Introduction

- Class is an introduction to parallel computing
 - topics include: hardware, applications, compilers, system software, and tools
- Will count for Masters/PhD Comp Credit
- Work required
 - small programming assignment
 - midterm
 - classroom participation
 - project
- Reading for the lecture: Chapter 1
- Photos were taken of the class
What is Parallel Computing?

- **Does it include:**
 - super-scalar processing (more than one insn at once)?
 - client/server computing?
 - what if RPC calls are non-blocking?
 - vector processing (same instruction to several values)?
 - collection of PC’s **not** connected to a network?

- **For this class, parallel computing is:**
 - a collection of processing elements (more than one).
 - connected to a communication network.
 - working together to solve a single problem.
Why Parallelism

● Speed
 – need to get results faster than possible with sequential
 • a weather forecast that is late is useless
 – could come from
 • more processing elements (P.E.)
 • more memory size
 • more disks

● Cost: cheaper to buy many smaller machines
 – this is only recently true due to
 • VLSI
 • commodity parts
What Does a Parallel Computer Look Like?

- **Hardware**
 - processors
 - communication
 - memory
 - coordination

- **Software**
 - languages
 - operating systems
 - programming models
Processing Elements (PE)

- **Key Processor Choices**
 - How many?
 - How powerful?
 - Custom or off-the-shelf?

- **Major Styles of Parallel Computing**
 - SIMD - Single Instruction Multiple Data
 - one master program counter
 - MIMD - Multiple Instruction Multiple Data
 - separate code for each processor
 - SPMD - Single Program Multiple Data
 - same code on each processor, separate PC’s on each
 - Dataflow - instruction waits for operands
 - “automatically” finds parallelism