
 1

Understanding The High Performance Computing 
Community:  A Software Engineer’s Perspective 

Victor R. Basili, Jeffrey Carver, Daniela Cruzes, Lorin Hochstein, Jeffrey K.
Hollingsworth, Forrest Shull, and Marvin V. Zelkowitz

Introduction 

For the last few years we have had the opportunity, as software engineers, to observe
development of computational science software (referred to as codes) built for High-
Performance Computing (HPC) machines in many different contexts. While we do not
claim to have studied all types of HPC development, we did encounter a wide cross-
section of projects. Despite their diversity, several common traits exist.

1. Many developers receive their software training from other scientists. While the
scientists have often been writing software for many years, they generally lack
formal software engineering training, especially in managing multi-person
development teams and complex software artifacts.

2. Many of the codes are not originally designed to be large. They start small and
then grow based on their scientific success.

3. A substantial fraction of development teams use their own code (or code
developed as part of their research group).

For these reasons (and many others), development practices in this community are quite
different from those in more “traditional” software engineering.

Our aim in this paper is to distill our experience about how software engineers can
productively engage the HPC community. Several software engineering practices
generally considered good ideas in other development environments are quite
mismatched to the needs of the HPC community. We found that keys to successful
interactions include a healthy sense of humility on the part of software engineering
researchers and the avoidance of assumptions that software engineering expertise applies
equally in all contexts. We engaged with only a tiny fraction of the HPC community and
witnessed enormous variation within and across stakeholders, so generalizations about
this “HPC community” must be tempered by understanding just what portion of the
community was observed.

Background  

The focus of our observations was on computational science codes developed for HPC
systems. A list of the 500 fastest (http://www.top500.org) shows that, as of November
2007, the most powerful system has 212,992 processors. While a given application would
not routinely use all these processors, it would regularly use a large percentage of them
for a single job. Effectively using tens of thousands of processors on a single project is
considered normal in this community.

 2

We were interested in codes that require non-trivial communication among the individual
processors throughout the execution. While there are many uses for HPC systems, a
common application is to simulate physical phenomena, such as earthquakes, global
climate change, or nuclear reactions. These codes must be written to explicitly harness
the parallelism of HPC systems. While many parallel programming models exist, the
dominant model is MPI, a message-passing library where the programmer explicitly
specifies all communication. FORTRAN remains widely used for developing new HPC
software, as does C/C++. It is not uncommon for a single system to incorporate multiple
programming languages, and we even saw several projects use dynamic languages such
as Python to couple different modules written in a mix of FORTRAN, C, and C++.

In 2004, DARPA launched the High Productivity Computing Systems (HPCS) project1 to
significantly advance the state of HPC technology by supporting vendor efforts to
develop next generation systems, focusing on both hardware and software issues. In
addition, DARPA also funded researchers to develop methods for evaluating productivity
that more truly measured scientific output rather than simple processor utilization, the
measure used by the Top500 list. Our initial role was to evaluate the impact of newly
proposed languages on programmer productivity. In addition, one of the authors was
involved in conducting a series of case studies of existing HPC projects in government
labs to characterize these projects and document lessons learned.

The significance of the HPCS program was its shift in emphasis from execution time to
time-to-solution, which incorporates both development and execution time. We began
this research by running controlled experiments to measure the impact of different
parallel programming models. Since the proposed languages did not yet exist in a usable
form, we performed studies on available technologies such as MPI, OpenMP, UPC, Co-
Array FORTRAN, and Matlab*P, using students in parallel programming courses from
eight different universities [Ho05].

We widened the scope of this research by collecting “folklore,” i.e. the community’s
tacit, unformalized view about what is true. We collected this folklore first through a
focus group of HPC researchers, then by surveying HPC practitioners involved in the
HPCS project, and finally by interviewing a sampling of practitioners that included
academic researchers, technologists developing new HPC systems, and project managers.
Finally, we conducted case studies of projects at both U.S. government labs [Ca07] and
academic labs [Ho08].

The development world of the computational scientist 

To understand why certain software engineering technologies are a poor fit for
computational scientists, it is important to first understand their world and the constraints
it places on them. Overall we found that there is no such thing as a single “HPC
community.” Our research was restricted entirely to computational scientists using HPC
systems to run simulations. Yet, despite this narrow focus, we saw enormous variation,

1 http://www.highproductivity.org

 3

especially in the kinds of problems that people are using HPC systems to solve. Table 1
shows four of the many attributes that vary across the HPC community.

Table 1 – HPC Community Attributes

Attribute Values Description

Individual One developer, sometimes called the “lone researcher”
scenario Team Size

Large “Community codes”, multiple groups, possibly
geographically distributed

Short

Code that is executed few times (e.g. a code from the
intelligence community) may trade-off less time in
development (spending less time on performance and
portability) for more time in execution Code Life

Long

Code that is executed many times (e.g. a physics
simulation) will likely spend more time in development
(to increase portability and performance) and amortize
that time over many executions

Internal Used only by developers

External
Used by other groups within the organization (e.g. at
U.S. Government Labs) or sold commercially (e.g.
Gaussian) Users

Both

“Community codes” are used both internally and
externally. Version control is more complex in this case
because both a development and a release version must
be maintained

The goal of scientists is to do science, not execute software 

“One possible measure of productivity is scientifically useful results over calendar time.
This implies sufficient simulated time and resolution, plus sufficient accuracy of the
physical models and algorithms.” –Scientist (interview).

“[Floating-point operations per second] rates are not a useful measure of science
achieved.” – User talk, IBM scientific users group conference, as reported in Arctic
Research Supercomputing Center, HPC Users Newsletter, 366.

Initially, we believed that performance was of paramount importance to scientists
developing on HPC systems. However, after in-depth interviews, we found that scientific
researchers are focused on producing publishable results: writing codes that perform
efficiently on HPC systems is a means to an end, not an end to itself. While this point
may sound obvious, we feel that this is overlooked by many in the HPC community.

A scientist’s goal is to produce new scientific knowledge. Therefore if they can execute
their computational simulation using the time and resources they are allocated on the

 4

HPC system, they see no need or benefit in spending time optimizing the performance.
The need for optimization is only seen when the simulation cannot be completed at the
desired fidelity with the allocated resources. When optimization is necessary, it is often
broad-based, including not only traditional computer science notions of code tuning and
algorithm modification, but also re-thinking the underlying mathematical approximations
and potentially making fundamental changes to the computation. Thus technologies that
focus only on code tuning are of somewhat limited utility to this community.

Computational scientists do not view performance gains in the same way as computer
scientists. For example, one of the authors (trained in computer science) improved the
performance of a code by more than a factor of two. He expected this improvement
would save computing time. Instead, when he informed the computational scientist, the
reaction was that they could now use the saved time to add more function, i.e., get a
higher fidelity approximation of the problem being solved.

Comment: Scientists make decisions based on maximizing scientific output, not
program performance.

Performance vs. Portability and Maintainability 

If somebody said, maybe you could get 20% [performance improvement] out of it, but
you have to do quite a bit of a rewrite, and you have to do it in such a way that it
becomes really ugly and unreadable, then maintainability becomes a real problem…. I
don’t think we would ever do anything for 20%. The number would have to be between 2x
and an order of magnitude… Readability is critical in these codes: describe the
algorithms in a mathematical language as opposed to a computer language. – Scientist
(interview).

Scientists have to balance performance and development effort. We saw preference for
technologies that allowed the scientist to control the performance to the level needed for
their science, even by sacrificing abstraction and ease of programming. Hence the
extensive use of C and FORTRAN, which offer more predictable performance and less
abstraction than higher-level programming languages.

Conversely, the scientists are not driven entirely by performance. They will not make
significant maintainability sacrifices to obtain modest performance improvements.
Because the codes have to run on multiple current and future HPC systems, portability is
a major concern. Codes need to run efficiently on multiple machines. Application
scientists are not interested in performing machine-specific performance tuning because
this effort will be lost when ported to the next platform. In addition, source code changes
that improve performance typically make code more difficult to understand, creating a
disincentive to do certain kinds of performance improvements.

Comment: Scientists want the control to increase performance as necessary, but will
not sacrifice everything to performance.

 5

Verification and validation for scientific codes 

Testing is different… it’s very much a qualitative judgment about how an algorithm is
actually performing in a mathematical sense…. Finally, when the thing is working in a
satisfactory way, say, in a single component, you may then go and run it in a coupled
application and you’ll find out there are some features you didn’t understand that came
about in a coupled application and you need to go back and think about those. – Scientist
(interview).

Simulation software commonly produces an approximation to a set of equations that
cannot be solved exactly. One can think of this development as a two-step process:
translating the problem to an algorithm and translating the algorithm to code. These
approximations (mapping problem to algorithm) can be evaluated qualitatively based on
possessing desirable properties (e.g., stability) and ensuring that various conservation
laws hold (e.g., that energy is conserved). The required precision of the approximation
depends on the nature of the phenomenon being simulated. For example, new problems
can arise when approximations of different aspects of a system are integrated. Suddenly,
an approximation that was perfectly adequate for standalone usage may not be of
sufficient quality for the integrated simulation. Identifying and evaluating the quality of
an algorithm is a very challenging task. One scientist we spoke with said that algorithmic
defects were much more significant than coding defects.

Validating simulation codes is an enormous challenge. In principle, a code can be
validated by comparing the simulation output with the results of a physical experiment. In
practice, since simulations are written for domains where experiments are prohibitively
expensive or impossible, validation is very difficult. Entire scientific programs, costing
hundreds of millions of dollars per year for many years, have been built around
experimental validation of large codes.

Comment: Debugging and validation are qualitatively different for HPC than for
traditional software development.

Skepticism of new technologies 

I hate MPI, I hate C++. If I had to choose again, I would probably choose the same –
Scientist (interview).

Our codes are much larger and more complex than the “toy” programs normally used in
[classroom settings]. We would like to see a number of large workhorse applications
converted and benchmarked. – Scientist (interview).

Scientists had a cynical view of new technologies because the history of HPC is littered
with new technologies that promised to increase scientific productivity but are no longer
available. Some of this skepticism is due to the long life of HPC codes; it is not unusual
for a code to have a 30 year life cycle. Because of this long life cycle, scientists will only

 6

embrace a new technology if they believe it will survive for the long term. This explains
the widespread popularity of MPI, despite constant grumbling about its difficulty.

A common strategy used by scientific programmers is to develop code in such a way that
different technologies can be plugged in to be tested. For example, when MPI was new
in the 1990s, many groups were cautious about its long-term prospects and added it to
their code alongside existing message passing libraries. As MPI became widely used and
trusted, these older libraries were retired. Similar patterns have been observed with
solver libraries, I/O libraries, and tracing tools.

The new languages being developed in the DARPA HPCS projects were intended to
extend the frontiers of what is currently possible in today’s machines, and so we sought
out practitioners working on very large codes and running on very large machines.
Because of the time they have already invested in their codes and their need for
longevity, they all expressed great trepidation at the prospect of porting to a new
language.

Comment: A new technology that can co-exist with older ones has a greater chance
of success than one that requires a complete buy-in at the beginning.

Shared, centralized computing resources 

“The problem with debugging, of course, is that you want to re-run and re-run. The
whole concept of a batch queue would make that a week-long process. Whereas on a
dedicated weekend, in a matter of hours you can pound out ten or twenty different runs of
enormous size and understand where the logic is going wrong.” – Scientist (interview)

Because of the cost, complexity and size of HPC systems, they are typically located at
HPC centers and shared among user groups, with batch-scheduling to coordinate
executions. Users submit their jobs to a queue with a request for number of processors
and maximum execution time. This information is used to determine when to schedule
the job. If the time estimate is too low, the job will be preemptively terminated; if it is too
high, the job will wait in the queue longer than necessary.

Since these systems are shared resources, scientists are physically remote from the
computers they use. Thus, potentially useful tools that were designed to be interactive
become unusably slow and are soon discarded, because they are not designed to take into
account the long latency times of remote connections. Unfortunately for scientists, using
an HPC system typically means interacting with the batch queue.

Debugging batch-scheduled jobs is also tedious because the queue wait increases the
turnaround time. Some systems provide “interactive” nodes that allow users to run
smaller jobs without entering the batch queue. Unfortunately, some defects only manifest
themselves when running with large numbers of processors.

 7

The problem of the queue may be exacerbated by center policies which use system
utilization as a productivity metric, since utilization is inversely proportional to
availability, policies that favor maximizing utilization will have longer waits [Sn06]. As a
counterexample, Lincoln Laboratories provides interactive access to all users, and
purchases excess computing capacity to ensure that the computational needs of the users
are met [Ca07].

Comment: Remote access precludes the use of certain software tools, and system
access policies can have a significant impact on productivity.

Computational Science / Software Engineering 
Mismatches 

Repeatedly, we saw that software engineering technologies that did not take into account
the constraints of the scientists failed or were not adopted. Our concern is that the
computer science community is not necessarily aware of this lesson. Software engineers
collaborating with scientists should understand that the resistance to adoption of
unfamiliar technologies is based on real experiences. For example, concepts like CMMI
are not well matched to the incremental nature of the HPC development process.

Object­oriented languages 
Java is for drinking. – Syllabus of a parallel programming course.

Developers on a project said “we’re going to use class library X that will hide all our
array operations and do all the right things”… Immediately, you ran into all sorts of
issues. First of all, C++, for example, was not transportable because compilers work in
different ways across these machines. –Scientist (interview).

Object-oriented technologies are firmly entrenched in the software engineering
community. But in the HPC community, C and FORTRAN still dominate, although C++
is used and one project was exploring the use of Java. We also saw some use of Python,
although never for performance-critical code.

Historically, we see that FORTRAN-like MATLAB has seen widespread adoption
among scientists, although not necessarily in the HPC community. To date, OO has not
been a good fit for HPC, even though some concepts have been adopted. One possibility
may be that OO-based languages such as C++ have been evolving much more rapidly
compared to C and FORTRAN in recent years, and are therefore more risky choices.

Comment: More study is needed to identify why OO has seen such little adoption
and whether there are pockets within HPC where OO may be suitable

Frameworks 

 8

If you talk about components in the Common Component Architecture or anywhere else,
components make very myopic decisions. In order to achieve capability, you need to
make global decisions. If you allow the components to make local decisions, performance
isn’t as good. – Scientist (interview)

Frameworks provide a higher-level of abstraction to the programmer, but at a cost of
adopting the framework’s perspective on how the code should be structured. Examples of
HPC frameworks include POOMA (for hiding low-level details of parallelism) and the
Common Component Architecture (CCA, for implementing component-based HPC
software).

Kendall and Post [Po03] tell the story that Los Alamos National Laboratory sought to
modernize an old FORTRAN-based HPC code using POOMA, a novel C++ object-
oriented framework for writing parallel codes. Despite spending over 50% of its code
development resources during the project on POOMA, the framework was both slower
than the original FORTRAN code and lacked the flexibility of the lower-level parallel
libraries to implement the desired physics.

In our own studies, we did not encounter scientists using such frameworks. Instead, we
saw them implement their own abstraction levels on top of MPI to hide low-level details,
and develop their own component architecture to couple their subsystems together.

Of all the multi-physics applications we encountered, only one was using any aspect of
CCA technology, and on that project one of the developers was an active member of the
CCA initiative. When we asked scientists about the lack of reuse of frameworks such as
POOMA, they responded that such frameworks force the scientists to adapt their problem
to the interface supported by the framework. They felt that it would take more effort to fit
their problem into one of these frameworks than to build their own framework atop
lower-level abstraction such as MPI.

One significant barrier to the use of many frameworks is that they cannot be integrated
incrementally. As noted earlier, a common risk mitigation strategy is to allow competing
technologies to co-exist with a code while under evaluation. However, the nature of many
frameworks makes this impossible.

Comment: Scientists have yet to be convinced that reusing existing frameworks will
save them more effort than building their own from scratch.

Integrated Development Environments 

IDEs try to impose a particular style of development on me and I am forced into a
particular mode – Scientist from a U.S. government laboratory [CA07b]

We saw no use of integrated development environments (IDEs) such as Eclipse because
they do not fit well into the typical workflow of a scientist running a code on an HPC
system. For example, IDEs have no facilities for submitting jobs to remote HPC queues.

 9

IDEs also do not have debugging and profiling support for parallel machines. There is
currently an effort to provide this functionality in Eclipse through the Parallel Tools
Platform (PTP) project.

In addition, while HPC languages such as FORTRAN and C/C++ are supported in
Eclipse, they are second-class citizens in the Eclipse ecosystem which is focused on Java-
related technologies. It is an open question whether these technologies will be adopted by
the larger HPC system community.

Comment: Without support for remote execution on batch-queued systems, IDEs
are unlikely to be adopted by HPC practitioners.

Well­matched technologies are adopted 
“We’re astrophysicists, which seems to mean we disdain good software engineering
practices until we get bit … hard … >10 times. Nevertheless, we are starting to learn the
importance of source control, regression testing, code verification, and more.” - Bronson
Messer, “Petascale Supernova Simulation”, PETALS workshop, 2006.

“We were using CVS until a few months ago. Now we migrated to Subversion. We’ve had
version control since day 1.” – Scientist (interview).

FlashTest, the tool for nightly regression testing of FLASH has been generalized to be
usable with any code that uses steps similar to FLASH in building. – ASC/Alliances
Center for Astrophysical Thermonuclear Flashes at the University of Chicago: Year 9
Activities Report.

Roccom is an innovative object-oriented, data-centric integration framework developed
at CSAR for large-scale numerical scientific simulation. – ASC/Alliances Center for
Simulation of Advanced Rockets: 2004 Annual Report.

Scientists do embrace some software engineering techniques and concepts, when they are
a good fit. Every multi-developer project we encountered used a version control system
such as CVS or Subversion to coordinate changes. We also saw some use of regression
testing methods, including tests across platforms and compilers. We saw extensive reuse-
in-the-small, in the form of reusing externally developed libraries such as
preconditioners, solvers, adaptive mesh refinement support, and parallel I/O libraries.

On multi-physics applications which involved integration of multiple models maintained
by independent groups, we saw a lot of effort devoted to software architecture for
integrating these components, including use of object-oriented concepts. In one case, an
OO language, C++, was explicitly used. In another case an object-oriented architectural
framework was implemented using a non-OO language: FORTRAN 90.

Comment: Scientists working on large projects see the value of an architectural
infrastructure but they are more disposed to build their own.

 10

What software engineering can do to help scientists 
Since this article is aimed at the software engineering community, we conclude with our
perspectives on how we software engineers can best apply our knowledge and talents to
assist the computational science community.

Observe, identify, adapt, and disseminate good practices and 
processes 
In our study of existing literature, our software environment is not entirely unique.
However, our desire to provide an environment that supports development from the
inception of high-risk, high-payoff mathematical software to eventual production
quality tools is unusual – The Trilinos Software Lifecycle Model, Willenbring et al.,
Third International Workshop on Software Engineering for High Performance
Computing Applications, 2007.

We’re doing a loose version of extreme programming or agile. – Scientist (interview).

As software practitioners, we are familiar with the idea of how software development
process affects productivity and quality. We can help in two ways. First of all, we can
tailor and transfer existing software engineering practices to this community. We know
from observation that some mainstream practices have been successfully adopted by
larger projects. It is important to publicize these successes. We believe there are other
software engineering practices that could be successfully adapted but have not been, such
as inspections. Inspections are important here because of the challenges of verification
and validation, but they need to be tailored for this domain. As always, it is important to
take into account the environment and constraints of this community to avoid mismatches
like the ones we have written about. Secondly, we can help capture and disseminate
computational-science-specific practices that have been successfully adopted.

Education  
Education and outreach to create code that is parallelized - #1 user priority, TeraGrid
User Workshop Final Report, July 2006.

Teaching people to use MPI is not very hard. Teaching people to write MPI effectively so
that can get performance out of their code is extremely difficult. That’s the difference
between a first year grad student, and someone who has been at the center for 4-5 years.
– Scientist (interview).

For the professor whose job is to turn out students, the correct metric is how long does it
take to take a grad student who just finished, say, their second year of coursework to
being a productive researcher in the group. That involves a lot more than just actual run-
time on the machine. It involves time picking up the skills to be a successful developer,
picking up skills as a designer of parallel algorithms, picking up enough physics to
understand the problem he’s solving and how parallelism applies to it. – Scientist
(interview).

 11

We observed both parallel programming classes and HPC practitioners in action. While
students learned the basic principles of HPC development in their courses, they were not
properly prepared for the kind of software development they needed to do. Therefore,
there was a long learning curve to becoming productive, using the apprenticeship model
of working closely with more experienced practitioners.

At the university level, we can develop software engineering courses that are specifically
targeted at computational scientists. We can also work toward other models of
disseminating software engineering knowledge in this domain. For example, we have
developed teaching materials that improve the quality of student assignments by teaching
them about HPC defects (http://www.hpcbugbase.org),

Research into reuse­in­the­large 
A lot of our project is getting all this infrastructure put together that we didn’t have
[before] and doing this from the ground up. A productive thing would be not to have to
do that. - Scientist (interview).

While this paper may have painted a gloomy picture about the prospects of large-scale
reuse using frameworks, we believe these technologies have the potential to reduce
programmer effort significantly. If a framework is built upon well-supported technologies
such as MPI, it will have fewer adoption barriers than a new language.

As software engineers, we can run case studies of projects that attempt to adopt such
frameworks. By documenting how and why the adoptions succeed or fail, we can better
understand the important context variables for successful framework reuse.

A final word about scope 
It is important to note that the scope of observations and conclusions reached in this
article are limited to the populations that we interacted with. In particular, we spoke
mainly to computational scientists in either academia or government agencies who use
computers to do simulations of physical phenomena. There are many other applications
for high-performance computing (e.g. signal processing, cryptography, 3D rendering),
and HPC is also used in industry (e.g. movie special effects, automobile manufacturers,
oil companies).

Scientific software systems are growing larger and more complex. We are finally starting
to see interaction among the computational science and software engineering
communities, but more dialogue is needed and more studies must be done. We have
much to learn from each other.

Acknowledgements 
We wish to thank the students who were subjects in the parallel computing classes we
studied (Iowa State, Maryland, Mississippi State, MIT, UC Santa Barbara, UCSD, USC,
and University of Hawaii). We also thank the code teams we interviewed, including the
DOE ASC-Alliance centers (Cal Tech, Stanford University, University of Chicago,

 12

UIUC, and University of Utah). We thank the HPC community including users at SDSC,
members of the HPCS project, and others for their contributions to our understanding of
HPC folklore. We thank DARPA and the US Department of Energy for funding this
research. Finally, we thank Bill Dorland for his feedback on an earlier draft of this paper.

References 
[Ca07] J. Carver, "Post-workshop report for the third international workshop on software
engineering for high performance computing applications (SE-HPC 07)," SIGSOFT
Softw. Eng. Notes, vol. 32, pp. 38-43, 2007.

[Ca07b] J. Carver, R. Kendall, S. Squires, and D. Post, “Software Development
Environments for Scientific and Engineering Software: A Series of Case Studies,”
Proceedings of the 29th International Conference on Software Engineering. p. 550-559.
2007.

[Ho05] Lorin Hochstein, Jeff Carver, Forrest Shull, Sima Asgari, Victor R. Basili, Jeffrey
K. Hollingsworth, Marvin Zelkowitz. "Parallel Programmer Productivity: A Case Study
of Novice Parallel Programmers". International Conference for High Performance
Computing, Networking and Storage (SC'05). November 2005.

[Ho08] L. Hochstein, V. R. Basili, “The ASC-Alliance projects: A case study of large-
scale parallel scientific code development”, IEEE Computer, March 2008.

[Po04] D. E. Post and R. P. Kendall, "Software project management and quality
engineering practices for complex, coupled multiphysics, massively parallel computation
simulations: Lessons learned from ASCI," International Journal of High Performance
Computing Applications, vol. 18, pp. 399-416, 2004.

[Sn06] A. Snavely and J. Kepner, "Is 99% utilization of a supercomputer a good thing?,"
in Proceedings of the 2006 ACM/IEEE conference on Supercomputing Tampa, Florida:
ACM, 2006.

