
 - KDC sends to B $<K_b(A, K_s)>$
 - open to replay attack
 - T logs KDC to B message **and** all traffic using K_s
Needham-Schroeder Authentication

- R_A, R_{A2} and R_B random strings
 - used to prevent replay attacks
- If T ever gets K_s can establish contact with B
 - can prevent this with a slight variation of the algorithm
- Used in Kerberos Authentication System