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Abstract

This paper presents a method to design and auto-tune a

new parallel 3-D FFT code using the non-blocking MPI

all-to-all operation. We achieve high performance by opti-

mizing computation-communication overlap. Our code per-

forms fully asynchronous communication without any sup-

port from special hardware. We also improve cache perfor-

mance through loop tiling. To cope with the complex trade-

off regarding our optimization techniques, we parameter-

ize our code and auto-tune the parameters efficiently in a

large parameter space. Experimental results from two sys-

tems confirm that our code achieves a speedup of up to

1.76× over the FFTW library.

Categories and Subject Descriptors D.1.3 [Programming

Techniques]: Concurrent Programming–Distributed Pro-

gramming, Parallel Programming

Keywords Performance; 3-D FFT; MPI; Overlap; Non-

Blocking; All-to-All; Auto-Tuning

1. Introduction

The Fast Fourier Transform (FFT) is widely used in many

fields of science and engineering. Uses include signal pro-

cessing, image processing, and differential equation solving.

More specifically, high-performance scientific applications

have recently used three-dimensional FFT (3-D FFT) to run

astrophysical N -body simulations [21] and blood flow sim-
ulations [25].

There have been many research efforts to achieve high

performance of 3-D FFT in distributed-memory parallel sys-

tems. Most of the approaches require all-to-all communi-
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cation among parallel computing processes. For example,

in the FFTW [2, 17] and P3DFFT [7, 24] libraries, each

process exchanges a 3-D array with other processes using

MPI_Alltoall, then performs local 1-D FFT computations

on a newly assigned array. Researchers tried to increase

the parallel 3-D FFT performance through computation-

communication overlap. One example is Bell et. al’s UPC

code [9], which divides an input array into multiple small

blocks and overlaps the computation on each block with the

communication for other blocks. In this way, they could hide

communication latency behind computation.

As the MPI library is widely and successfully used in

the parallel computing community, it is important to de-

sign a parallel 3-D FFT code based on MPI and achieve

portability as well as high performance. However, none

of the prior overlap approaches effectively used the non-

blocking MPI_Ialltoall operation described in the MPI-

3.0 standard [16]. Kandalla et. al [22] implemented their own

MPI_Ialltoall and used it to overlap computation and

communication between multiple independent input arrays.

Kandalla et. al’s approach is not effective in many scientific

applications because scientific simulations [21, 25] normally

perform successive 3-D FFT operations on a single array.

Hoefler et. al [18] also followed the MPI-3.0 standard, and

successfully overlapped computation and communication on

a single 3-D FFT operation. However, Hoefler et. al’s imple-

mentation does not optimize computation-communication

overlap.

In this paper, we describe a new parallel 3-D FFT code

with MPI_Ialltoall that overlaps computation and com-

munication to achieve high performance. Our design ap-

proach is similar to prior work by Bell et. al [9] and Hoe-

fler et. al [18]. We divide an input array into multiple

small blocks to overlap computation on one block with

communication on other blocks. However, there are sev-

eral unique characteristics of our design. First, we optimize

computation-communication overlap. We hide communica-

tion behind as much computation as possible. Second, we

design a portable code. We use MPI_Test for fully asyn-

chronous communication [19] rather than rely on special



hardware support or separate threads. Third, we also op-

timize local computation. We improve cache performance

through loop tiling. Last, we parameterize our parallel 3-

D FFT code. We can adjust the parameters and potentially

cope with the complex trade-off regarding our optimization

techniques.

To achieve the best performance of 3-D FFT, we utilize

auto-tuning. Our new parallel 3-D FFT code contains many

tunable parameters that can affect the performance. It is not

feasible to hand-tune those parameters because the parame-

ter space is very large (billions of possible configurations).

Also, the optimal configuration may vary widely depending

on system environment such as hardware, OS, and compiler.

Thus, it will not work to tune in one system and reuse the

optimal configuration for another. This paper also presents a

method to find a good parameter configuration efficiently in

the large parameter space. We integrate our parallel 3-D FFT

code with the Active Harmony auto-tuning framework [28].

Our new contribution for auto-tuning is to introduce several

techniques to help Active Harmony tune our FFT code fast

and effectively.

The rest of the paper is organized as follows. We first pro-

vide background information in Section 2. Sections 3 and 4

describe how we design and auto-tune our parallel 3-D FFT

code. Section 5 evaluates our approach with experiments.

We describe the related work in Section 6. Finally, we con-

clude and discuss future work in Section 7.

2. Background and Assumptions

This section first reviews FFT computation. We then intro-

duce a general method for parallel 3-D FFT. Last, we de-

scribe several basic assumptions underlying our design.

2.1 FFT

In mathematics, the Discrete Fourier Transform (DFT) con-

verts a finite list of samples of a function into the list of

coefficients of a finite combination of complex sinusoids.

In other words, DFT converts a sampled function from the

original time domain to the frequency domain. With an in-

put arrayX ofN complex numbers, a one-dimensional DFT
produces an output array Y of N complex numbers. When
ωN = e−

2π

N
i, Y [k] for k = 0, 1, ..., N − 1 is defined as

follows:

Y [k] =
N−1∑

j=0

X [j]ωN
jk (1)

The Fast Fourier Transform (FFT) refers to an efficient algo-

rithm to compute DFT. The Cooley-Tukey algorithm [10] is

the most common FFT algorithm which takes O(N log N)
for 1-D DFT onN complex numbers. FFTW [17] is a widely
used software library that computes DFT using various FFT

algorithms including the Cooley-Tukey. For the rest of this

paper, we will use the term FFT to refer to the DFT compu-

tation as well as the algorithm for DFT.
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Figure 1. 1-D Decomposition Method for Parallel 3-D FFT

The d-dimensional FFT can be computed simply as the
composition of a sequence of d sets of 1-D FFTs along each
dimension. For example, 3-D FFT forN3 complex numbers

can be computed by three sets of N2 1-D FFTs along each

dimension.

2.2 1-D Decomposition Method for Parallel 3-D FFT

Our design for a parallel 3-D FFT that will be described

in Section 3 basically follows the 1-D domain decom-

position method. The method is used by many parallel

3-D FFT codes [2, 9, 18]. We now describe the overall

procedure of the 1-D domain decomposition method by

defining seven steps in the procedure. Then in Section 3,

we will present how we improve the procedure through

computation-communication overlap.

Figure 1 shows the overall procedure of parallel 3-D FFT

with 1-D domain decomposition. We parallelize 3-D FFT

with p processes rank0, rank1, ..., rank(p−1), and Figure 1

shows an example of p = 2. An input 3-D array is divided
equally into p arrays along the x dimension and assigned
to each process. Then each process executes the following

steps on each divided 3-D array:

1. FFTz: Compute 1-D FFTs along the z dimension. (As-
sume that elements on the z dimension are adjacent in
memory.)

2. Transpose: Change the memory layout for the next step,

so that elements on the y dimension are adjacent in mem-
ory.

3. FFTy: Compute 1-D FFTs along the y dimension.

4. Pack: Pack the 3-D array data into a buffer in preparation

for all-to-all communication.

5. A2A: Perform blocking all-to-all communication among

all p processes.

6. Unpack: Unpack the received data into the 3-D array

with the new memory layout such that elements on the

x dimension are adjacent in memory. After this step, the
entire input 3-D array is divided into p arrays along the y
dimension.

7. FFTx: Compute 1-D FFTs along the x dimension.

An alternative way to compute a parallel 3-D FFT is

to use a 2-D domain decomposition. The 2-D domain de-

composition method decomposes an input array along two
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Figure 2. Our Approach for Parallel 3-D FFT

dimensions rather than one dimension. Accordingly, the

method is more scalable than 1-D domain decomposition

since we can use up to N2 parallel computing processes for

a 3-D FFT operation on N3 complex numbers. However,

2-D decomposition requires two steps of all-to-all commu-

nication, which involves a highly complex communication

pattern. So, depending on the system environment, 1-D de-

composition can be a better choice than 2-D decomposition.

In this paper, we focus on 1-D decomposition and compare

the performance with other approaches that use a 1-D de-

composition. We consider it as a future work to extend our

method with the 2-D decomposition method.

2.3 Assumptions

First, this paper focuses on the forward transform that trans-

forms X into Y in Equation 1. Our approach can be easily
applied to transform Y backward intoX .
Second, we only describe the complex-to-complex trans-

form that takes an input array of complex numbers and pro-

duces an output array of complex numbers. There are special

techniques [26] that can transform real numbers to complex

numbers faster than the complex-to-complex transform. Our

methods for computation-communication overlap is also ap-

plicable to the techniques for the real-to-complex transform.

Third, for simplicity, this paper only presents results for

the case of Nx mod p = 0 and Ny mod p = 0, where
an input 3-D array has Nx and Ny elements on the x and
y dimensions, respectively, and p is the number of parallel
processes. Note that our current code handles the general

case whetherNx and Ny are divisible by p or not.
Last, we focus on the in-place transform and want the

output to overwrite the input array. Our approach can be

applied directly for the out-of-place transform where the

output is written to a separate output array.

3. New Design of Parallel 3-D FFT

We improve the 1-D decomposition method by overlapping

computation and communication. Our overlap strategy is

similar to prior work by Bell et. al [9] and Hoefler et. al [18].

Each process divides an input array into small blocks and

overlaps computation on one block with communication for

other blocks. However, there are several unique contribu-

tions in our design. First, we overlap communication with

as much computation as possible. For example, while Hoe-

fler et. al’s implementation [18] only overlaps the FFTy and

Pack steps with A2A, we also make progress for A2A dur-

ing Unpack and FFTx. Second, we design a portable code

that requires no support of hardware or separate threads for

asynchronous communication progression [19]. Third, we

also optimize local computation by improving cache perfor-

mance through loop tiling [29]. Last, our code contains ten

tunable parameters so that we can cope with the complex

trade-off regarding our optimization techniques.

3.1 Overall Procedure

Figure 2 shows the overall procedure of our parallel 3-D

FFT. Algorithms 1-3 describe pseudocodes for each process.

Assume that an entire input 3-D array has Nx, Ny , and Nz

elements (complex numbers) on the x, y, and z dimensions,
respectively. So each of p processes is assigned a partial 3-D
array of Nx

p
× Ny × Nz elements. The memory layout for

the divided 3-D array in each process starts with x-y-z in
the row-major order. So the elements on the z dimension are
adjacent in memory.

Following the original 1-D decomposition method, Al-

gorithm 1 first computes 1-D FFTs along the z dimen-
sion (FFTz) and rearranges the memory layout to z-x-
y (Transpose). To achieve high performance for the FFTz
step, we utilize the highly optimized code for 1-D FFT from

the FFTW library. For the Transpose step, the FFTW guru

interface is used to execute a high-performance routine of

memory rearrangement.

We then continue to the next steps to fulfill computation-

communication overlap. Each process first divides the input

3-D array into multiple small blocks along the z dimension
as shown in Figure 2. We call each divided block a commu-

nication tile. We define a tile size parameter T to handle the

trade-off between the overlap efficacy and the messaging ef-

ficiency. With small T , we can overlap many computations
with communication but there would be a large overhead

of exchanging many small-sized messages. If T gets bigger,
there will be less overlap but higher efficiency for commu-

nication. Thus we should find a good value of T to achieve
high performance. Section 4 will discuss the method to auto-

tune T and other parameters of our 3-D FFT code. Each tile
contains T elements on the z dimension. So the number of
elements in each communication tile is equal to Nx

p
×Ny×T .

We also define a window size parameterW to specify the

degree of communication parallelism. It is also important to

adjust W properly to utilize as many concurrent communi-

cation connections as possible.

For each communication tile, Algorithm 1 repeats the

FFTy, Pack, A2A, Unpack, and FFTx steps. Note that, unlike

the original 1-D decomposition method, Algorithm 1 uses

the non-blocking MPI all-to-all operation (MPI_Ialltoall

and MPI_Wait) for the A2A step. Thus we can overlap com-

putation (FFTy, Pack, Unpack, and FFTx) on one commu-

nication tile with communication (A2A) for other tiles. Al-

gorithm 2 describes a pseudocode for the FFTy and Pack



Algorithm 1: Parallel 3-D FFT on Each Process

1 FFTz: 1-D FFTs along the z dimension

2 Transpose: Change the memory layout from x-y-z to

z-x-y

3 Divide an input array into k = ⌈Nz/T ⌉ tiles of size T

along the z dimension

4 for i← 0 to k + W − 1 do
5 if i < k then FFTy and Pack on tile i

6 if i ≥W then MPI Wait on tile (i−W )

7 if i < k then MPI Ialltoall on tile i

8 if i ≥W then Unpack and FFTx on tile (i−W )

Algorithm 2: FFTy and Pack on Tile i

1 Divide tile i into sub-tiles of size Px ×Ny × Pz along

the x and z dimensions

2 foreach sub-tile do

3 foreach 1-D array along the y dimension do
4 FFTy: Compute 1-D FFT

5 Call MPI Test onW previous tiles Fy times in

total during this algorithm for tile i

6 Pack: Pack the current sub-tile into a buffer

7 Call MPI Test onW previous tiles Fp times in

total during this algorithm for tile i

Algorithm 3: Unpack and FFTx on Tile i

1 Divide tile i into sub-tiles of size Nx × Uy × Uz along

the y and z dimensions

2 foreach sub-tile do

3 Unpack: Unpack the current sub-tile from a buffer

into the input array with the z-y-xmemory layout

4 Call MPI Test onW next tiles Fu times in total

during this algorithm for tile i

5 foreach 1-D array along the x dimension do
6 FFTx: Compute 1-D FFT

7 Call MPI Test onW next tiles Fx times in

total during this algorithm for tile i

steps on one communication tile, and Algorithm 3 describes

Unpack and FFTx. Details of Algorithms 2 and 3 will be

described in Section 3.4. After the Unpack step, the data in

each communication tile are rearranged in memory to the

z-y-x order, so that we can execute the FFTx step on 1-D ar-
rays along the x dimension. Like the FFTz step, we rely on
FFTW’s optimized code of 1-D FFT for the FFTy and FFTx

steps.

3.2 Computation-Communication Overlap

Figure 3 shows how Algorithm 1 overlaps computation and

communication between tiles over time.W is set to be two

as an example in the figure. The long dashed arrow repre-

sents a single control flow of each process during the for

loop in Algorithm 1. Note that there are at mostW tiles with
active communication being executed. While the process is

working on tile i for the FFTy and Pack steps, the all-to-
all communication (A2A) for two previous tiles (i− 2) and
(i−1) takes place in the background.Also, when the process
is working on tile i for Unpack and FFTx, the communica-
tion for two next tiles (i + 1) and (i + 2) goes on in the
background. Likewise, during A2A on tile i, the previous
two tiles are computed for Unpack and FFTx, and the next

two tiles are computed for FFTy and Pack. A key character-

istic of our design is that we optimize the performance by

having all the computation steps (FFTy, Pack, Unpack and

FFTx) overlapped with communication (A2A).
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Figure 3. Computation-Communication Overlap between

Communication Tiles over Time

3.3 Asynchronous Message Progression

In order to optimize the computation-communication over-

lap, fully asynchronous communication [19] is required for

the A2A step. In other words, the non-blocking all-to-all

communication should make progress while computation

takes place. The first possible approach to ensure asyn-

chronousmessage progression is to offload protocol process-

ing to the communication hardware such as a programmable

network interface card. Alternatively, we could maintain a

thread on a separate CPU, so the thread can make progress

for the all-to-all communication in the background. A third

option is manual progression, which is to call MPI_Test

periodically during the computation and let the MPI library

make progress for the corresponding non-blocking all-to-all

operation. We choose the manual progression method due

to its greater portability. Accordingly, our code does not re-

quire any hardware support or separate threads for message

progression.

It is important to determine the proper frequency of

MPI_Test calls. Too high of frequency will incur unnec-

essary function call overhead, and too low of frequency will

limit the progress of the all-to-all communication. To cope

with the trade-off, we have four tunable parameters to adjust

the frequency of MPI_Test calls. Fy defines the number of



MPI_Test calls during FFTy for one communication tile.

Fp is the frequency parameter during the Pack step for one

communication tile. Likewise, Fu is for Unpack, and Fx is

for FFTx.

3.4 Loop Tiling for Pack and Unpack

Algorithm 2 describes the FFTy and Pack steps on each

communication tile. To optimize the FFTy and Pack steps

with respect to cache reuse, we tile the loop inside each

communication tile. As shown in the left side of Figure 4,

each communication tile is divided again into sub-tiles with

Px elements on the x dimension andPz on the z dimension.
So each sub-tile contains Px ×Ny × Pz elements. Iterating

over each sub-tile, we execute a 1-D FFT computation along

the y dimension, then pack the result into a communication
buffer. In this way, we can increase cache hit rate during

Pack by reading the sub-tile information from the cache after

FFTy. Note that, as described in Section 3.3, Algorithm 2

calls MPI_Test (Fy + Fp) times for asynchronous message
progression.

Similarly to FFTy and Pack, we optimize Unpack and

FFTx by using the loop tiling technique shown in Algo-

rithm 3. Each communication tile is divided into sub-tiles

along the y and z dimensions as shown in the right side of
Figure 4. The size of each sub-tile is determined by two pa-

rameters Uy and Uz . Thus, we can increase cache hits dur-

ing FFTx by reading the sub-tile information from the cache

after Unpack. Algorithm 3 also calls MPI_Test (Fu + Fx)
times for asynchronous message progression.
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Figure 4. Loop Tiling for Improving Cache Performance

3.5 Improvement for the Nx = Ny Case

As described in Section 3.1, the Transpose step changes the

memory layout from x-y-z to z-x-y in preparation for FFTy.
For the special case of an input array with Nx = Ny , we

can improve the performance of Transpose by producing

the new memory layout of x-z-y instead of z-x-y. The x-
z-y rearrangement should be faster than the original z-x-y
rearrangement as the former is simpler and has better cache

reuse than the latter. Nonetheless, we cannot use the fast x-
z-y rearrangement when Nx 6= Ny because we use an in-

place 3-D FFT and want the output to overwrite the input

array. Suppose that Transpose produces the x-z-y layout
for an input array with Nx 6= Ny in Figure 2. Then it is

impossible to match the memory area of a communication

tile before A2A with the memory area after A2A because

we divide the input array into communication tiles along the

z dimension. On the other hand, for a special input with
Nx = Ny , we can have the same memory area for A2A

source and destination data in each communication tile, by

generating the y-z-x layout (as opposed to z-y-x) after A2A
and Unpack. Thus, for the case of Nx = Ny , Transpose

rearranges the memory layout from x-y-z to x-z-y, so that
we can improve the overall 3-D FFT performance.

4. Auto-Tuning Method

This section describes how we achieve high performance

of parallel 3-D FFT by utilizing auto-tuning techniques.

Our parallel 3-D FFT code contains ten parameters as de-

scribed in Section 3. Table 1 summarizes these parameters.

To the best of our knowledge, our work is the first that auto-

tunes a complex parameter space to optimize computation-

communication overlap in parallel 3-D FFT. We first de-

scribe how we optimize the code sections that are performed

by FFTW. We then justify why we should auto-tune the ten

parameters in Table 1. We also introduce an auto-tuning soft-

ware framework that we use to tune our code, and describe

the general tuning procedure. Last, we present our main

contribution for auto-tuning.We describe several novel tech-

niques to auto-tune the 3-D FFT code fast and effectively.

4.1 Tuning 1-D FFTs and Transpose

As described in Section 3.1, we rely on the FFTW library

for all 1-D FFT computations and the Transpose step. Be-

fore we auto-tune the ten parameters in Table 1, we first op-

timize the FFTW code performance through the auto-tuning

feature of FFTW. We choose to use the FFTW_PATIENT op-

tion for FFTW tuning among three options. Since we want

to achieve the best performance of parallel 3-D FFT, we

do not use the FFTW_MEASURE option. FFTW_MEASURE tunes

the FFTW library slightly less than FFTW_PATIENT. We do

not run FFTW_EXHAUSTIVE because it takes too much time

to auto-tune the FFTW library. With a few empirical tests,

we found the code tuned with FFTW_PATIENT had the simi-

lar performance to FFTW_EXHAUSTIVE. Further details about

the auto-tuning feature of FFTW can be found in [2, 17].

4.2 Why Should We Auto-Tune the Ten Parameters?

After the FFTW tuning is finished, we continue to auto-tune

the parameters defined by our parallel 3-D FFT code. Fig-

ure 5 gives evidence that the ten parameters in Table 1 re-

ally affect the code’s performance, so it is necessary to tune

the parameters to achieve the high performance. To gauge

the impact of those parameters, we measured the execution

time of our 3-D FFT code for 200 random parameter con-

figurations using 16 processes and an array with 2563 ele-

ments. We exclude the FFTz and Transpose steps as those

steps have the fixed performance regardless of parameter

values. Figure 5 shows the cumulative distribution of the ex-

ecution time. The x-axis represents the execution time, and



Table 1. Ten Tunable Parameters of Our Parallel 3-D FFT Code
parameter meaning

T the number of elements on the z dimension in one communication tile (tile size)

W the maximum number of communication tiles involved in concurrent all-to-all communication (window size)

Px the number of elements on the x dimension in one sub-tile during Pack

Pz the number of elements on the z dimension in one sub-tile during Pack

Uy the number of elements on the y dimension in one sub-tile during Unpack

Uz the number of elements on the z dimension in one sub-tile during Unpack

Fy the number of MPI_Test calls during FFTy for one communication tile

Fp the number of MPI_Test calls during Pack for one communication tile

Fu the number of MPI_Test calls during Unpack for one communication tile

Fx the number of MPI_Test calls during FFTx for one communication tile

the y-axis shows the cumulative fraction of 200 parameter
configurations. The code performance widely varies around

from 0.16 to 0.48 second (nearly 3×) depending on parame-
ter configurations.

We also claim that since the parameter space is very large,

we need to auto-tune the parameters rather than adjusting

them manually. It is hard to define the size of the parame-

ter space by a single number because the range of possible

parameter values is dependent on various factors such as the

input array size, the number of processes, and other param-

eter values. So we can consider a conservative case where

each parameter only has ten possible values. In spite of the

conservative calculation, we have a large number (1010) of

possible parameter configurations. Since it is not feasible to

investigate all the configurations manually and exhaustively,

we must find a smart and fast way to auto-tune the parame-

ters and determine a good configuration.
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Figure 5. Cumulative Distribution of the 3-D FFT Execu-

tion Time for 200 Random Configurations (16 cores and

2563 elements)

4.3 Active Harmony: An Auto-Tuning Framework

Active Harmony (AH) [11, 28] is a general software frame-

work to auto-tune user-specified parameters for a tunable

code. Figure 6 shows the overall procedure of how AH inter-

acts with a tuning target (our parallel 3-D FFT code designed

in Section 3). The AH server searches efficiently through a

large parameter space and decides a parameter configuration

to be tested on the tuning target. The AH client receives a

parameter configuration from the server, executes the tuning

target with the received configuration, and reports the per-

formance back to the server. This procedure is repeated until

the search converges.

Although AH supports several different search strategies,

we use the Nelder-Mead (NM) method [23] to search for a

good parameter configuration as it is a commonly used op-

timization technique in many fields of science. NM uses the

concept of a simplex, which is a polytope of (d + 1) vertices
in d dimensions. For example, a simplex is a triangle in two
dimensions. The AH client measures the performance of the

tuning target at each point (or parameter configuration) on a

simplex. NM generates a new test point by extrapolating the

performance values measured at points on the simplex. Then

NM replaces one of the simplex points with the new point.

For example, for (d+1) simplex points, NM can sometimes
replace the worst simplex pointW with a new point R such
that R is reflected from W through the centroid of the re-

maining d points. The search procedure finishes when all
the points on a simplex are close to each other, and can be

considered to be converged to a single point. Further details

about NM are described in [23].
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Figure 6. Auto-Tuning Procedure

4.4 Techniques for Effective and Fast Auto-Tuning

We now introduce several techniques to auto-tune the ten pa-

rameters in Table 1 effectively and fast. First, we penalize an

infeasible configuration. The possible values of our param-

eters reside in a range that can be limited by other parame-

ters. For example, the tile size T must be ≥ 1 and ≤ Nz ,



and the sub-tile size Pz must be ≥ 1 and ≤ T . However, the
Nelder-Mead method of AH is originally designed to work

in a multi-dimensional orthotope (hyperrectangle) parame-

ter space. 1 So it is possible that the AH server provides a

test configuration that contains out-of-range values, for ex-

ample, Pz that is > T . To cope with an infeasible parameter
configuration,we modify the AH client in the followingway.

When the AH client receives an infeasible configuration, it

reports the worst performance value (infinity) immediately

back to the AH server without executing the tuning target

code. Then the AH server and the NM strategy will suggest

another configuration that might be in a feasible area in the

parameter space.

The second technique is to reuse the prior performance

data for fast tuning. NM was originally designed to opti-

mize a continuous function. To support the discrete integer

domain of parameters, the AH server determines the closest

integer point to a simplex point in a continuous domain. So

the AH server can sometimes provide the same configuration

even though it has been already tested before. To save tuning

time, we maintain the history of tested configurations and

utilize it when the AH client receives the previously tested

configuration again.

The third technique is also about improving the auto-

tuning speed. In the auto-tuning procedure, we can skip ex-

ecuting the code section that is independent of the ten pa-

rameters. Since the performance of the FFTz and Transpose

steps is fixed regardless of a parameter configuration, the AH

client does not execute FFTz and Transpose during the auto-

tuning procedure.

Fourth is search space reduction. Instead of searching a

whole set of all possible values of a parameter, we reduce

a search space to a log scale and consider power-of-two

values for testing. The minimum and maximum values are

additionally considered for testing whether the value is a

power of two or not. So, we can also take into account

the boundary values in the original parameter space after

reducing the search space. For example, when Nz = 24,
T can be 1, 2, 4, 8, 16, or 24. As an exception, the log-scale
reduction is not applied toW because there are few possible
values forW .
Finally, we carefully construct the initial simplex that the

NM uses. The initial simplex can affect the tuning time and

the quality of the tuning result. Thus it is important to guess

a good initial simplex so that NM can find the global min-

imum point in a short time without falling into local mini-

mum points. In this paper we determine an initial simplex

in the following way, and demonstrate its performance with

experiments in Section 5. We need to investigate further how

to determine a good initial simplex and leave it as an open

question. We construct an initial simplex by first defining a

1The developers of Active Harmony are currently implementing a con-

straint plugin that supports a non-hyperrectangle parameter space, but it

was not ready when this paper was written.

default point and determining the other ten points around

the default point. We define the default point as follows.

First, we set T = Nz/16 to guarantee some degree of
computation-communication overlap. W = 2 is set to ex-
ploit some level of communication parallelism. Assuming

that a cache size is equal to 256KB, we can fit 16K complex

number elements in a cache. Assuming we use the cache to

read/write a sub-tile for data-packing, we can have 8K com-

plex numbers as a sub-tile size for Algorithm 2. Thus, we

set Px = 8192/Ny and Pz = 8192/Ny/Px. Similarly, it is

set to be Uy = 8192/Nx and Uz = 8192/Nx/Uy. We set

Fy = Fp = Fu = Fz = p/2 where p is equal to the num-
ber of processes as MPI_Ialltoall requires more rounds

of point-to-point communication as p increases.

5. Evaluation

We first show how fast our auto-tuned 3-D FFT is compared

to two other approaches. Then we analyze where the im-

provement of our approach comes from. Last, we quantify

why it is necessary to use an auto-tuningmethod for our 3-D

FFT code.

5.1 Platforms and Comparison Models

We use two platforms for our experiments. The first plat-

form, which is named UMD-Cluster, is a 64-node Linux

cluster at the University of Maryland. Each node consists

of two Intel Xeon 2.66GHz (SSE) cores. Each core has a

512KB L2 cache. We used one core per node in our ex-

periments. A Myrinet 2000 interconnect is used to connect

nodes. For a non-blocking all-to-all operation on UMD-

Cluster, we use NBC_Ialltoallof the NBC library 1.1.1 [3,

20] on top of OpenMPI 1.4.1 [6]. The NBC library is de-

signed compatible to the MPI-3.0 standard. FFTW 3.3.2 is

used for 1-D FFT. We used mpicxx of OpenMPI 1.4.1 with

the -O2 option to compile all the libraries and codes.

The second platform, which is named Hopper, a Cray

XE6 machine at NERSC [5]. Each node contains two

twelve-coreAMDMagnyCours 2.1GHz processors (153,216

cores total in the machine). Each core has its own L1 and L2

caches, with 64KB and 512KB, respectively. We used four

cores per processor (eight cores per node) in our experi-

ments. Nodes are connected via a Cray Gemini Network that

forms a 3-D torus. For a non-blocking all-to-all operation

on Hopper, we use MPIX_Ialltoall of the Cray Message

Passing Toolkit 5.6.0 that is derived from the MPICH [4] im-

plementation. FFTW 3.3.0.1 is used for 1-D FFT. We used

the PGI C++ compiler with -fast option to compile all the

codes except the underlying libraries. The FFTW and MPI

libraries are already compiled and installed in the Hopper

system.

We compare three different methods for parallel 3-D FFT.

FFTW is the MPI-enabled FFTW library. We tune and op-

timize the parallel 3-D FFT computation of FFTW by using

the FFTW_PATIENT option. The second approach is NEW,



Table 2. Parallel 3-D FFT Time (seconds)
(a) UMD-Cluster

p N3 FFTW NEW TH

16 256
3 0.369 0.245 0.319

16 384
3 1.207 0.725 1.063

16 512
3 2.948 1.966 2.514

16 640
3 5.927 3.515 5.234

32 256
3 0.189 0.153 0.197

32 384
3 0.653 0.477 0.644

32 512
3 1.580 1.119 1.520

32 640
3 3.129 2.158 3.061

(b) Hopper

p N3 FFTW NEW TH

16 256
3 0.096 0.087 0.106

16 384
3 0.322 0.293 0.354

16 512
3 0.836 0.693 0.885

16 640
3 1.636 1.428 1.725

32 256
3 0.061 0.046 0.061

32 384
3 0.189 0.146 0.198

32 512
3 0.475 0.340 0.488

32 640
3 0.920 0.747 0.930

(c) Hopper (large scale)

p N3 FFTW NEW TH

128 1280
3 2.426 1.638 2.505

128 1536
3 4.722 3.092 4.573

128 1792
3 8.029 5.115 7.746

128 2048
3 11.269 7.079 12.994

256 1280
3 1.373 0.920 1.389

256 1536
3 2.574 1.650 2.452

256 1792
3 4.781 2.850 4.253

256 2048
3 6.467 3.679 6.850
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Figure 7. Parallel 3-D FFT Speedup over FFTW
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Figure 8. Performance Breakdown

which is our method described in Section 3. Since NEW re-

lies on the FFTW library for some computations, we auto-

tune those computations with the FFTW_PATIENT option.

The major part of NEW is auto-tuned by the Nelder-Mead

strategy of Active Harmony as described in Section 4. Last

is TH, which is Hoefler et. al’s parallel 3-D FFT kernel [18]

that also implements computation-communication overlap

with the MPI-3.0 standard. For fair comparison, we slightly

optimized the original code. We auto-tune 1-D FFT compu-

tations with the FFTW_PATIENT flag on. Also, we parame-

terize the code with three parameters of a communication

tile size, a window size, and a frequency of MPI_Test calls,

then auto-tune the three parameters with Active Harmony

similarly to NEW. Thus, TH is the combination of a prior

work for parallel 3-D FFT and our auto-tuning method de-

scribed in Section 4. TH shows the higher performance than

Hoefler et. al’s original code.

5.2 Parallel 3-D FFT Performance

5.2.1 UMD-Cluster

Table 2(a) shows the 3-D FFT execution time of the three

different approaches. p is the number of parallel computing
processes. N is the number of elements on each dimension
in a 3-D input array. So an input array containsN3 complex

numbers. To cope with the execution noise, we conducted

five runs of auto-tuning each with five runs of 3-D FFT, and

picked the best performance out of the 25 runs for each of the

three algorithm being compared. For all different settings of



p and N , NEW is faster than FFTW and TH. Figure 7(a)
shows the speedup of NEW and TH over FFTW. NEW

has speedup over FFTW of 1.23× to 1.68×. On the other
hand, TH, the other overlap approach, shows the maximum

speedup of 1.17× compared to FFTW, and there is even a
setting such that TH is worse than FFTW.

To better explain the effectiveness of NEW, we break

down the performance of NEW and TH for the p = 32
and N3 = 6403 configuration, and show the result in Fig-

ure 8(a). Two extra variants of FFT are examined. NEW-0

is a non-overlapped version of NEW where W and all the

frequency parameters are set to be zero with all the other pa-

rameters equal to NEW. Also, lines 6 and 7 in Algorithm 1

are replaced with MPI_Ialltoall and MPI_Wait on tile i.
Likewise, TH-0 is a non-overlapped version of TH. The all-

to-all communication time for this setting is around 1.6 sec-

onds as marked with Wait in NEW-0, and the “overlappable”

computation time (FFTy, Pack, Unpack, and FFTx) is 1.2

seconds. NEW reduces the Wait time down to 0.4 seconds,

which means NEW nearly achieves the perfect computation-

communication overlap. This high degree of overlap ex-

plains why NEW is faster than FFTW. Since FFTW does

not exploit non-blocking communication, the performance

should be similar to NEW-0. On the other hand, TH performs

a low degree of overlap and results in a long 1.3 seconds

for Wait. This is because TH does not overlap the Unpack

and FFTx steps with communications while NEW uses all

the computation steps for overlap as described in Section 3.

Also, we can see that NEW optimizes computation better

than TH. First, as NEW utilizes the highly-optimized matrix

transpose of FFTW, NEW shows a large improvement for

Transpose compared to TH in Figure 8(a). Second, the time

NEW spent for Pack and FFTx is shorter than that of TH,

which is the result of the loop tiling technique of NEW.

It is interesting that NEW shows better performance for

p = 16 than p = 32 in Figure 7(a). It is not easy to find the
exact reason for this because we measured the performance

as the speedup over FFTW, and we are not aware of the de-

tails of the FFTW behavior. However, assuming the NEW-0

approach should be close to FFTW, we can find a partial

reason. For the best overlap, the computation time should be

ideally equal to the communication time. We found that, on

UMD-Cluster, the computation-communication time is bal-

anced better at p = 16 than p = 32. The reason for the
worse computation-communication balance at p = 32 is the
high complexity of the all-to-all operation at high p. So, for
example, NEW-0 of Figure 7(a) shows the larger communi-

cation (Wait) time than the computation time (FFTy, Pack,

Unpack, and FFTx).

5.2.2 Hopper

We conducted the same experiment on Hopper as what we

did on UMD-Cluster. Table 2(b) shows the 3-D FFT exe-

cution time on Hopper. Figure 7(b) shows the speedup of

NEW and TH over FFTW. Figure 8(b) shows the perfor-

Table 3. Parameter Values Found via Auto-Tuning
(a) UMD-Cluster

p N3 T W Px Pz Uy Uz Fy Fp Fu Fx

16 256
3 32 3 8 2 16 4 32 8 8 16

16 384
3 16 2 16 1 16 2 16 16 8 16

16 512
3 64 3 16 2 16 2 32 16 32 32

16 640
3 32 3 16 1 16 2 16 16 16 16

32 256
3 64 3 8 8 8 4 64 8 16 64

32 384
3 32 2 12 2 8 2 32 8 8 16

32 512
3 32 2 16 4 16 4 64 8 8 16

32 640
3 32 2 8 1 8 1 16 16 16 16

(b) Hopper

p N3 T W Px Pz Uy Uz Fy Fp Fu Fx

16 256
3 32 3 16 2 8 2 16 16 16 32

16 384
3 32 3 24 1 24 2 16 16 16 16

16 512
3 64 3 32 1 16 2 64 64 64 64

16 640
3 64 3 16 2 16 2 64 32 64 32

32 256
3 64 2 8 4 8 4 64 16 16 64

32 384
3 64 3 12 2 8 2 128 32 64 128

32 512
3 128 3 16 2 8 4 128 64 32 64

32 640
3 64 3 16 2 16 2 64 64 64 64

(c) Hopper (large scale)

p N3 T W Px Pz Uy Uz Fy Fp Fu Fx

128 1280
3 256 4 10 2 8 2 512 128 256 512

128 1536
3 128 3 12 1 8 2 1024 128 128 1024

128 1792
3 128 4 14 1 8 2 256 128 128 512

128 2048
3 128 4 16 1 8 2 512 128 128 512

256 1280
3 256 4 5 4 2 8 1280 64 64 1024

256 1536
3 256 3 6 2 4 2 1024 128 256 1024

256 1792
3 256 3 7 2 4 2 512 128 256 1024

256 2048
3 512 3 8 2 4 2 2048 256 512 2048

mance breakdown for the setting of p = 32 andN3 = 6403.

Like on UMD-Cluster, NEW is faster than TH with bet-

ter optimized overlap and computation. But on Hopper,

the speedup of NEW over FFTW ranges from 1.10× to
1.40×, which is lower than the speedup on UMD-Cluster.
This low speedup on Hopper comes from the relatively

bad computation-communication time balance. For exam-

ple, NEW-0 in Figure 8(b) shows a lower ratio of the Wait

time than in Figure 8(a). This is because the Cray Gem-

ini Network of Hopper is faster than the Myrinet 2000 on

UMD-Cluster. Also, the intra-node communication between

multiple cores in the same node on Hopper should be faster

than the inter-node communication on UMD-Cluster. So the

worse computation-communication time balance on Hopper

limits the possibility of overlap and results in a relatively

low speedup over FFTW. It is interesting that NEW shows

worse performance for p = 16 than p = 32 in Figure 7(a).
The reason for this difference on Hopper is the same as

that on UMD-Cluster even though the result is opposite on

UMD-Cluster. Due to the high complexity of the all-to-all

operation, increasing p causes an increase in the ratio of the
communication time to the computation time. So, the com-



munication ratio at p = 16 is lower than that at p = 32.
Since the communication ratio is already low at p = 32
because of the fast communication on Hopper, the lower

communication ratio at p = 16 would results in a worse
computation-communication balance.

We did the similar experiments on Hopper for larger

scale settings with more cores and bigger input sizes. As

seen in Table 2(c), Figure 7(c), and Figure 8(c), the trend is

similar to the previous experiments on Hopper. We can see

our approach NEW is still faster than FFTW and TH. The

speedup of NEW over FFTW ranges from 1.48× to 1.76×.

5.3 Auto-Tuning

As described in Section 4, the performance of our 3-D FFT

widely varies depending on configurations. The varying per-

formance in a large parameter space justifies why we need

to auto-tune the 3-D FFT code.

5.3.1 Different Tuning Results on Different Systems

We found that the best parameter values in one system set-

ting differ from those in another setting. Table 3 contains

the auto-tuned parameter configurations of NEW that are

used to create Table 2. The auto-tuned parameter configu-

ration varies depending on system setting such as the under-

lying platform, input size, and the number of CPUs. The next

question is how good is an auto-tuning result of the Nelder-

Meadmethod, compared to random search. The tuning result

for the setting of p = 16 and N3 = 2563 on UMD-Cluster

ranks in the first percentile in the distribution of 200 ran-

dom configurations in Figure 5. Although the Nelder-Mead

method did not find the optimal configuration, its determin-

istic strategy works faster than the random search. For ex-

ample, the Nelder-Mead method found the first percentile

configuration after testing 35 configurations. However, the

probability to find the point within 35 random configurations

is only 1− (1 − 0.01)35 ≈ 30%.

5.3.2 Cross-Platform Test

We found that the tuning result from one platform does not

work well for another platform. We executed the 3-D FFT

code on UMD-Cluster with the tuning result from Hopper as

in Table 3(b). The performance of this cross-platform test is

namedCROSS in Figure 9(a). NEWmeans the performance

of the tuning result on UMD-Cluster, which should be the

same as NEW in Figure 7(a). For all the settings, NEW is

faster than CROSS. Specifically, NEW is around 10% faster

than CROSS for p = 32 and N3 = 5123 on UMD-Cluster.

Likewise, we have executed the 3-D FFT code on Hopper

with the tuning result of the UMD-Cluster as in Table 3(a).

The difference between NEW and CROSS in Figure 9(b) is

more significant than that in Figure 9(a). NEW is around

20% faster than CROSS on Hopper when p = 32 and
N3 = 5123. The best configuration for the UMD-Cluster is

not the best on Hopper, and vice versa. Thus, it is necessary
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Figure 9. Cross-Platform Test

to auto-tune our 3-D FFT code for each different platform to

achieve the best of its performance.

5.3.3 Auto-Tuning Time

Table 4 contains the time spent for auto-tuning to achieve

the performance in Table 2. Although we focus on the 3-D

FFT performance, it is not desirable to spend unacceptably

long time on auto-tuning. NEW shows a comparable tuning

speed to FFTW as NEW finds a good configuration faster for

most of the cases. It takes less time for Active Harmony to

tune TH than NEW because TH only has three parameters

while NEW has ten. Fewer dimensions mean a small search

space, and it is natural to find a good configuration quickly

in a small search space.

6. Related Work

This section introduces several studies related to parallel 3-D

FFT and describes how our approach is different from those

studies.

FFTW [17] is the most popular library for FFT compu-

tations, and its MPI-enabled version supports parallel 3-D

FFT. FFTW exploits no computation-communication over-

lap, which results in a relatively poor performance as shown

in Section 5. P3DFFT [24], Ayala et. al [8], Takahashi [27],

and Eleftheriou et. al [14] achieved high scalability with the

high-dimensional domain decomposition technique. How-

ever, they did not include any computation-communication

overlap. On the other hand, our approach increases the 3-



Table 4. Auto-Tuning Time (seconds)
(a) UMD-Cluster

p N3 FFTW NEW TH

16 256
3 22.569 16.443 5.732

16 384
3 60.859 27.178 13.279

16 512
3 87.568 123.993 30.916

16 640
3 202.134 197.916 71.724

32 256
3 14.388 11.385 3.768

32 384
3 44.795 28.489 7.834

32 512
3 67.426 45.308 25.124

32 640
3 174.081 73.263 52.897

(b) Hopper

p N3 FFTW NEW TH

16 256
3 11.413 9.091 2.221

16 384
3 37.786 17.342 17.984

16 512
3 69.912 43.718 27.020

16 640
3 249.358 87.573 22.857

32 256
3 6.614 6.467 1.382

32 384
3 23.317 155.975 10.425

32 512
3 41.969 165.527 6.666

32 640
3 188.474 38.279 15.027

(c) Hopper (large scale)

p N3 FFTW NEW TH

128 1280
3 461.240 140.986 34.474

128 1536
3 460.229 198.068 60.475

128 1792
3 484.678 335.273 83.986

128 2048
3 562.398 396.553 120.555

256 1280
3 400.582 80.085 17.172

256 1536
3 401.474 109.250 34.568

256 1792
3 414.020 144.743 46.684

256 2048
3 465.411 224.744 75.616

D FFT performance through computation-communication

overlap.

Kandalla et. al [22] overlap the computation on one in-

put array with the communication for other input arrays.

This “inter-array” overlap is useful when there are many

independent input arrays for 3-D FFT. However, scientific

simulations [21, 25] normally need successive 3-D FFT

computations over time on a single input array. In this

case, our “intra-array” method is effective as we optimize

computation-communication overlap inside each 3-D FFT

operation. Also, Kandalla et. al’s approach requires hard-

ware support for asynchronous communication while our

approach does not. 2DECOMP&FFT [1] follows Kandalla

et. al’s overlap method, so it naturally has the limitation of

the inter-array overlap. Also, 2DECOMP&FFT is not op-

timized for asynchronous communication as they do not

auto-tune the frequency of MPI_Test calls unlike our ap-

proach. Bell et. al [9] overlap computation and communi-

cation on a single input array. However, unlike our portable

MPI-based approach, their code is written in UPC and re-

quires hardware support for asynchronous communication.

Also, the overlap may not be optimized because they use a

fixed communication tile size. Fang et. al [15] lack porta-

bility as they use a specialized API for communication with

special hardware support. Also, there is no auto-tuning of

overlap-related parameters. Doi et. al [12] utilize multiple

threads in a shared-memory parallel environment, and over-

lap computation and communication between different com-

puting cores. On the other hand, we overlap the computation

of one core with the communication of the same core. Hoe-

fler et. al’s approach [18] is the closest to our work, but it

does not maximize computation-communication overlap, as

shown with TH in Section 5.

Dotsenko et. al [13] auto-tuned the 3-D FFT computa-

tions on top of special GPU processors while our approach

is more generalized based on MPI and CPU and focuses on

computation-communication overlap.

7. Conclusions and Future Work

This paper has presented a novel method to optimize par-

allel 3-D FFT for computation-communication overlap. We

first designed a portable parallel 3-D FFT code that uses the

non-blocking MPI all-to-all operation and requires no hard-

ware support for asynchronous communication.We then de-

scribed a method to auto-tune the parameters of our 3-D FFT

code in a large parameter space and optimize computation-

communication overlap. With extensive experiments on two

systems, we showed that our approach for parallel 3-D FFT

maximized computation-communication overlap and per-

formed faster than two existing approaches.

We are currently extending this work in several ways.

First, we are improving the auto-tuning method. The qual-

ity and speed of the Nelder-Mead heuristic is dependent

on how an initial simplex is defined. Although our defini-

tion of the initial simplex was successful, it is worth inves-

tigating if there exist other more effective initial simplex

construction techniques. Also, we plan to try optimization

strategies other than Nelder-Mead. Second, we intend to ap-

ply our overlap method to the 2-D domain decomposition

technique. If successful, we could achieve high scalability

with many computing cores as well as the high performance

with the maximized computation-communication overlap.

Finally, we plan to overlap additional computation and com-

munication between multiple independent input arrays. The

communication time can dominate the 3-D FFT performance

at large scale where ran on many cores. So it would be help-

ful to overlap more communication time with computation.

We are planning to find a method to achieve both intra-array

and inter-array computation-communication overlap.
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