Announcements

- **Reading**
 - Today: 7.2, 7.3 (skip 7.3.2 and 7.3.4)
 - Tuesday: 7.4, 7.5
- **Will have office hours on Thursday 10:45 to 11:45**
- **Problems for Chapter 4:**
 - 4, 10, 17, 18, 21, 37, 40
Authentication using Public Keys

- Assume each party knows the other’s public key
 - $E_b(A, R_a)$
 - $E_a(R_a, R_b, K_s)$
 - $K_s(R_b)$

- How To learn others Public Key?
 - use a public key server
 - but how do we trust the public key server?
 - have a public key for the public key server
 - possible to have man-in-the-middle attacks
 - interlock protocol
 - only send half the message (odd bits) at a time
 - prevents man-in-the-middle attacks
 - still possible to spoof service
Digital Signatures

- **Want to “sign” a message such that:**
 - receiver can verify the identity of the sender
 - sender cannot repudiate the contents of the message
 - receiver cannot forge a message

- **Central authority (BB)**
 - A sends BB A, $K_a(B, R_a, t, P)$
 - BB sends B $K_b(A, R_a, t, P, K_{bb}(A, t, P))$
 - everyone trusts BB
 - BB can be called on to decrypt messages to verify them
 - BB need not store all message that it validates
 - t - timestamp used to prevent replay attacks

- **Public Key**
 - need $E(D(P)) = P$ and $D(E(P)) = P$
 - A sends B $E_b(D_a(P))$
 - B keeps $D_a(P)$ and thirdy party can use E_a to verify it’s from A
Digital Signatures (cont.)

● Problems
 – Repudiation
 • inform police that the key was stolen
 • claim the “bad guy” sent the message
 – Key Changes
 • need to keep records of when keys were in use

● Standards
 – RSA Algorithm
 • popular with many commercial systems
 – El Gamal
 • NSA/NIST Standard
 • too new, and private to have trust
Message Digests

- **Goal: Send Signed Plain text**
 - can use slow cryptography on signature since its short

- **Need:**
 - Given P, easy to compute MD(P)
 - Given MD(P), impossible to find P
 - no P and P’ exist such that MD(P) = MD(P’)
 - use hash functions that produce >= 128 bit digest

- **Operation**
 - A sends P, $D_a(MD(P))$

- **Digest Functions**
 - MD5
 - produces 128 bit digest
 - SHS
 - NSA/NIST effort
 - produces 160 bit output
Naming Hosts In the Internet

- Originally used a single file
 - all hosts had line with name and IP Address
- Domain Naming System (DNS)
 - introduced in 1986
 - tree based structure to names
 - Names
 - full name must be less than 256 characters
 - each part can be up to 64 characters
 - are case insensitive
 - administration of subtrees can be delegated
 - each administrative region is called a zone
Examples of Domain Names

- **Domains can be both roots of subtrees and hosts**
 - For example: cs.umd.edu
- **Top level country codes**
 - required by PTTs outside of US
DNS (cont.)

- **Resource Records**
 - DNS is really a distributed, replicated database
- **Several types of tuples in the database**
 - SOA - Start of Authority information for a zone
 - A - IP Address record
 - MX - Mail exchanger
 - priority and destination (host name) to accept mail
 - NS - Name of the name server for this domain
 - CNAME - Canonical name (DNS name)
 - PTR - alias for an IP Address
 - HINFO - Host Info (CPU and OS type information)
 - TXT - other text information
Name Servers

- A collection of servers is used to run DNS
 - root servers: handle top level domains
 - have pointers to servers for delegated sub-domains
 - areas of the namespace covered by a server called a zone

- Zones
 - has one primary server (zone information stored on disk)
 - secondary name servers (get info from primary)
 - secondary server may be located outside of the zone

- Namelookup
 - start at current name server
 - if not found, resolve down tree to correct zone server
 - data may be cached in servers
 - this information may be out of data
 - authoritative data comes from the primary/secondary NS