
1CMSC 714 – F10 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

Seismic Code
Given echo data, compute under sea map
Computation model
– designed for a collection of workstations
– uses variation of RPC model
– workers are given an independent trace to compute

• requires little communication
• supports load balancing (1,000 traces is typical)

Performance
– max mfops = O((F * nz * B*)1/2)
– F - single processor MFLOPS
– nz - linear dimension of input array
– B* - effective communication bandwidth

• B* = B/(1 + BL/w) ≈ B/7 for Ethernet (10msec lat., w=1400)
– real limit to performance was latency not bandwidth

2CMSC 714 – F10 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

Database Applications

Too much data to fit in memory (or sometimes disk)
– data mining applications
– imaging applications

• use a fork lift to load tapes by the pallet

Sources of parallelism
– within a large transaction
– among multiple transactions

Join operation
– form a single table from two tables based on a common field
– try to split join attribute in disjoint buckets

• if know data distribution is uniform its easy
• if not, try hashing

3CMSC 714 – F10 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

Parallel Search (TSP)
may appear to be faster than 1/n
– but this is not really the case either

Algorithm
– compute a path on a processor

• if our path is shorter than the shortest one, send it to the
others.

• stop searching a path when it is longer than the shortest.
– before computing next path, check for word of a new min

path
– stop when all paths have been explored.

Why it appears to be faster than 1/n speedup
– we found the a path that was shorter sooner
– however, the reason for this is a different search order!

4CMSC 714 – F10 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

Ensuring a fair speedup

Tserial = faster of
– best known serial algorithm
– simulation of parallel computation

• use parallel algorithm
• run all processes on one processor

– parallel algorithm run on one processor

If it appears to be super-linear
– check for memory hierarchy

• increased cache or real memory may be reason
– verify order operations is the same in parallel and serial cases

5CMSC 714 – F10 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

Quantitative Speedup

Consider master-worker
– one master and n worker processes
– communication time increases as a linear function of n
Tp = TCOMPp + TCOMMp

TCOMPp = Ts/P
1/Sp= Tp/Ts = 1/P + TCOMMp/Ts

TCOMMp is P * TCOMM1

1/Sp=1/p + p * TCOMM1/Ts = 1/P + P/r1

where r1 = Ts/TCOMM1

d(1/Sp)/dP = 0 --> Popt = r1
1/2 and Sopt= 0.5 r1

1/2

For hierarchy of masters
– TCOMMp = (1+logP)TCOMM1

– Popt= r1 and Sopt = r1/(1 + log r1)

6CMSC 714 – F10 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

MPI
Goals:
– Standardize previous message passing:

• PVM, P4, NX
– Support copy free message passing
– Portable to many platforms

Features:
– point-to-point messaging
– group communications
– profiling interface: every function has a name shifted version

Buffering
– no guarantee that there are buffers
– possible that send will block until receive is called

Delivery Order
– two sends from same process to same dest. will arrive in order
– no guarantee of fairness between processes on recv.

7CMSC 714 – F10 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

MPI Communicators

Provide a named set of processes for communication
All processes within a communicator can be named
– numbered from 0…n-1

Allows libraries to be constructed
– application creates communicators
– library uses it
– prevents problems with posting wildcard receives

• adds a communicator scope to each receive

All programs start will MPI_COMM_WORLD

8CMSC 714 – F10 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

Non-Blocking Functions

Two Parts
– post the operation
– wait for results

Also includes a poll option
– checks if the operation has finished

Semantics
– must not alter buffer while operation is pending

9CMSC 714 – F10 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

MPI Misc.

MPI Types
– All messages are typed

• base types are pre-defined:
– int, double, real, {,unsigned}{short, char, long}

• can construct user defined types
– includes non-contiguous data types

Processor Topologies
– Allows construction of Cartesian & arbitrary graphs
– May allow some systems to run faster

What’s not in MPI-1
– process creation
– I/O
– one sided communication

10CMSC 714 – F10 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

MPI Housekeeping Calls

Include <mpi.h> in your program
If using mpich, …

First call MPI_Init(&argc, &argv)
MPI_Comm_rank(MPI_COMM_WORLD, &myrank)
– Myrank is set to id of this process

MPI_Wtime
– Returns wall time

At the end, call MPI_Finalize()

11CMSC 714 – F10 (lect 3) copyright 2006 Jeffrey K. Hollingsworth

MPI Communication Calls

Parameters
– var – a variable
– num – number of elements in the variable to use
– type {MPI_INT, MPI_REAL, MPI_BYTE}
– root – rank of processor at root of collective operation
– dest – rank of destination processor
– status - variable of type MPI_Status;

Calls (all return a code – check for MPI_Success)
– MPI_Send(var, num, type, dest, tag, MPI_COMM_WORLD)
– MPI_Recv(var, num, type, dest, MPI_ANY_TAG,

MPI_COMM_WORLD, &status)

– MPI_Bcast(var, num, type, root, MPI_COMM_WORLD)
– MPI_Barrier(MPI_COMM_WORLD)

