Sources of Parallelism

- **Statements**
 - called “control parallel”
 - can perform a series of steps in parallel
 - basis of dataflow computers

- **Loops**
 - called “data parallel”
 - most common source of parallelism
 - each processor gets one (or more) iterations to perform
Applications

- **Easy (embarrassingly parallel)**
 - multiple independent jobs (i.e..., different simulations)

- **Scientific**
 - linear algebra
 - particle simulations

- **Databases**
 - biggest success of parallel computing
 - exploits semantics of relational calculus

- **AI**
 - search problems
 - pattern recognition and image processing (main SIMD use)
Issues in Application Performance

- **Speedup**
 - ratio of time on n nodes to time on a single node
 - hold problem size fixed
 - should really compare to best serial time
 - goal is linear speedup
 - super-linear speedup is possible due to:
 - adding more memory
 - search problems

- **Iso-Speedup**
 - scale data size up with number of nodes
 - goal is a flat horizontal curve

- **Amdahl's Law**
 - max speedup is $1/(\text{serial fraction of time})$

- **Computation to Communication Ratio**
 - goal is to maximize this ratio
How to Write Parallel Programs

- **Use old serial code**
 - compiler converts it to parallel
 - called the dusty deck problem

- **Serial Language plus Communication Library**
 - no compiler changes required!
 - PVM and MPI use this approach

- **New language for parallel computing**
 - requires all code to be re-written
 - hard to create a language that provides performance on different platforms

- **Hybrid Approach**
 - HPF - add data distribution commands to code
 - add parallel loops and synchronization operations
Application Example - Weather

- **Typical of many scientific codes**
 - computes results for three dimensional space
 - compute results at multiple time steps
 - uses equations to describe physics/chemistry of the problem
 - grids are used to discretize continuous space
 - granularity of grids is important to speed/accuracy

- **Simplifications (for example, not in real code)**
 - earth is flat (no mountains)
 - earth is round (poles are really flat, earth buldges at equator)
 - second order properties
Grid Points

- **Divide Continuous space into discrete parts**
 - for this code, grid size is fixed and uniform
 - possible to change grid size or use multiple grids
 - use three grids
 - two for latitude and longitude
 - one for elevation
 - Total of $M \times N \times L$ points

- **Design Choice: where is the grid point?**
 - left, right, or center of the grid
 - in multiple dimensions this multiples:
 - for 3 dimensions have 27 possible points
Variables

- **One dimensional**
 - m - geo-potential (gravitational effects)

- **Two dimensional**
 - pi - “shifted” surface pressure
 - sigmadot - vertical component of the wind velocity

- **Three dimensional (primary variables)**
 - <u,v> - wind velocity/direction vector
 - T - temperature
 - q - specific humidity
 - p - pressure

- **Not included**
 - clouds
 - precipitation
 - can be derived from others
Serial Computation

- Convert equations to discrete form
- Update from time \(t \) to \(t + \Delta t \)

```plaintext
foreach longitude, latitude, altitude
    \( u_{\text{star}}[i,j,k] = n * p[i,j] * u[i,j,k] \)
    \( v_{\text{star}}[i,j,k] = m[j] * p[i,j] * v[i,j,k] \)
    \( s_{\text{dot}}[i,j,k] = p[i,j] * \sigma_{\text{dot}}[i,j] \)
end

foreach longitude, latitude, altitude
    \[ D = 4 * \left( (u_{\text{star}}[i,j,k] + u_{\text{star}}[i-1,j,k]) * (q[i,j,k] + q[i-1,j,k]) + \right. \]
    \[ \text{terms in } \{i,j,k\}\{+,-\}\{1,2\} \]
    \( p_{\text{iq}}[i,j,k] = p_{\text{iq}}[i,j,k] + D * \Delta t \)
    \( \text{similar terms for } p_{\text{iu}}, p_{\text{iv}}, p_{\text{iT}}, \text{and } p \)
end

foreach longitude, latitude, altitude
    \( q[i,j,k] = p_{\text{iq}}[i,j,k]/\pi_{\text{iq}}[i,j,k] \)
    \( u[i,j,k] = p_{\text{iu}}[i,j,k]/\pi_{\text{iu}}[i,j,k] \)
    \( v[i,j,k] = p_{\text{iv}}[i,j,k]/\pi_{\text{iv}}[i,j,k] \)
    \( T[i,j,k] = p_{\text{iT}}[i,j,k]/\pi_{\text{iT}}[i,j,k] \)
end
```


Shared Memory Version

- in each loop nest, iterations are independent
- use a parallel for-loop for each loop nest
- synchronize (barrier) after each loop nest
 - this is overly conservative, but works
 - could use a single sync variable per item, but would incur excessive overhead
- potential parallelism is M * N * L
- private variables: D, i, j, k
- Advantages of shared memory
 - easier to get something working (ignoring performance)
- Hard to debug
 - other processors can modify shared data
Distributed Memory Weather

- decompose data to specific processors
 - assign a cube to each processor
 - maximize volume to surface ratio
 - minimizes communication/computation ratio
 - called a <block,block,block> distribution

- need to communicate \(\{i,j,k\}^{+,-}\{1,2\} \) terms at boundaries
 - use send/receive to move the data
 - no need for barriers, send/receive operations provide sync
 - sends earlier in computation too hide comm time

- Advantages
 - easier to debug
 - consider data locality explicitly with data decomposition

- Problems
 - harder to get the code running
Seismic Code

- **Given echo data, compute under sea map**
- **Computation model**
 - designed for a collection of workstations
 - uses variation of RPC model
 - workers are given an independent trace to compute
 - requires little communication
 - supports load balancing (1,000 traces is typical)
- **Performance**
 - max mfops = $O((F \times nz \times B^*)^{1/2})$
 - F - single processor MFLOPS
 - nz - linear dimension of input array
 - B^* - effective communication bandwidth
 - $B^* = B/(1 + BL/w) \approx B/7$ for Ethernet (10msec lat., $w=1400$)
 - real limit to performance was latency **not** bandwidth
Database Applications

- Too much data to fit in memory (or sometimes disk)
 - data mining applications (K-Mart has a 4-5TB database)
 - imaging applications (NASA has a site with 0.25 petabytes)
 • use a fork lift to load tapes by the pallet

- Sources of parallelism
 - within a large transaction
 - among multiple transactions

- Join operation
 - form a single table from two tables based on a common field
 - try to split join attribute in disjoint buckets
 • if know data distribution is uniform its easy
 • if not, try hashing
Speedup in Join parallelism

- Books claims a speed up of $1/p^2$ is possible
 - split each relation into p buckets
 - each bucket is a disjoint subset of the joint attribute
 - each processor only has to consider N/p tuples per relation
 - join is $O(n^2)$ so each processor does $O((N/p)^2)$ work
 - so speedup is $O(N^2/p^2)/O(N^2) = O(1/p^2)$

- this is a lie!
 - could split into $1/p$ buckets on one processor
 - time would then be $O(p \times (N/p)^2) = O(N^2/p)$
 - so speedup is $O(N^2/p^2)/O(N^2/p) = O(1/p)$
 - Amdahl's law is not violated
Parallel Search (TSP)

- may appear to be faster than 1/n
 - but this is not really the case either

- Algorithm
 - compute a path on a processor
 - if our path is shorter than the shortest one, send it to the others.
 - stop searching a path when it is longer than the shortest.
 - before computing next path, check for word of a new min path
 - stop when all paths have been explored.

- Why it appears to be faster than 1/n speedup
 - we found the a path that was shorter sooner
 - however, the reason for this is a different search order!
Ensuring a fair speedup

- $T_{\text{serial}} = \text{faster of}$
 - best known serial algorithm
 - simulation of parallel computation
 - use parallel algorithm
 - run all processes on one processor
 - parallel algorithm run on one processor

- If it appears to be super-linear
 - check for memory hierarchy
 - increased cache or real memory may be reason
 - verify order operations is the same in parallel and serial cases
Quantitative Speedup

- **Consider master-worker**
 - one master and \(n \) worker processes
 - communication time increases as a linear function of \(n \)
 \[
 T_p = T_{COMP_p} + T_{COMM_p}
 \]
 \[
 T_{COMP_p} = \frac{T_s}{P}
 \]
 \[
 \frac{1}{S_p} = \frac{T_p}{T_s} = \frac{1}{P} + \frac{T_{COMM_p}}{T_s}
 \]
 \[
 T_{COMM_p} \text{ is } P \times T_{COMM_1}
 \]
 \[
 \frac{1}{S_p} = \frac{1}{P} + p \times \frac{T_{COMM_1}}{T_s} = \frac{1}{P} + \frac{P}{r_1}
 \]
 where \(r_1 = \frac{T_s}{T_{COMM_1}} \)
 \[
 \frac{d(1/S_p)}{dP} = 0 \rightarrow P_{opt} = r_1^{1/2} \text{ and } S_{opt} = 0.5 \ r_1^{1/2}
 \]

- **For hierarchy of masters**
 - \(T_{COMM_p} = (1+\log P)T_{COMM_1} \)
 - \(P_{opt} = r_1 \) and \(S_{opt} = r_1/(1 + \log r_1) \)