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Two Keys To Performance

Parallelism
0 too expensive to speed up single processor
0 combine power of multiple processors

Locality
0 processors faster than memory, network

In cache ⇒ avoid memory latency
on processor ⇒ avoid network latency



2 Papers

John Mellor-Crummey, David Whalley, Ken 
Kennedy, “Improving Memory Hierarchy Performance 
for Irregular Applications Using Data and Computation 
Reorderings,” International Journal of Parallel 
Programming, 29(3), June 2001
0Examine impact of locality for scientific applications

Margaret Martonosi, Anoop Gupta, Thomas Anderson, 
“MemSpy: analyzing memory system bottlenecks in 
programs”, SIGMETRICS 92
0 Tool for analyzing multiprocessor cache locality



Memory Hierarchy

Levels
0Registers, cache, TLB, 

DRAM, disk…

Higher levels smaller 
but faster
0Disparity increasing

Caches

Memory

CPU



Locality

Types of locality
0 Temporal (reuse same data)
0Spatial (reuse nearby data)

Memory

Cache

Temporal Spatial



Science & Engineering Applications

Two types of computations
0Regular (dense matrix)

0 Irregular (sparse matrix)



Regular Computations

Characteristics
0Multidimensional arrays
0Multiple loop nests
0 Regular access patterns

Examples
0 Linear algebra
0Simulations w/ uniform meshes
0 Image processing
0Relational databases

i

j

k



Array Layout

Multidimensional arrays 
0 Linearized for memory storage

Row major (C, C++, Java)
Column major (Fortran)

Contiguous accesses exploit spatial locality

Regular codes

do j = 1, N
do i = 1, N
… = node[i, j]



Irregular Computations

Characteristics
0 1D or 2D arrays
0Multiple loop nests
0 Irregular, dynamic access patterns

Examples
0Sparse linear algebra
0Simulations w/ sparse meshes

N-body
Molecular dynamics



Irregular Computation

Molecular dynamics
0Example algorithm for Moldyn

Initialize coordinates of particles
For N time steps DO

Update particle coordinates based on velocity
Build interaction list of nearby particles
For each pair of interacting particles DO

Update force on each particle
Update velocity of each particle



Problem

Irregular memory accesses  ⇒ poor locality
0Unable to take advantage of memory hierarchy

Regular codes

do i = 1, N
do j = 1, N
… = node[i, j]

Irregular codes

do i = 1, M
… = node[ edge1[i] ]
… = node[ edge2[i] ]



Transformations for Irregular Codes

Reorder data & computation for cache

Distribute data & computation to processors

1 2 3 4

1 2 3 4

computation 
(loop iteration)

data

1 2 3 4

2 3 1 4

data 
reordering

3 1 2 4

1 2 3 4
comp. 

reordering

1 2 3 4

1 2 3 4

p1      p2
1 3 2 4

1 2 3 4
comp./data 
distribution

p1     p2 

do i = 1,E
x[idx[i]] =



Locality Optimizations

Data reordering
0 Traversal algorithms (RCM, CPACK)
0Geometric partitioning algorithms (RCB, Morton)

Use real coordinates or array index
0Graph partitioning algorithms (METIS)

View accesses as a graph
Coordinates not needed

Computation reordering
0Bucket sort
0 Lexicographic sort
0Space filling curves



Data Reordering  - Traversal Algorithms

Reverse Cuthill-McKee (RCM)
0Reverse BFS order

Consecutive packing (CPACK)
0 First touch order

1 2 3 4 5

1 2 3 4

1 2

3 45

1 23 4 1534 2
RCM

CPACK

(1,5) 
(2,4) 
(1,3) 
(2,5)

1
2
3
4

1 5 2 4 3



Data Reordering - Partitioning Algorithms

Recursive coordinate bisection (RCB)
Space filling curves (MORTON)

1 2 3 4 5

1 2 3 4
1

2
3

4
5

RCB

3 1 5 2 4

1

2
3

45
MORTON 3 1 5 2 4



Data Reordering Algorithms

Recursive coordinate bisection
0Recursively select median for dimension

1

2

3

4

5

6

7

8



Space Filling Curves

Characteristics
0Curve whose range contains every point in square
0Used to map multidimensional data structures to 1D
0Preserves locality

(5,5,5) likely to be close to (4,5,5), (5,4,5), (5,5,4)
0Several types

Hilbert
Morton (Z-order)

Computed by interleaving binary coordinates
0Can select granularity

Match to memory hierarchy (e.g., page size)



Space Filling Curves



Space Filling Curves

Hilbert Morton (Z)



Hilbert Space Filling Curve



Morton Curve For Adaptive Mesh



Data Reordering - Partitioning Algorithms

Multi-level graph partitioning library (METIS)

1 2 3 4 5

1 2 3 4 1 2

3 45

1 23 4METIS 1 5 3 4 2



Data Reordering Algorithms

Multi-level graph partitioning (METIS)
0Simplify graph in phases

Merge neighboring nodes
0Partition simplified graph
0Project partition back to original graph

Coarsening Partitioning Projection

METIS



Computation Reordering

Bucket sort
0Assign data to buckets (similar to tiling) 
0 Label iterations based on bucket of data accessed
0Reorder iterations using labels

1 2 3 4

a a b b c

1 3 4 2

a a b b c

a,c,a,b a,a,b,c

Assumes 1 access per iteration



Computation Reordering (cont.)

Lexicographic sort / space filling curve
0Assign vector label to iteration 

Based on data accesses
0Reorder iterations using labels

Lexicographic sort
Space filling curve

1 2 3 4

a b c d e

3 1 4 2

a b c d e

bc,de,ab,cd ab,bc,cd,de

Allows multiple access per iteration



Locality Optimization Algorithm

Framework

1) Reorder data
2) Reorder computation

1 2 3 4

1 2 3 4 5

1 2 3 4

3 1 5 2 4

3 1 4 2

3 1 5 2 4

bc,de,ab,cd ab,bc,cd,de

a  b  c  d  e

computation
(iteration)

data

Must also decide whether benefit of improved locality 
is worth overhead of reordering data & computation



Chronology

Locality reordering
0Das et al. : RCM & Lexicographical Sort [AIAA’94]
0Al-Furaih and Ranka : METIS & BFS             [IPPS’98]
0Ding and Kennedy :

CPACK & Lexicographical Sort [PLDI’99]
0Mellor-Crummey et al. : Space Filling Curve [ICS’99]



Runtime Transformation

Inspector / executor approach 
0 Insert call to inspector in run-time library
0Original computation transformed to executor
0At run time, inspector can

reorder data & computation
partition computation for parallel execution

0Used for both locality optimizations & parallelization

inspector(x, idx)
// executor
do i = 1,E

x[idx[i]] = 
do i = 1,E

x[idx[i]] = 

original code transformed code



Compiler Support
Identify irregular reductions
Locate access pattern changes
Insert library call - reorder data & computation
Reinvoke inspector if access pattern changes

idx[ ] = … // init idx[ ]
inspect(x, idx)
do t = 1, time

if (change) 
idx[…] = ...
inspect(x, idx)

do i = 1, M
… = x[ idx[i] ]

idx[ ] = … // init idx[ ]

do t = 1, time
if (change) 

idx[…] = ...

do i = 1, M
… = x[ idx[i] ]

original code transformed code



Experimental Evaluation

Benchmarks
0 Two particle kernels - Moldyn, Magi
0Unstructured mesh application – CHAD

Measurements
0Cache simulator
0Hardware counters on SGI Origin 10000 (SMP)



Experimental Evaluation (cont.)

Results (data/computation)
0Moldyn

Hilbert/Hilbert best (25% L1 misses)
0Magi

Hilbert/Hilbert best (28% L1 misses)
0CHAD

none/lexicographic best (96% L1 misses)
Hilbert increased cache misses due to overhead

Conclusions
0 Locality opts. needed for some irregular computations
0Particle codes (Moldyn, Magi) have more temporal 

locality, thus benefit more than mesh codes (CHAD)?



2 Papers

John Mellor-Crummey, David Whalley, Ken 
Kennedy, “Improving Memory Hierarchy Performance 
for Irregular Applications Using Data and Computation 
Reorderings,” International Journal of Parallel 
Programming, 29(3), June 2001
0Examine impact of locality for scientific applications

Margaret Martonosi, Anoop Gupta, Thomas Anderson, 
“MemSpy: analyzing memory system bottlenecks in 
programs”, SIGMETRICS 92
0 Tool for analyzing multiprocessor cache locality



MemSpy

Simulator tool for analyzing cache performance
Features
0Data structure-specific cache statistics

% total memory stall time due to each heap object
0Supports multithreaded codes
0Reports cause of cache miss

Cold (1st reference) miss
Invalidate miss
Replacement miss

Combination of features
0Helps explain memory behavior
0Aids in performance tuning



Multimensional Array Layout

Contiguous accesses exploit spatial locality

Non-contiguous accesses waste cache lines
Row accesses

do i = 1, N
do j = 1, N
… = node[i, j]

Column accesses

do j = 1, N
do i = 1, N
… = node[i, j]



Cache Misses

Capacity misses: limited cache size
Conflict misses: limited set associativity
0Referred to as self-interference misses
0 50% conflict misses (McKinley & Temam, [ASPLOS’96])

Cache

Memory



Tiling / Blocking Regular Codes

Computation reordering transformation
0Bring reuses closer in time
0 Iteration broken into tiles (blocks)
0Reduces capacity misses
0Can introduce conflict misses

N sweeps for 
entire array 
→
Too large to 
fit in cache

N sweeps for 
each tile 
→
Tile fits in 
cache

cache



Tiled 2D Codes

Mult example (C = A*B):

do J=1,N
do K=1,N
do I=1,N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

do KK=1,N,W
do II=1,N,H
do J=1,N
do K=KK,min(KK+W-1,N)
do I=II,min(II+H-1,N)

A

W
H



Conflicts in Tiled 2D Codes

2D subarray (HxW) overlaps on cache

Cache Cache

Tile conflictsNo tile conflicts



MemSpy Case Studies

Examples of how to analyze cache performance
0High cold miss rate → poor spatial locality

0High self replacement rate → conflict misses

Cache



MemSpy Case Studies (cont.)

Examples of how to analyze cache performance
0High invalidate misses → poor multiprocessor locality

(possibly false sharing)

Proc 2Proc 1

a 
b

a b



MemSpy Design

Implemented using Tango simulator
0 Inserts procedure call per memory reference
0 40% increase in execution time

Data structure specific statistics
0Heap allocated data structures aggregated into bins
0Same bin if allocated 

at same point in program w/ identical call path
0% of total stall time used to prioritize data structures

Cause of cache miss is recorded 
0Maintain and use 1D array of state bits 



Student Questions – Locality Opts

Q
0 Is there an intuitive explanation for why space-filling

curves improve temporal and spatial locality better
than more simple orderings?

A
0Actually only improves spatial locality. Simple 

orderings (e.g., row/column) have large jumps going 
from 1 column/row to the next.  I.e., with row-major 
ordering two neighboring points 1 row apart are 
separated by the size of the entire row.



Student Questions – Locality Opts

Q
0What is the breakdown of regular vs. irregular applic

ations?
A
0Not sure, but trend is towards irregular applications 

as problem size & complexity increase



Student Questions – Locality Opts

Q
0 They often mention that their re-ordering 

improvements are x times better than a random 
ordering. I would think that a more natural baseline 
would be some sort of row-based or column-based 
ordering. It seems like a random ordering would just 
be inherently wasteful in terms of spatial locality 
benefits. Is there any reason why a random ordering 
was used as the baseline comparison?

A
0 I think random is just one example. Baseline is with 

respect to the original particle order, I believe.



Student Questions – Locality Opts

Q
0Are the Hilbert and Morton curves pretty much the 

only space-filling curves currently used? I notice 
that points in the very center of the space that are 
spatially very close to each other, are very far apart 
on the curve.

A
0Hilbert is better than Morton in avoiding big jumps. 

Other space filling curves exist, though I’m not sure 
whether they are used at all.



Student Questions - MemSpy

Q
0 The paper failed to address a few of my questions ab

out the role of the simulator in MemSpy, e.g. why is t
he simulator needed at all and what exactly is its pur
pose?

A
0Some mechanism is needed to be able to predict 

cache behavior. Without hardware counters a 
simulator is the only way to be able to track the 
stream of memory references.



Student Questions - MemSpy

Q
0Has hardware tracing proven more effective than usi

ng a simulator?
A
0Depends on what you mean by effective. Hardware 

cache counters are much faster, but provide less 
detailed information and cannot be used to test 
different cache configurations.



Student Questions – MemSpy

Q
0MemSpy seems like a good tool for analyzing 

programs that run on dedicated hardware. But, it 
seems like if the program were intended to run 
within an OS environment, context switching and OS 
data structures would change the behavior of the 
cache. So, I wonder whether the simulations that 
MemSpy uses would accurately reflect the execution 
if the program in its actual environment.

A
0Application-level cache simulators ignore the impact 

of context switching on cache behavior.



Student Questions – MemSpy

Q
0MemSpy seems like a good analysis tool to use 

when targeting a single architecture (homogeneous 
cluster or single computer ). However, would such a 
cache analysis tool be useful at all in a 
heterogeneous grid computing environment?

A
0Only shared-memory architectures need to worry 

about shared caches. Grids communicate via 
messages, in effect making copies of nonlocal data 
as needed. This eliminates invalidate misses.


