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Introduction 
 
For the last few years we have had the opportunity, as software engineers, to observe 
development of computational science software (referred to as codes) built for High-
Performance Computing (HPC) machines in many different contexts. While we do not 
claim to have studied all types of HPC development, we did encounter a wide cross-
section of projects. Despite their diversity, several common traits exist. 

1. Many developers receive their software training from other scientists. While the 
scientists have often been writing software for many years, they generally lack 
formal software engineering training, especially in managing multi-person 
development teams and complex software artifacts.  

2. Many of the codes are not originally designed to be large. They start small and 
then grow based on their scientific success.  

3. A substantial fraction of development teams use their own code (or code 
developed as part of their research group).  

For these reasons (and many others), development practices in this community are quite 
different from those in more “traditional” software engineering. 
 
Our aim in this paper is to distill our experience about how software engineers can 
productively engage the HPC community. Several software engineering practices 
generally considered good ideas in other development environments are quite 
mismatched to the needs of the HPC community. We found that keys to successful 
interactions include a healthy sense of humility on the part of software engineering 
researchers and the avoidance of assumptions that software engineering expertise applies 
equally in all contexts. We engaged with only a tiny fraction of the HPC community and 
witnessed enormous variation within and across stakeholders, so generalizations about 
this “HPC community” must be tempered by understanding just what portion of the 
community was observed.  

Background  
 
The focus of our observations was on computational science codes developed for HPC 
systems. A list of the 500 fastest (http://www.top500.org) shows that, as of November 
2007, the most powerful system has 212,992 processors. While a given application would 
not routinely use all these processors, it would regularly use a large percentage of them 
for a single job. Effectively using tens of thousands of processors on a single project is 
considered normal in this community. 
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We were interested in codes that require non-trivial communication among the individual 
processors throughout the execution. While there are many uses for HPC systems, a 
common application is to simulate physical phenomena, such as earthquakes, global 
climate change, or nuclear reactions. These codes must be written to explicitly harness 
the parallelism of HPC systems. While many parallel programming models exist, the 
dominant model is MPI, a message-passing library where the programmer explicitly 
specifies all communication. FORTRAN remains widely used for developing new HPC 
software, as does C/C++. It is not uncommon for a single system to incorporate multiple 
programming languages, and we even saw several projects use dynamic languages such 
as Python to couple different modules written in a mix of FORTRAN, C, and C++. 
 
In 2004, DARPA launched the High Productivity Computing Systems (HPCS) project1 to 
significantly advance the state of HPC technology by supporting vendor efforts to 
develop next generation systems, focusing on both hardware and software issues. In 
addition, DARPA also funded researchers to develop methods for evaluating productivity 
that more truly measured scientific output rather than simple processor utilization, the 
measure used by the Top500 list. Our initial role was to evaluate the impact of newly 
proposed languages on programmer productivity. In addition, one of the authors was 
involved in conducting a series of case studies of existing HPC projects in government 
labs to characterize these projects and document lessons learned. 
 
The significance of the HPCS program was its shift in emphasis from execution time to 
time-to-solution, which incorporates both development and execution time. We began 
this research by running controlled experiments to measure the impact of different 
parallel programming models. Since the proposed languages did not yet exist in a usable 
form, we performed studies on available technologies such as MPI, OpenMP, UPC, Co-
Array FORTRAN, and Matlab*P, using students in parallel programming courses from 
eight different universities [Ho05].  
 
We widened the scope of this research by collecting “folklore,” i.e. the community’s 
tacit, unformalized view about what is true. We collected this folklore first through a 
focus group of HPC researchers, then by surveying HPC practitioners involved in the 
HPCS project, and finally by interviewing a sampling of practitioners that included 
academic researchers, technologists developing new HPC systems, and project managers. 
Finally, we conducted case studies of projects at both U.S. government labs [Ca07] and 
academic labs [Ho08].  

The development world of the computational scientist 
 
To understand why certain software engineering technologies are a poor fit for 
computational scientists, it is important to first understand their world and the constraints 
it places on them. Overall we found that there is no such thing as a single “HPC 
community.” Our research was restricted entirely to computational scientists using HPC 
systems to run simulations. Yet, despite this narrow focus, we saw enormous variation, 

                                                
1 http://www.highproductivity.org 
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especially in the kinds of problems that people are using HPC systems to solve. Table 1 
shows four of the many attributes that vary across the HPC community. 
 

Table 1 – HPC Community Attributes 
 

Attribute Values Description 

Individual One developer, sometimes called the “lone researcher” 
scenario Team Size 

Large “Community codes”, multiple groups, possibly 
geographically distributed 

Short 

Code that is executed few times (e.g. a code from the 
intelligence community) may trade-off less time in 
development (spending less time on performance and 
portability) for more time in execution Code Life 

Long 

Code that is executed many times (e.g. a physics 
simulation) will likely spend more time in development 
(to increase portability and performance) and amortize 
that time over many executions 

Internal Used only by developers 

External 
Used by other groups within the organization (e.g. at 
U.S. Government Labs) or sold commercially (e.g. 
Gaussian) Users 

Both 

“Community codes” are used both internally and 
externally. Version control is more complex in this case 
because both a development and a release version must 
be maintained 

 

The goal of scientists is to do science, not execute software 
 
“One possible measure of productivity is scientifically useful results over calendar time. 
This implies sufficient simulated time and resolution, plus sufficient accuracy of the 
physical models and algorithms.” –Scientist (interview). 
 
“[Floating-point operations per second] rates are not a useful measure of science 
achieved.” – User talk, IBM scientific users group conference, as reported in Arctic 
Research Supercomputing Center, HPC Users Newsletter, 366. 
 
Initially, we believed that performance was of paramount importance to scientists 
developing on HPC systems. However, after in-depth interviews, we found that scientific 
researchers are focused on producing publishable results: writing codes that perform 
efficiently on HPC systems is a means to an end, not an end to itself. While this point 
may sound obvious, we feel that this is overlooked by many in the HPC community.  
 
A scientist’s goal is to produce new scientific knowledge. Therefore if they can execute 
their computational simulation using the time and resources they are allocated on the 
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HPC system, they see no need or benefit in spending time optimizing the performance. 
The need for optimization is only seen when the simulation cannot be completed at the 
desired fidelity with the allocated resources. When optimization is necessary, it is often 
broad-based, including not only traditional computer science notions of code tuning and 
algorithm modification, but also re-thinking the underlying mathematical approximations 
and potentially making fundamental changes to the computation. Thus technologies that 
focus only on code tuning are of somewhat limited utility to this community. 
 
Computational scientists do not view performance gains in the same way as computer 
scientists. For example, one of the authors (trained in computer science) improved the 
performance of a code by more than a factor of two. He expected this improvement 
would save computing time. Instead, when he informed the computational scientist, the 
reaction was that they could now use the saved time to add more function, i.e., get a 
higher fidelity approximation of the problem being solved. 
 
Comment: Scientists make decisions based on maximizing scientific output, not 
program performance. 
 

Performance vs. Portability and Maintainability 
 
If somebody said, maybe you could get 20% [performance improvement] out of it, but 
you have to do quite a bit of a rewrite, and you have to do it in such a way that it 
becomes really ugly and unreadable, then maintainability becomes a real problem…. I 
don’t think we would ever do anything for 20%. The number would have to be between 2x 
and an order of magnitude… Readability is critical in these codes: describe the 
algorithms in a mathematical language as opposed to a computer language. – Scientist 
(interview). 
 
Scientists have to balance performance and development effort. We saw preference for 
technologies that allowed the scientist to control the performance to the level needed for 
their science, even by sacrificing abstraction and ease of programming. Hence the 
extensive use of C and FORTRAN, which offer more predictable performance and less 
abstraction than higher-level programming languages. 
 
Conversely, the scientists are not driven entirely by performance. They will not make 
significant maintainability sacrifices to obtain modest performance improvements. 
Because the codes have to run on multiple current and future HPC systems, portability is 
a major concern. Codes need to run efficiently on multiple machines. Application 
scientists are not interested in performing machine-specific performance tuning because 
this effort will be lost when ported to the next platform.  In addition, source code changes 
that improve performance typically make code more difficult to understand, creating a 
disincentive to do certain kinds of performance improvements. 
 
Comment: Scientists want the control to increase performance as necessary, but will 
not sacrifice everything to performance. 
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Verification and validation for scientific codes 
 
Testing is different… it’s very much a qualitative judgment about how an algorithm is 
actually performing in a mathematical sense…. Finally, when the thing is working in a 
satisfactory way, say, in a single component, you may then go and run it in a coupled 
application and you’ll find out there are some features you didn’t understand that came 
about in a coupled application and you need to go back and think about those. – Scientist 
(interview). 
 
Simulation software commonly produces an approximation to a set of equations that 
cannot be solved exactly. One can think of this development as a two-step process: 
translating the problem to an algorithm and translating the algorithm to code. These 
approximations (mapping problem to algorithm) can be evaluated qualitatively based on 
possessing desirable properties (e.g., stability) and ensuring that various conservation 
laws hold (e.g., that energy is conserved). The required precision of the approximation 
depends on the nature of the phenomenon being simulated. For example, new problems 
can arise when approximations of different aspects of a system are integrated. Suddenly, 
an approximation that was perfectly adequate for standalone usage may not be of 
sufficient quality for the integrated simulation. Identifying and evaluating the quality of 
an algorithm is a very challenging task. One scientist we spoke with said that algorithmic 
defects were much more significant than coding defects. 
 
Validating simulation codes is an enormous challenge. In principle, a code can be 
validated by comparing the simulation output with the results of a physical experiment. In 
practice, since simulations are written for domains where experiments are prohibitively 
expensive or impossible, validation is very difficult. Entire scientific programs, costing 
hundreds of millions of dollars per year for many years, have been built around 
experimental validation of large codes.  
 
Comment: Debugging and validation are qualitatively different for HPC than for 
traditional software development. 

Skepticism of new technologies 
 
I hate MPI, I hate C++. If I had to choose again, I would probably choose the same  – 
Scientist (interview).  
 
Our codes are much larger and more complex than the “toy” programs normally used in 
[classroom settings]. We would like to see a number of large workhorse applications 
converted and benchmarked. – Scientist (interview). 
 
Scientists had a cynical view of new technologies because the history of HPC is littered 
with new technologies that promised to increase scientific productivity but are no longer 
available. Some of this skepticism is due to the long life of HPC codes; it is not unusual 
for a code to have a 30 year life cycle. Because of this long life cycle, scientists will only 
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embrace a new technology if they believe it will survive for the long term. This explains 
the widespread popularity of MPI, despite constant grumbling about its difficulty.  
 
A common strategy used by scientific programmers is to develop code in such a way that 
different technologies can be plugged in to be tested.  For example, when MPI was new 
in the 1990s, many groups were cautious about its long-term prospects and added it to 
their code alongside existing message passing libraries.  As MPI became widely used and 
trusted, these older libraries were retired.  Similar patterns have been observed with 
solver libraries, I/O libraries, and tracing tools.  
 
The new languages being developed in the DARPA HPCS projects were intended to 
extend the frontiers of what is currently possible in today’s machines, and so we sought 
out practitioners working on very large codes and running on very large machines. 
Because of the time they have already invested in their codes and their need for 
longevity, they all expressed great trepidation at the prospect of porting to a new 
language. 
 
Comment: A new technology that can co-exist with older ones has a greater chance 
of success than one that requires a complete buy-in at the beginning. 
 

Shared, centralized computing resources 
 
“The problem with debugging, of course, is that you want to re-run and re-run. The 
whole concept of a batch queue would make that a week-long process. Whereas on a 
dedicated weekend, in a matter of hours you can pound out ten or twenty different runs of 
enormous size and understand where the logic is going wrong.” – Scientist (interview) 
 
Because of the cost, complexity and size of HPC systems, they are typically located at 
HPC centers and shared among user groups, with batch-scheduling to coordinate 
executions. Users submit their jobs to a queue with a request for number of processors 
and maximum execution time. This information is used to determine when to schedule 
the job. If the time estimate is too low, the job will be preemptively terminated; if it is too 
high, the job will wait in the queue longer than necessary.  
 
Since these systems are shared resources, scientists are physically remote from the 
computers they use. Thus, potentially useful tools that were designed to be interactive 
become unusably slow and are soon discarded, because they are not designed to take into 
account the long latency times of remote connections. Unfortunately for scientists, using 
an HPC system typically means interacting with the batch queue. 
 
Debugging batch-scheduled jobs is also tedious because the queue wait increases the 
turnaround time. Some systems provide “interactive” nodes that allow users to run 
smaller jobs without entering the batch queue. Unfortunately, some defects only manifest 
themselves when running with large numbers of processors.  
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The problem of the queue may be exacerbated by center policies which use system 
utilization as a productivity metric, since utilization is inversely proportional to 
availability, policies that favor maximizing utilization will have longer waits [Sn06]. As a 
counterexample, Lincoln Laboratories provides interactive access to all users, and 
purchases excess computing capacity to ensure that the computational needs of the users 
are met [Ca07].  
 
Comment: Remote access precludes the use of certain software tools, and system 
access policies can have a significant impact on productivity. 

Computational Science / Software Engineering 
Mismatches 
 
Repeatedly, we saw that software engineering technologies that did not take into account 
the constraints of the scientists failed or were not adopted. Our concern is that the 
computer science community is not necessarily aware of this lesson. Software engineers 
collaborating with scientists should understand that the resistance to adoption of 
unfamiliar technologies is based on real experiences. For example, concepts like CMMI 
are not well matched to the incremental nature of the HPC development process. 

Object­oriented languages 
Java is for drinking.  – Syllabus of a parallel programming course. 
 
Developers on a project said “we’re going to use class library X that will hide all our 
array operations and do all the right things”… Immediately, you ran into all sorts of 
issues. First of all, C++, for example, was not transportable because compilers work in 
different ways across these machines.  –Scientist (interview). 
 
Object-oriented technologies are firmly entrenched in the software engineering 
community. But in the HPC community, C and FORTRAN still dominate, although C++ 
is used and one project was exploring the use of Java.  We also saw some use of Python, 
although never for performance-critical code.  
 
Historically, we see that FORTRAN-like MATLAB has seen widespread adoption 
among scientists, although not necessarily in the HPC community. To date, OO has not 
been a good fit for HPC, even though some concepts have been adopted. One possibility 
may be that OO-based languages such as C++ have been evolving much more rapidly 
compared to C and FORTRAN in recent years, and are therefore more risky choices.  
 
Comment: More study is needed to identify why OO has seen such little adoption 
and whether there are pockets within HPC where OO may be suitable  
 

Frameworks 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If you talk about components in the Common Component Architecture or anywhere else, 
components make very myopic decisions. In order to achieve capability, you need to 
make global decisions. If you allow the components to make local decisions, performance 
isn’t as good.  – Scientist (interview) 
 
Frameworks provide a higher-level of abstraction to the programmer, but at a cost of 
adopting the framework’s perspective on how the code should be structured. Examples of 
HPC frameworks include POOMA (for hiding low-level details of parallelism) and the 
Common Component Architecture (CCA, for implementing component-based HPC 
software). 
 
Kendall and Post [Po03] tell the story that Los Alamos National Laboratory sought to 
modernize an old FORTRAN-based HPC code using POOMA, a novel C++ object-
oriented framework for writing parallel codes. Despite spending over 50% of its code 
development resources during the project on POOMA, the framework was both slower 
than the original FORTRAN code and lacked the flexibility of the lower-level parallel 
libraries to implement the desired physics.  
 
In our own studies, we did not encounter scientists using such frameworks. Instead, we 
saw them implement their own abstraction levels on top of MPI to hide low-level details, 
and develop their own component architecture to couple their subsystems together. 
 
Of all the multi-physics applications we encountered, only one was using any aspect of 
CCA technology, and on that project one of the developers was an active member of the 
CCA initiative. When we asked scientists about the lack of reuse of frameworks such as 
POOMA, they responded that such frameworks force the scientists to adapt their problem 
to the interface supported by the framework. They felt that it would take more effort to fit 
their problem into one of these frameworks than to build their own framework atop 
lower-level abstraction such as MPI.  
 
One significant barrier to the use of many frameworks is that they cannot be integrated 
incrementally. As noted earlier, a common risk mitigation strategy is to allow competing 
technologies to co-exist with a code while under evaluation. However, the nature of many 
frameworks makes this impossible.  
 
Comment: Scientists have yet to be convinced that reusing existing frameworks will 
save them more effort than building their own from scratch.  

Integrated Development Environments 
 
IDEs try to impose a particular style of development on me and I am forced into a 
particular mode – Scientist from a U.S. government laboratory [CA07b] 
 
We saw no use of integrated development environments (IDEs) such as Eclipse because 
they do not fit well into the typical workflow of a scientist running a code on an HPC 
system. For example, IDEs have no facilities for submitting jobs to remote HPC queues. 
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IDEs also do not have debugging and profiling support for parallel machines. There is 
currently an effort to provide this functionality in Eclipse through the Parallel Tools 
Platform (PTP) project. 
 
In addition, while HPC languages such as FORTRAN and C/C++ are supported in 
Eclipse, they are second-class citizens in the Eclipse ecosystem which is focused on Java-
related technologies. It is an open question whether these technologies will be adopted by 
the larger HPC system community.  
 
Comment: Without support for remote execution on batch-queued systems, IDEs 
are unlikely to be adopted by HPC practitioners. 
 

Well­matched technologies are adopted 
“We’re astrophysicists, which seems to mean we disdain good software engineering 
practices until we get bit … hard … >10 times. Nevertheless, we are starting to learn the 
importance of source control, regression testing, code verification, and more.” - Bronson 
Messer, “Petascale Supernova Simulation”, PETALS workshop, 2006. 
 
“We were using CVS until a few months ago. Now we migrated to Subversion. We’ve had 
version control since day 1.” – Scientist (interview). 
 
FlashTest, the tool for nightly regression testing of FLASH has been generalized to be 
usable with any code that uses steps similar to FLASH in building. – ASC/Alliances 
Center for Astrophysical Thermonuclear Flashes at the University of Chicago: Year 9 
Activities Report. 
 
Roccom is an innovative object-oriented, data-centric integration framework developed 
at CSAR for large-scale numerical scientific simulation. – ASC/Alliances Center for 
Simulation of Advanced Rockets: 2004 Annual Report. 
 
Scientists do embrace some software engineering techniques and concepts, when they are 
a good fit. Every multi-developer project we encountered used a version control system 
such as CVS or Subversion to coordinate changes. We also saw some use of regression 
testing methods, including tests across platforms and compilers. We saw extensive reuse-
in-the-small, in the form of reusing externally developed libraries such as 
preconditioners, solvers, adaptive mesh refinement support, and parallel I/O libraries.   
 
On multi-physics applications which involved integration of multiple models maintained 
by independent groups, we saw a lot of effort devoted to software architecture for 
integrating these components, including use of object-oriented concepts. In one case, an 
OO language, C++, was explicitly used. In another case an object-oriented architectural 
framework was implemented using a non-OO language: FORTRAN 90.  
 
Comment: Scientists working on large projects see the value of an architectural 
infrastructure but they are more disposed to build their own.  
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What software engineering can do to help scientists 
Since this article is aimed at the software engineering community, we conclude with our 
perspectives on how we software engineers can best apply our knowledge and talents to 
assist the computational science community. 

Observe, identify, adapt, and disseminate good practices and 
processes 
In our study of existing literature, our software environment is not entirely unique.  
However, our desire to provide an environment that supports development from the 
inception of high-risk, high-payoff mathematical software to eventual production 
quality tools is unusual – The Trilinos Software Lifecycle Model, Willenbring et al., 
Third International Workshop on Software Engineering for High Performance 
Computing Applications, 2007.  
 
We’re doing a loose version of extreme programming or agile. – Scientist (interview).  
 
As software practitioners, we are familiar with the idea of how software development 
process affects productivity and quality. We can help in two ways. First of all, we can 
tailor and transfer existing software engineering practices to this community. We know 
from observation that some mainstream practices have been successfully adopted by 
larger projects. It is important to publicize these successes. We believe there are other 
software engineering practices that could be successfully adapted but have not been, such 
as inspections. Inspections are important here because of the challenges of verification 
and validation, but they need to be tailored for this domain.  As always, it is important to 
take into account the environment and constraints of this community to avoid mismatches 
like the ones we have written about.  Secondly, we can help capture and disseminate 
computational-science-specific practices that have been successfully adopted.  

Education  
Education and outreach to create code that is parallelized - #1 user priority, TeraGrid 
User Workshop Final Report, July 2006. 
 
Teaching people to use MPI is not very hard. Teaching people to write MPI effectively so 
that can get performance out of their code is extremely difficult. That’s the difference 
between a first year grad student, and someone who has been at the center for 4-5 years. 
– Scientist (interview).  
 
For the professor whose job is to turn out students, the correct metric is how long does it 
take to take a grad student who just finished, say, their second year of coursework to 
being a productive researcher in the group. That involves a lot more than just actual run-
time on the machine. It involves time picking up the skills to be a successful developer, 
picking up skills as a designer of parallel algorithms, picking up enough physics to 
understand the problem he’s solving and how parallelism applies to it. – Scientist 
(interview). 
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We observed both parallel programming classes and HPC practitioners in action. While 
students learned the basic principles of HPC development in their courses, they were not 
properly prepared for the kind of software development they needed to do. Therefore, 
there was a long learning curve to becoming productive, using the apprenticeship model 
of working closely with more experienced practitioners.  
 
At the university level, we can develop software engineering courses that are specifically 
targeted at computational scientists. We can also work toward other models of 
disseminating software engineering knowledge in this domain. For example, we have 
developed teaching materials that improve the quality of student assignments by teaching 
them about HPC defects (http://www.hpcbugbase.org),  

Research into reuse­in­the­large 
A lot of our project is getting all this infrastructure put together that we didn’t have 
[before] and doing this from the ground up. A productive thing would be not to have to 
do that.  - Scientist (interview). 
 
While this paper may have painted a gloomy picture about the prospects of large-scale 
reuse using frameworks, we believe these technologies have the potential to reduce 
programmer effort significantly. If a framework is built upon well-supported technologies 
such as MPI, it will have fewer adoption barriers than a new language.  
 
As software engineers, we can run case studies of projects that attempt to adopt such 
frameworks. By documenting how and why the adoptions succeed or fail, we can better 
understand the important context variables for successful framework reuse. 

A final word about scope 
It is important to note that the scope of observations and conclusions reached in this 
article are limited to the populations that we interacted with. In particular, we spoke 
mainly to computational scientists in either academia or government agencies who use 
computers to do simulations of physical phenomena. There are many other applications 
for high-performance computing (e.g. signal processing, cryptography, 3D rendering), 
and HPC is also used in industry (e.g. movie special effects, automobile manufacturers, 
oil companies). 
 
Scientific software systems are growing larger and more complex. We are finally starting 
to see interaction among the computational science and software engineering 
communities, but more dialogue is needed and more studies must be done. We have 
much to learn from each other. 
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