
CMSC 714 – Cache Tools

Chau-Wen Tseng
(Subbing for Jeff Hollingsworth)

Department of Computer Science
University of Maryland, College Park

Two Keys To Performance

Parallelism
0 too expensive to speed up single processor
0 combine power of multiple processors

Locality
0 processors faster than memory, network

In cache ⇒ avoid memory latency
on processor ⇒ avoid network latency

2 Papers

John Mellor-Crummey, David Whalley, Ken
Kennedy, “Improving Memory Hierarchy Performance
for Irregular Applications Using Data and Computation
Reorderings,” International Journal of Parallel
Programming, 29(3), June 2001
0Examine impact of locality for scientific applications

Margaret Martonosi, Anoop Gupta, Thomas Anderson,
“MemSpy: analyzing memory system bottlenecks in
programs”, SIGMETRICS 92
0 Tool for analyzing multiprocessor cache locality

Memory Hierarchy

Levels
0Registers, cache, TLB,

DRAM, disk…

Higher levels smaller
but faster
0Disparity increasing

Caches

Memory

CPU

Locality

Types of locality
0 Temporal (reuse same data)
0Spatial (reuse nearby data)

Memory

Cache

Temporal Spatial

Science & Engineering Applications

Two types of computations
0Regular (dense matrix)

0 Irregular (sparse matrix)

Regular Computations

Characteristics
0Multidimensional arrays
0Multiple loop nests
0 Regular access patterns

Examples
0 Linear algebra
0Simulations w/ uniform meshes
0 Image processing
0Relational databases

i

j

k

Array Layout

Multidimensional arrays
0 Linearized for memory storage

Row major (C, C++, Java)
Column major (Fortran)

Contiguous accesses exploit spatial locality

Regular codes

do j = 1, N
do i = 1, N
… = node[i, j]

Irregular Computations

Characteristics
0 1D or 2D arrays
0Multiple loop nests
0 Irregular, dynamic access patterns

Examples
0Sparse linear algebra
0Simulations w/ sparse meshes

N-body
Molecular dynamics

Irregular Computation

Molecular dynamics
0Example algorithm for Moldyn

Initialize coordinates of particles
For N time steps DO

Update particle coordinates based on velocity
Build interaction list of nearby particles
For each pair of interacting particles DO

Update force on each particle
Update velocity of each particle

Problem

Irregular memory accesses ⇒ poor locality
0Unable to take advantage of memory hierarchy

Regular codes

do i = 1, N
do j = 1, N
… = node[i, j]

Irregular codes

do i = 1, M
… = node[edge1[i]]
… = node[edge2[i]]

Transformations for Irregular Codes

Reorder data & computation for cache

Distribute data & computation to processors

1 2 3 4

1 2 3 4

computation
(loop iteration)

data

1 2 3 4

2 3 1 4

data
reordering

3 1 2 4

1 2 3 4
comp.

reordering

1 2 3 4

1 2 3 4

p1 p2
1 3 2 4

1 2 3 4
comp./data
distribution

p1 p2

do i = 1,E
x[idx[i]] =

Locality Optimizations

Data reordering
0 Traversal algorithms (RCM, CPACK)
0Geometric partitioning algorithms (RCB, Morton)

Use real coordinates or array index
0Graph partitioning algorithms (METIS)

View accesses as a graph
Coordinates not needed

Computation reordering
0Bucket sort
0 Lexicographic sort
0Space filling curves

Data Reordering - Traversal Algorithms

Reverse Cuthill-McKee (RCM)
0Reverse BFS order

Consecutive packing (CPACK)
0 First touch order

1 2 3 4 5

1 2 3 4

1 2

3 45

1 23 4 1534 2
RCM

CPACK

(1,5)
(2,4)
(1,3)
(2,5)

1
2
3
4

1 5 2 4 3

Data Reordering - Partitioning Algorithms

Recursive coordinate bisection (RCB)
Space filling curves (MORTON)

1 2 3 4 5

1 2 3 4
1

2
3

4
5

RCB

3 1 5 2 4

1

2
3

45
MORTON 3 1 5 2 4

Data Reordering Algorithms

Recursive coordinate bisection
0Recursively select median for dimension

1

2

3

4

5

6

7

8

Space Filling Curves

Characteristics
0Curve whose range contains every point in square
0Used to map multidimensional data structures to 1D
0Preserves locality

(5,5,5) likely to be close to (4,5,5), (5,4,5), (5,5,4)
0Several types

Hilbert
Morton (Z-order)

Computed by interleaving binary coordinates
0Can select granularity

Match to memory hierarchy (e.g., page size)

Space Filling Curves

Space Filling Curves

Hilbert Morton (Z)

Hilbert Space Filling Curve

Morton Curve For Adaptive Mesh

Data Reordering - Partitioning Algorithms

Multi-level graph partitioning library (METIS)

1 2 3 4 5

1 2 3 4 1 2

3 45

1 23 4METIS 1 5 3 4 2

Data Reordering Algorithms

Multi-level graph partitioning (METIS)
0Simplify graph in phases

Merge neighboring nodes
0Partition simplified graph
0Project partition back to original graph

Coarsening Partitioning Projection

METIS

Computation Reordering

Bucket sort
0Assign data to buckets (similar to tiling)
0 Label iterations based on bucket of data accessed
0Reorder iterations using labels

1 2 3 4

a a b b c

1 3 4 2

a a b b c

a,c,a,b a,a,b,c

Assumes 1 access per iteration

Computation Reordering (cont.)

Lexicographic sort / space filling curve
0Assign vector label to iteration

Based on data accesses
0Reorder iterations using labels

Lexicographic sort
Space filling curve

1 2 3 4

a b c d e

3 1 4 2

a b c d e

bc,de,ab,cd ab,bc,cd,de

Allows multiple access per iteration

Locality Optimization Algorithm

Framework

1) Reorder data
2) Reorder computation

1 2 3 4

1 2 3 4 5

1 2 3 4

3 1 5 2 4

3 1 4 2

3 1 5 2 4

bc,de,ab,cd ab,bc,cd,de

a b c d e

computation
(iteration)

data

Must also decide whether benefit of improved locality
is worth overhead of reordering data & computation

Chronology

Locality reordering
0Das et al. : RCM & Lexicographical Sort [AIAA’94]
0Al-Furaih and Ranka : METIS & BFS [IPPS’98]
0Ding and Kennedy :

CPACK & Lexicographical Sort [PLDI’99]
0Mellor-Crummey et al. : Space Filling Curve [ICS’99]

Runtime Transformation

Inspector / executor approach
0 Insert call to inspector in run-time library
0Original computation transformed to executor
0At run time, inspector can

reorder data & computation
partition computation for parallel execution

0Used for both locality optimizations & parallelization

inspector(x, idx)
// executor
do i = 1,E

x[idx[i]] =
do i = 1,E

x[idx[i]] =

original code transformed code

Compiler Support
Identify irregular reductions
Locate access pattern changes
Insert library call - reorder data & computation
Reinvoke inspector if access pattern changes

idx[] = … // init idx[]
inspect(x, idx)
do t = 1, time

if (change)
idx[…] = ...
inspect(x, idx)

do i = 1, M
… = x[idx[i]]

idx[] = … // init idx[]

do t = 1, time
if (change)

idx[…] = ...

do i = 1, M
… = x[idx[i]]

original code transformed code

Experimental Evaluation

Benchmarks
0 Two particle kernels - Moldyn, Magi
0Unstructured mesh application – CHAD

Measurements
0Cache simulator
0Hardware counters on SGI Origin 10000 (SMP)

Experimental Evaluation (cont.)

Results (data/computation)
0Moldyn

Hilbert/Hilbert best (25% L1 misses)
0Magi

Hilbert/Hilbert best (28% L1 misses)
0CHAD

none/lexicographic best (96% L1 misses)
Hilbert increased cache misses due to overhead

Conclusions
0 Locality opts. needed for some irregular computations
0Particle codes (Moldyn, Magi) have more temporal

locality, thus benefit more than mesh codes (CHAD)?

2 Papers

John Mellor-Crummey, David Whalley, Ken
Kennedy, “Improving Memory Hierarchy Performance
for Irregular Applications Using Data and Computation
Reorderings,” International Journal of Parallel
Programming, 29(3), June 2001
0Examine impact of locality for scientific applications

Margaret Martonosi, Anoop Gupta, Thomas Anderson,
“MemSpy: analyzing memory system bottlenecks in
programs”, SIGMETRICS 92
0 Tool for analyzing multiprocessor cache locality

MemSpy

Simulator tool for analyzing cache performance
Features
0Data structure-specific cache statistics

% total memory stall time due to each heap object
0Supports multithreaded codes
0Reports cause of cache miss

Cold (1st reference) miss
Invalidate miss
Replacement miss

Combination of features
0Helps explain memory behavior
0Aids in performance tuning

Multimensional Array Layout

Contiguous accesses exploit spatial locality

Non-contiguous accesses waste cache lines
Row accesses

do i = 1, N
do j = 1, N
… = node[i, j]

Column accesses

do j = 1, N
do i = 1, N
… = node[i, j]

Cache Misses

Capacity misses: limited cache size
Conflict misses: limited set associativity
0Referred to as self-interference misses
0 50% conflict misses (McKinley & Temam, [ASPLOS’96])

Cache

Memory

Tiling / Blocking Regular Codes

Computation reordering transformation
0Bring reuses closer in time
0 Iteration broken into tiles (blocks)
0Reduces capacity misses
0Can introduce conflict misses

N sweeps for
entire array
→
Too large to
fit in cache

N sweeps for
each tile
→
Tile fits in
cache

cache

Tiled 2D Codes

Mult example (C = A*B):

do J=1,N
do K=1,N
do I=1,N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

do KK=1,N,W
do II=1,N,H
do J=1,N
do K=KK,min(KK+W-1,N)
do I=II,min(II+H-1,N)

A

W
H

Conflicts in Tiled 2D Codes

2D subarray (HxW) overlaps on cache

Cache Cache

Tile conflictsNo tile conflicts

MemSpy Case Studies

Examples of how to analyze cache performance
0High cold miss rate → poor spatial locality

0High self replacement rate → conflict misses

Cache

MemSpy Case Studies (cont.)

Examples of how to analyze cache performance
0High invalidate misses → poor multiprocessor locality

(possibly false sharing)

Proc 2Proc 1

a
b

a b

MemSpy Design

Implemented using Tango simulator
0 Inserts procedure call per memory reference
0 40% increase in execution time

Data structure specific statistics
0Heap allocated data structures aggregated into bins
0Same bin if allocated

at same point in program w/ identical call path
0% of total stall time used to prioritize data structures

Cause of cache miss is recorded
0Maintain and use 1D array of state bits

Student Questions – Locality Opts

Q
0 Is there an intuitive explanation for why space-filling

curves improve temporal and spatial locality better
than more simple orderings?

A
0Actually only improves spatial locality. Simple

orderings (e.g., row/column) have large jumps going
from 1 column/row to the next. I.e., with row-major
ordering two neighboring points 1 row apart are
separated by the size of the entire row.

Student Questions – Locality Opts

Q
0What is the breakdown of regular vs. irregular applic

ations?
A
0Not sure, but trend is towards irregular applications

as problem size & complexity increase

Student Questions – Locality Opts

Q
0 They often mention that their re-ordering

improvements are x times better than a random
ordering. I would think that a more natural baseline
would be some sort of row-based or column-based
ordering. It seems like a random ordering would just
be inherently wasteful in terms of spatial locality
benefits. Is there any reason why a random ordering
was used as the baseline comparison?

A
0 I think random is just one example. Baseline is with

respect to the original particle order, I believe.

Student Questions – Locality Opts

Q
0Are the Hilbert and Morton curves pretty much the

only space-filling curves currently used? I notice
that points in the very center of the space that are
spatially very close to each other, are very far apart
on the curve.

A
0Hilbert is better than Morton in avoiding big jumps.

Other space filling curves exist, though I’m not sure
whether they are used at all.

Student Questions - MemSpy

Q
0 The paper failed to address a few of my questions ab

out the role of the simulator in MemSpy, e.g. why is t
he simulator needed at all and what exactly is its pur
pose?

A
0Some mechanism is needed to be able to predict

cache behavior. Without hardware counters a
simulator is the only way to be able to track the
stream of memory references.

Student Questions - MemSpy

Q
0Has hardware tracing proven more effective than usi

ng a simulator?
A
0Depends on what you mean by effective. Hardware

cache counters are much faster, but provide less
detailed information and cannot be used to test
different cache configurations.

Student Questions – MemSpy

Q
0MemSpy seems like a good tool for analyzing

programs that run on dedicated hardware. But, it
seems like if the program were intended to run
within an OS environment, context switching and OS
data structures would change the behavior of the
cache. So, I wonder whether the simulations that
MemSpy uses would accurately reflect the execution
if the program in its actual environment.

A
0Application-level cache simulators ignore the impact

of context switching on cache behavior.

Student Questions – MemSpy

Q
0MemSpy seems like a good analysis tool to use

when targeting a single architecture (homogeneous
cluster or single computer). However, would such a
cache analysis tool be useful at all in a
heterogeneous grid computing environment?

A
0Only shared-memory architectures need to worry

about shared caches. Grids communicate via
messages, in effect making copies of nonlocal data
as needed. This eliminates invalidate misses.

