
Data Centric Cache Measurement on the Intel Itanium 2 Processor

Bryan R. Buck1

Platform Logic
3060 Route 97

Glenwood, MD 21738
buck@cs.umd.edu

Jeffrey K. Hollingsworth

Computer Science Department
University of Maryland

College Park, MD 20742
hollings@cs.umd.edu

Abstract
Processor speed continues to increase faster than the
speed of access to main memory, making effective use of
memory caches more important. Information about an
application’s interaction with the cache is therefore criti-
cal to performance tuning. To be most useful, tools that
measure this information should relate it to the source
code level data structures in an application. We describe
how to gather such information by using hardware per-
formance counters to sample cache miss addresses, and
present a new tool named Cache Scope that does this us-
ing the Intel Itanium 2 performance monitors. We present
experimental results concerning Cache Scope’s accuracy
and perturbation of cache behavior. We also describe a
case study of using Cache Scope to tune two applications,
achieving 24% and 19% reductions in running time.

1 Introduction
Increases in processor speed continue to outpace in-

creases in the speed of access to main memory. Because
of this, it is becoming ever more important that applica-
tions make effective use of memory caches. Information
about an application’s interaction with the cache is there-
fore crucial to tuning its performance. This information
can be gathered using a variety of instrumentation tech-
niques that can be broadly categorized as software tech-
niques and techniques that use hardware performance
monitoring support.

All-software approaches are more flexible. For in-
stance, a simulator can be made to provide almost any
kind of information desired, depending only on the level
of detail and fidelity of the simulation. However, simula-
tion can be slow, often prohibitively so. Hardware per-
formance monitors allow data to be gathered with much
lower overhead, with the tradeoff that the types of data
that can be collected are limited to those the system’s
designers decided to support.

To be most useful to a programmer in manually tun-
ing an application, information about cache behavior
should be presented in a way that relates it to program

1 The work described in this paper was performed while Bryan
R. Buck was a student at the University of Maryland.

data structures at the source code level. We refer to this as
data centric cache information.

Relating cache information to data structures re-
quires not only counting cache-related events, but also
determining the areas of memory that are associated with
these events. In the past, this has been difficult to accom-
plish using hardware monitors, due to limited support for
gathering such data. As an example, processors that in-
clude support for counting cache misses have often not
provided any way to determine the addresses that were
being accessed to cause them.

The situation is now changing. Several recent proc-
essors include increased support for performance monitor-
ing. Many processors have for some time included ways
to count cache misses, and to trigger an interrupt when a
given number of events (such as cache misses) occur.
Some recent processors provide the ability to determine
the address that was accessed to cause a particular cache
miss; by triggering an interrupt periodically on a cache
miss and reading this information, a tool can sample
cache miss addresses. One such processor is the Intel Ita-
nium 2 [3]. This paper presents a tool named Cache Scope
that runs under Linux on the Itanium 2 and uses these
hardware features to collect data centric cache informa-
tion.

2 Cache Miss Address Sampling
In order for a tool to relate cache misses to data

structures, it must be able to determine the addresses that
were accessed to cause those misses. However, running
instrumentation code to read and process these addresses
every time a cache miss occurs is likely to lead to an un-
acceptable slowdown in the application being measured.

One solution to this problem is to sample the cache
misses. This can be accomplished with the hardware
counters on some processors. For instance, many proces-
sors provide a way to count cache misses, and a way to
cause an interrupt when a hardware counter overflows. By
setting an initial value in the counter for cache misses, we
can receive an interrupt after a chosen number of misses
have occurred. We also need for the processor to identify
the address that was being accessed to cause the miss.
This is necessary because the interrupt that occurs when a

0-7695-2153-3/04 $20.00 (c)2004 IEEE

mailto:buck@cs.umd.edu
mailto:hollings@cs.umd.edu

cache miss counter overflows is typically not precise. On
modern processors with features such as multiple instruc-
tion issue and out-of-order execution, the point at which
the execution is interrupted could be a considerable dis-
tance from the instruction that actually caused the miss.
For instance, on the Itanium 2 the program counter could
be up to 48 dynamic instructions away in the instruction
stream from where the event occurred [3]. Other proces-
sor state, such as registers, may also have changed, mak-
ing it difficult or impossible to reconstruct the effective
address accessed by an instruction, even if the correct
instruction could be located.

A further argument for sampling is that on many
processors that provide the features described above, it is
not possible to obtain the address of every cache miss. For
instance, on the Intel Itanium 2 [3] and IBM POWER4
[28], a subset of instructions are selected to be followed
through the execution pipeline. Detailed information such
as cache miss addresses is saved only for these instruc-
tions. This is necessary in order to reduce the complexity
of the hardware counters.

Given the hardware support described above, it is
possible to maintain sampled statistics about the cache
misses taking place in an application’s data structures. We
associate a set of statistics with each variable or dynami-
cally allocated block of memory (or group of related
blocks). We then set the hardware counters to generate an
interrupt after some chosen number of cache misses. This
number should be varied throughout the run, in order to
prevent the sampling frequency from being inadvertently
synchronized to the access patterns of the application.
When the interrupt occurs, an interrupt handler reads the
address of the cache miss from the hardware, matches it
to the object in memory that contains it, and updates the
statistics for that object. After processing the current sam-
ple, the entire process is repeated.

The mapping of addresses to objects is performed
for program variables by using the debug information in
an executable. For dynamically allocated memory, we
instrument the memory allocation routines to maintain the
information needed to perform the mapping.

If the number of misses sampled for each object is
proportional to the total number, then at the end of a run
the statistics gathered will provide the programmer with
an accurate idea of which program objects are experienc-
ing the worst cache behavior.

3 Itanium 2 Performance Monitoring
The Itanium 2 is a VLIW processor with many fea-

tures for speculation and for making use of instruction
level parallelism [16, 27]. It is an implementation of the
IA-64 architecture, which was developed by Intel and
Hewlett-Packard.

The Itanium 2 features four 48-bit performance
counters that can be set to monitor over a hundred differ-

ent events. These counters can be configured so that they
can be read from user mode or so that they must be read
only from privilege level zero (kernel mode). The regis-
ters used to configure which events will be counted and to
perform other control functions are accessible only in
privilege level zero.

The Itanium 2 provides a performance monitor over-
flow interrupt and writable performance counters, which
can be used together to trigger an interrupt after a chosen
number of cache misses.

In the Itanium 2, data address support is provided by
the Event Address Registers (EARs). These registers pro-
vide address and other information about events taking
place in the cache and TLB. The Data EAR records in-
formation about L1 data cache misses, data TLB misses,
and ALAT misses. This information includes the address
that was accessed, the instruction that performed the ac-
cess, and the latency of the miss (defined as the number of
cycles the instruction was in flight). The Instruction EAR
records similar information about instruction cache and
TLB misses. The EAR registers can also be set to monitor
only events with a given latency or higher.

In the case of data cache load misses, the processor
must track load instructions as they pass through the pipe-
line in order to determine the information recorded by the
Data EAR. The processor can track only one instruction at
a time, so not all miss events can be recorded by the Data
EAR; while it is tracking one load, all others are ignored.
The processor randomizes which load to track, in order
not to skew sampling results.

On the Itanium 2, the L1 data cache handles only in-
teger loads, so all floating point loads go to the L2 cache
and may be sampled by the Data EAR. As a result, the
Data EAR mode that tracks L1 data cache load misses
also tracks floating point loads.

4 Linux Monitoring Interface
Access to the performance monitors under Linux is

through the “perfmon” kernel interface [4], which is part
of the standard Linux kernel for IA-64. A kernel interface
is needed because the performance monitors can only be
controlled from privilege level zero.

Perfmon virtualizes the counters on a per-process
basis. A program can choose between monitoring events
system-wide or for a single process. In order to accom-
plish this, perfmon must be called from the context-switch
code, and for this reason it was made a part of the kernel,
not an installable device driver.

Perfmon also provides support for randomizing the
interval between counter overflows. The user specifies a
mask that will be anded with a random number, with the
result being added to the number of events that will pass
before an overflow.

 2

5 Cache Scope
We implemented a tool named Cache Scope that

gathers data-centric cache information using the Itanium 2
performance counters. The tool consists of a program that
adds instrumentation code to the application that is to be
measured, and an analysis program that allows a user to
examine the data that was gathered. These are described
below.

5.1 Instrumentation for Sampling Cache
Misses

The part of Cache Scope that gathers the data-centric
cache information is a program named “cscope.” The
user gives as parameters to cscope the name of and argu-
ments for an application to be measured, and cscope starts
the application and uses the Dyninst API [8] run-time
instrumentation library to load code into it that will per-
form the cache measurement2. It also instruments mem-
ory allocation functions in order to track dynamic mem-
ory allocations.

Optionally, the user can link the application with a
library named libcscope, which contains functions that
can be called to interact with the instrumentation. For
instance, calls are provided to control what part of the
execution will be monitored. When an application that
uses these calls is run outside of cscope, the calls do noth-
ing.

The instrumentation code uses perfmon to set the
Itanium 2 hardware performance monitors to count L1
data cache read misses, L1 data cache reads, L2 cache
misses, and Data EAR events. The Data EAR is set to
record information about L1 data cache load misses and
floating point loads.

The overflow interrupt is enabled for the counter
counting Data EAR events (cache misses and floating
point loads). The number of Data EAR events between
interrupts is controllable by the user, by setting an envi-
ronment variable before executing the program to be
measured. By default, this value is randomly varied
throughout the run to ensure a representative sampling of
events. When the interrupt occurs, the instrumentation
code takes a sample by reading the address that was being
accessed, the address of the instruction that caused the
event, and its latency. It then updates the data structures
for the appropriate memory object (as described below)
and restarts the counters. When restarting the counters, if
randomization has been enabled, then the instrumentation

2 An earlier version of Cache Scope, which was used to collect
most of the data for this study, did not use the Dyninst API.
Instead, it required the user to link a measurement library with
the application and to manually insert calls into the application
to start and stop measurement. This version of the tool and the
Dyninst version use the same instrumentation code to sample
cache events.

code uses the randomization feature of perfmon to vary
the sampling interval.

For purposes of keeping statistics, memory objects
are grouped into equivalence classes, which we refer to as
stat buckets. Each global or static variable in the program
is assigned its own stat bucket. When a block of memory
is dynamically allocated, a bucket name is either auto-
matically generated or is supplied by the user, as de-
scribed below; this name identifies the bucket to which
the block is assigned. Different blocks may have the same
bucket name, so that multiple blocks are assigned to a
single bucket. This is useful when a group of blocks are
part of the same data structure, as in a tree or linked list.
Automatically assigned names are generated based on the
names of the top three functions on the call stack above
the memory allocation function that allocated the object.
Explicit bucket names are assigned by the user, by replac-
ing the call to an allocation function with a call to a rou-
tine in Cache Scope’s libcscope library that takes an extra
parameter, which is the bucket name to assign to the
block.

Th
Figure 1
cache e
loads) a
formatio
events o
plement
concern
try for e
for this
conserv
ers to pa
This is
large nu
function
a uniqu
with eac
using a

 3

Stat Bucket for array1

Cache Misses
func1()

misses: 1,863
latency: 60,820

func2()
misses: 53

latency: 7,420

Total bytes allocated: 128,000
Number of objects: 2,000
Max object size: 64

Figure 1: Bucket Data Structure

e information stored in a bucket is illustrated in
. Most importantly, a bucket keeps a count of

vents (L1 data cache misses and floating point
nd of the latency associated with them. This in-
n is split up by the functions in which the cache
ccurred, adding code centric information to sup-
 the data centric information we are primarily
ed with. This data is kept in a vector, with an en-
ach function in which cache events have occurred
bucket. The vector data structure was chosen to

e memory, since the entries do not require point-
rents or children, as they would in a tree structure.
necessary because there are potentially a very
mber of combinations of memory objects and
s that may occur in a run. The vector is sorted by
e number that identifies the function associated
h entry, so the entry for a function can be found
binary search. While faster schemes are certainly

possible, the overhead of using this data structure has not
been a problem. In addition to the cache information, each
bucket also contains various statistics such as the number
of objects assigned to the bucket and their sizes.

5.2 Data Analysis Tool
When measurement has completed, Cache Scope

writes all the data it collected out to a file in a compact
format. This file can be read in by an analysis program
called cscope_view. Cscope_view is written in Java, and
so is portable to any system for which Java is available.

Figure 2 shows an example of cscope_view’s inter-
face, displaying cache events in the application mgrid.
The user can view tables of the objects or functions caus-
ing the most latency, and can combine the data and code
centric data by filtering by function or object. For instance,
by choosing a function from the list box on the left when
viewing by object, a user can see a table of the data struc-
tures experiencing the most latency in the chosen function.
Note that the tool presents information in terms of the
latency associated with sampled events, rather than sim-
ply counts of cache misses. For each object or function,
the tool shows the absolute number of cycles of latency,
the percentage of total latency, and the latency per event.
The absolute value for latency is based on multiplying the
sum of the sampled latencies by the sampling frequency.
Since not all instructions are tracked by the Data EAR (as
described in Section 3), this will be lower than the actual
value, but it is useful in comparing runs (for instance, of
an unoptimized versus an optimized version of an applica-
tion).

Figure 2: Cscope_view Interface

Cscope_view is also able to provide information
about the non-cache-related statistics that are kept by the
instrumentation code, such as the number of allocated
memory objects that belong to a given bucket, and the
size of those objects. This can be useful in tuning cache
performance, as will be seen in the examples in Sections
7.1 and 7.2.

6 Experiments
We ran a series of experiments in which we used

Cache Scope to measure the cache misses in a set of ap-
plications from the SPEC CPU2000 benchmark suite.

The applications used in the experiments were
wupwise, swim, mgrid, applu, gcc, mesa, art, mcf, equake,
crafty, ammp, parser, gap, and twolf. They were compiled
using gcc 3.3.3. We ran each application a number of
times while sampling cache misses at different rates, in
order to examine the effect of varying this parameter. The
rates given are averages; actual number of events between
samples was randomly varied throughout the run, using
the randomization feature of the perfmon kernel interface,
which was described in Section 4. For tests in which we
did not vary the sampling frequency, we chose 1 in 32K
events as our default rate. Since the hardware counters
cannot provide information about all cache events, this
study did not directly examine the accuracy of sampling
at the rates used. For information about accuracy, see the
authors’ paper from SC2000 [9], which describes results
gathered under a simulator that allowed a comparison of
sampled data with exact information.

We also ran tests in which we did not sample cache
misses, but used the hardware counters to gather various
overall statistics to be compared with the runs in which
sampling was performed. The only statistics gathered in
these runs were those that could be measured with almost
no overhead, by starting the counters at the beginning of
execution and reading their values at the end, with no
interrupts while the applications were running.

The results presented are averages over three runs of
each application. The following sections describe the data
obtained from these experiments.

6.1 Perturbation of Results
Figure 3 shows the increase in L2 cache misses seen

in each application we tested when sampling at the rates
shown in the legend. This increase is over the number of
cache misses observed when no sampling was performed.
Striped bars represent negative values with the absolute
value shown. Note that the scale of the y axis is logarith-
mic. We are concerned primarily with the L2 cache be-
cause most optimization will probably be for this level.
This is because of the fact that the L1 data cache does not
store floating point values, and the penalty for going to
the L2 cache is small, as low as five cycles for an integer
load and seven cycles for a floating point load [21]. These,
combined with the fact that the L1 cache is only 16KB
while the L2 is 256KB, make the L2 cache more signifi-
cant to performance. As an example of this, we saw in our
experiments variations in L1 cache misses between runs
that did not translate into significant variations in running
time.

The increase in L2 cache misses for most applica-
tions was relatively small except at the two highest sam-

 4

pling frequencies, and as will be discussed below, some
applications actually showed a decrease in cache misses
in the sampled runs.

When sampling 1 in 512K events, the highest in-
crease in misses was seen in gcc, which had an approxi-
mately 5.3% increase. One feature of this application that
differentiates it from most of the others is that it fre-
quently allocates and deallocates memory in the heap.
Therefore, we suspected that the instrumentation code that
maintains the map of dynamically allocated memory may
be the cause of the cache disruption. In order to test this
possibility, we reran gcc with the code that maintains the
dynamic memory map, but without doing any sampling.
These runs produced an average increase in L2 cache
misses of 6.9%, which was very close to and actually
slightly higher than the 5.3% we saw when sampling.
Therefore, we conclude that the increase in cache misses
is primarily due to the code for maintaining the map of
dynamically allocated memory. After gcc, the next high-
est increase in L2 misses was seen with crafty, with a
2.3% increase.

At a sampling frequency of 1 in 32K events, the
highest increases in cache misses are seen in gcc, with a
6.1% increase, crafty with 6.3%, and mesa, with 6.5%.

As we increase the sampling frequency, we see in-
creases in cache misses as high as 168%, seen when run-
ning crafty while sampling 1 in 128 cache misses. This
shows that increasing the sampling rate does not necessar-
ily lead to increased accuracy, due to the instrumentation
code significantly affecting cache behavior.

As noted above, some applications showed a small
decrease in cache misses when running with sampling as
compared to runs without. The largest of these was seen
in equake, which showed a decrease in L2 cache misses
of 5.3% when sampling 1 in 512K events. This is likely
due to the fact that the instrumentation code allocates
memory, which can affect the position of memory blocks

allocated by the application. It was observed by Jalby and
Lemuet [18] that for a set of applications they examined
running on the Itanium 2, factors such as the starting ad-
dresses of arrays had a significant effect on cache behav-
ior. In Section 7.1, we present data from equake and how
the data was used to perform optimizations; while we
were doing this work, we found equake to be particularly
sensitive to this phenomenon.

0.1

1

10

100

1000

am
mp

ap
plu art

cra
fty

eq
ua

ke ga
p

gc
c

mcf
mes

a
mgri

d
pa

rse
r

sw
im

tw
olf

wup
wise

%
 in

cr
ea

se
 in

 L
2

ca
ch

e
m

is
se

s Sample 1 in 512K
Sample 1 in 32K
Sample 1 in 2K
Sample 1 in 128

Figure 3: Increase in L2 Cache Misses

6.2 Instrumentation Overhead
Figure 4 shows the percent increase in running time

for each application when sampling at the frequencies
shown in the legend. This increase is over the running
time of the application with no sampling instrumentation.
The scale of the y axis is logarithmic, with striped bars
representing negative values with the absolute value
shown. The overhead measured includes all instrumenta-
tion, both for sampling cache miss addresses and for
tracking dynamic memory allocations.

For the two lowest sampling frequencies tested, the
overhead was acceptable for all applications. Looking at
the higher of these frequencies, sampling 1 in 32K events,
the overhead was less than 1% for ten out of the fourteen
applications tested. The remaining applications were
ammp and swim with overheads between 1 and 2%, gcc
with an overhead of approximately 2.3%, and equake with
an overhead of approximately 7.7%.

One reason for the higher overhead in equake ap-
pears to be the number of memory objects it allocates.
More memory objects lead to a larger data structure that
the instrumentation code must search through in order to
map an address to a stat bucket. Equake allocates
1,335,667 objects during its run, while the application
with the next highest number of allocations, twolf, allo-
cates 575,418. Eight of the thirteen applications allocate
approximately 1,000 or fewer objects.

 5

7 Case Studies
This section will examine two example applications

from the SPEC CPU2000 benchmarks, equake and twolf.
We used Cache Scope to analyze these applications and to
tune their performance by improving their utilization of
the cache. We will follow this analysis and optimization
step by step, to demonstrate how the tool allowed us to
quickly locate where the applications were losing per-
formance due to poor cache utilization, and to determine
how data structures could be changed to enable better
cache use.

We were able to achieve significant gains in per-
formance for both applications, showing the usefulness of
the information provided by the tool. This was accom-
plished in a short time; one day for equake, and a few
days for twolf. The programmer optimizing the applica-
tions (one of the paper’s authors) had no prior familiarity
with the source code of either application, and relied en-
tirely on the cache tool to determine what data structures
and code to focus on for tuning. Furthermore, the optimi-
zations we will describe consisted almost entirely of
changes to the data structures in the applications, with few
changes to the code.

7.1 Equake
We will first examine equake. This is an application

that simulates seismic wave propagation in large valleys,
and was written by David R. O'Hallaron and Loukas F.
Kallivokas [6, 15]. It takes as input a description of a val-
ley and seismic event, and computes a history of the
ground motion. It performs the computations on an un-
structured mesh using a finite element method.

We ran this application with Cache Scope to meas-
ure its cache behavior. The first interesting piece of in-
formation this provided was that the hit ratio of loads in
the L1 data cache is only about 64% (this is the ratio of

L1 data cache hits to loads that are eligible to be cached in
the L1 data cache). This low hit ratio suggests that cache
behavior could be a performance problem in this applica-
tion, although it is important to remember that on Itanium
2 the L1 cache is not used for floating point loads.

Another piece of information that the tool can pro-
vide is the average latency of a cache miss (or floating
point load). For equake, this is 21.3 cycles. This is high
relative to most of the other applications tested. Average
latency ranged from 6.5 cycles for mgrid to 73.2 cycles
for mcf; however, only three of the applications tested had
average latencies greater than equake’s. This is another
indication that the application may be losing performance
due to poor cache utilization.

Next we will look at which data structures in the ap-
plication are causing the most latency. As noted in Sec-
tion 5.2, Cache Scope returns information in terms of la-
tency rather than the number of cache misses. It is impor-
tant to note that the latency does not indicate the number
of cycles the processor is stalled waiting for a load. The
Itanium 2 performance monitor defines the latency of a
load instruction as the number of cycles the instruction is
in flight. Multiple loads may be outstanding at any given
time, and instruction level parallelism may allow the
processor to continue executing other instructions while
waiting for data.

Table 1 shows the stat buckets in the application that
cause the most latency, sorted by latency. As described in
Section 5.1, a stat bucket represents a data structure in
memory. It can be a global or static variable, a block of
dynamically allocated memory, or a number of related
blocks of dynamically allocated memory. For this run, we
allowed the tool to automatically group dynamically allo-
cated memory into stat buckets. When this option is se-
lected, Cache Scope will generate a stat bucket name for
each allocated block of memory based on the names of
the last three functions on the call stack above the actual
memory allocation function. Blocks that have the same

0.1

1

10

100

am
mp

ap
plu art

cra
fty

eq
ua

ke ga
p

gc
c

mcf
mes

a
mgri

d
pa

rse
r

sw
im

tw
olf

wup
wisepe

rc
en

t i
nc

re
as

e
in

 ru
nn

in
g

tim
e Sample 1 in 512K Sample 1 in 32K Sample 1 in 2K Sample 1 in 128

Figure 4: Instrumentation Overhead

 6

stat bucket name are grouped together. In this example,
there are two automatically named buckets, mem_init-
main and readpackafile-main.

Latency

 Stat Bucket Cycles
(billions) % Per

Event
mem_init-main 97.18 95.6% 24.0
Exc 2.10 2.1% 5.4
<stack> 1.12 1.1% 5.0

readpackfile-main 0.68 0.7% 102.1

<unknown> 0.55 0.5% 5.0

Table 1: Data Structure Statistics for Equake

The “Cycles” column shows an estimate of the abso-
lute number of cycles of latency caused by objects as-
signed to the given stat bucket, in billions. This is com-
puted by multiplying the recorded cycles for each sample
by the sampling frequency. The “%” column shows the
percentage of all latency in the application that was
caused by the stat bucket. “Per Event” shows the average
latency for the cache events caused by the bucket.

The <stack> bucket represents the stack. The tool
includes an option to create a separate bucket for the stack
frame of each function, but this creates additional over-
head and was not used in this run. <unknown> represents
all memory that is not associated with a known object.
This includes such objects as memory used by runtime
libraries that do not have debug information. As men-
tioned above, the remaining two buckets are automatically
named, indicating that they were allocated from the func-
tions mem_init and readpackfile, both of which were
called from main.

The most important bucket is obviously mem_init-
main, which causes 95.6% of the latency in the applica-
tion. Looking at the function mem_init, we see that it uses
malloc to allocate a large number of arrays. It would be
useful to break this down further, by the individual arrays
or groups of related arrays. As described in Section 5.1,

the user can explicitly name a bucket by providing a
string name to a special allocation function. We did this
for the memory allocation calls in mem_init.

Table 2 shows the results of re-running the tool with
explicitly named buckets. The buckets with names begin-
ning with “heap_” represent arrays or groups of arrays
that were dynamically allocated with explicit bucket
names. Those shown are all allocated by the function
mem_init. Most of these are parts of a set of two- and
three-dimensional matrices, where each matrix is made up
of a group of independently allocated blocks of memory.
The reason they are allocated in this way is to allow their
sizes to be determined at runtime, while still making them
easy to use in C. An example of this is the array “disp,”
which is declared as “double ***disp.” The elements of
disp are then allocated as in the abbreviated code from
equake shown in Figure 5.

Latency

Stat Bucket Cycles
(billions) % Per

Event
heap_K_2 23.67 35.4% 118.5
heap_disp_3 18.41 27.5% 10.7
heap_K_3 7.49 11.2% 5.4
heap_disp_2 3.47 5.2% 22.8
Exc 2.13 3.2% 5.5
heap_M_2 1.53 2.3% 15.2
heap_C_2 1.49 2.2% 14.7
<stack> 1.12 1.7% 5.0
heap_M_1 0.95 1.4% 23.9
heap_K_1 0.93 1.4% 80.0

Table 2: Data Structure Statistics in Equake

The advantage of this is that the matrix can be ac-
cessed using the syntax disp[i][j][k]. The only way to use
this syntax without the multiple indirections is to declare
the size statically.

The numbers at the end of the names in Table 2
show which matrix dimension each stat bucket is associ-
ated with. For the first two dimensions, these are arrays of

 double ***disp;

 /* Displacement array disp[3][ARCHnodes][3] */

 disp = (double ***) malloc(3 * sizeof(double **));

for (i = 0; i < 3; i++) {
disp[i] =
 (double **) malloc(ARCHnodes * sizeof(double *));

for (j = 0; j < ARCHnodes; j++) {

disp[i][j] =
 (double *) malloc(3 * sizeof(double));

}
}

Figure 5: Memory Allocation in Equake

 7

pointers to the arrays that make up the next dimension.
For the third dimension, the arrays contain the actual data.
The second dimension of K, heap_K_2, causes 35.4% of
the total latency. The third dimension of the arrays disp
and K, heap_disp_3 and heap_K_3, together cause ap-
proximately 38.7% of the total latency. Using the code
features of our tool shows that the vast majority of these
misses take place in the function smvp. Nearly 100% of
the latency when accessing heap_K_2, 69.6% percent
when accessing heap_disp_3, and 99.8% when accessing
heap_K_3 take place in this function. Smvp computes a
matrix vector product, and contains a loop that iterates
over the matrices.

One potential problem here is that the size of the in-
dividual arrays that make up these buckets is very small.
Heap_K_2 contains arrays of three pointers, while
heap_K_3 and heap_disp_3 contain arrays of three dou-
bles. Therefore, each of these arrays is only 24 bytes long.
This can easily be seen using the cscope_view tool, which
can show statistics about the sizes of the blocks of mem-
ory that make up each stat bucket. When malloc creates a
block of memory, it reserves some memory before and
after the block for its own internal data structures. Since
the L2/L3 data cache line size on the Itanium 2 is 128
bytes, we could pack 5 of the arrays that make up
heap_K_2, heap_K_3, and heap_disp_3 into a single
cache line, but this does not happen due to the overhead
of malloc. To improve this situation, we modified the
program to allocate one large contiguous array to hold all
the pointers or data for each dimension matrix, and then
set the pointer arrays to point into them. This modified
code is shown in Figure 6.

This change decreases L1 cache misses in the appli-
cation by 57%, L2 cache misses by 30%, and running
time by 10%. The results of re-running Cache Scope on

the new version of the application are shown in Table 3.

Latency
Stat Bucket Cycles

(billions) % Per
Event

heap_K_3 14.89 49.4% 22.5
heap_disp_3 7.43 24.7% 9.1
heap_K_2 1.32 4.4% 52.4
mem_init-main 1.17 3.9% 15.8
heap_disp_2 1.11 3.7% 35.8
Exc 1.01 3.4% 5.5
heap_C_2 0.64 2.1% 13.4
<stack> 0.53 1.8% 5.0

Table 3: Results for Optimized Equake

The absolute amount of estimated latency for
heap_K_2 is reduced by approximately 94%, and for
heap_disp_3 it is reduced by 40%. The latency for
heap_K_3 has almost doubled, but this is more than made
up for by the gains in the other two buckets. Note that this
optimization not only improves latency, but lowers the
required bandwidth to memory as well, since more of
each cache line fetched is useful data, rather than over-
head bytes used by malloc for its internal data structures.

The arrangement of K and disp each into two pointer
arrays (for example, heap_K_1 and heap_K_2) and a data
array (heap_K_3) continues to be a source of latency. The
heap_K_2 bucket is causing 4.4% of the latency in the
application, and heap_disp_2 is two places below it with
3.7%. These misses could easily be avoided by eliminat-
ing the need for those arrays entirely. If we are willing to
accept statically sized matrices, we could simply declare
disp and K as three-dimensional arrays.

Table 4 shows the results of making this change.
Note that the latency for K is significantly less than the

double ***disp;

double *disp_3;
double **disp_2;
double ***disp_1;

disp_3 = malloc(3 * ARCHnodes * 3 * sizeof(double));

disp_2 = malloc(ARCHnodes * 3 * sizeof(double *));

disp_1 = dctl_mallocn(3 * sizeof(double **));

disp = disp_1;

for (i = 0; i < 3; i++) {

disp[i] = &disp_2[i*ARCHnodes];

for (j = 0; j < ARCHnodes; j++) {
disp[i][j] = &disp_3[i*ARCHnodes*3 + j*3];
}

}

Figure 6: Modified Memory Allocation in Equake

 8

latency for heap_K_3, where the actual data for the array
was previously stored. This is probably because eliminat-
ing the pointers in heap_K_1 and heap_K_2 freed a large
amount of space in the L2 cache that could then be used
for the actual data. In addition, the compiler is more likely
to be able to prefetch data, since the location of the data is
computed rather than read from pointers. All of this is
also true for the other main array, disp.

Latency

Stat Bucket Cycles
(billions) % Per

Event
K 6.84 53.4% 21.8
disp 3.50 27.3% 8.9
Exc 0.37 2.9% 5.5
heap_M_2 0.31 2.4% 13.7
heap_C_2 0.30 2.3% 13.3
<stack> 0.27 2.1% 5.1
heap_C23_2 0.20 1.5% 14.7
heap_V23_2 0.15 1.2% 13.6
<unknown> 0.14 1.1% 5.2
heap_M23_2 0.13 1.0% 13.5

Table 4: Results for Second Optimization of Equake

Overall, this version of the application shows an
80% reduction in L1 cache misses, a 46% reduction in L2
cache misses, and a 24% reduction in running time over
the original, unoptimized application. This required
changing only the layout of data structures and basically
no change to the code of the application other than in the
initialization code.

7.2 Twolf
The second example program we will look at is

twolf. This is a placement and routing package for creat-
ing the lithography artwork for microchip manufacturing
[15, 26], which uses simulated annealing to arrive at a
result.

Using Cache Scope, we find that the L1 data cache
hit ratio of this application is about 74%, which is fairly
low, although not as low as our previous example. The
average latency is 21.9 cycles, slightly larger than equake.
These are an indication that poor cache utilization may be
a performance problem.

Table 5 shows the stat buckets causing the most la-
tency in the application. All of the stat buckets shown are
automatically named. The safe_malloc function that ap-
pears in the bucket names is used wherever twolf allo-
cates memory. It simply calls malloc and checks that the
return value is not NULL; therefore the functions we are
interested in are those that call safe_malloc. The majority
of cache misses were caused by memory allocated by a
small set of functions: readcell, initialize_rows, findcostf,
and parser. To get more useful information about specific
data structures in this application, we must manually

name the blocks of memory that are allocated by these
functions. Most of these blocks are allocated as space to
hold a particular C struct; the easiest and most useful way
to name them is after the name of the structure.

Latency

Stat Bucket Cycles
(billions) % Per

Event
Safe_malloc-readcell-main 193.33 62.0% 30.1
Safe_malloc-
initialize_rows-main 35.75 11.5% 14.9

Safe_malloc-parser-
readcell 33.25 10.7% 23.4

Safe_malloc-findcostf-
controlf 27.65 8.9% 21.0

<unknown> 7.40 2.4% 6.9

Table 5: Cache Misses in Twolf

Table 6 shows the results of re-running the tool, af-
ter altering memory allocation calls to provide a name for
the stat bucket with which the memory should be associ-
ated. We have again used the convention that the named
buckets begin with “heap_” to show that they are dynami-
cally allocated memory.

Latency

Stat Bucket Cycles
(billions) % Per

Event
heap_NBOX 137.55 42.9% 28.1
heap_rows_
element 44.42 13.8% 8.4

heap_DBOX 23.81 7.4% 22.0
heap_TEBOX 19.58 6.1% 26.7
heap_CBOX 16.64 5.2% 27.5
heap_TIBOX 14.30 4.5% 45.6
heap_BINBOX 13.71 4.3% 15.5
<unknown> 7.46 2.3% 7.0
heap_cell 6.32 2.0% 30.4
heap_netarray 3.33 1.0% 8.8

Table 6: Cache Misses in Twolf with Named Buckets

Structure Size Number Allocated
BINBOX 24 224,352
CBOX 48 2,724
DBOX 96 1,920
NBOX 48 16,255
TEBOX 40 17,893
TIBOX 16 2,724

Table 7: Structures in Twolf

At the top of the list is a cluster of blocks allocated
to hold C structs named NBOX, DBOX, TEBOX, CBOX,
TIBOX, and BINBOX. These are all small structures. The
cscope_view program can provide statistics about the size
of the objects in a stat bucket and how many of them were

 9

allocated by the application. Table 7 shows this informa-
tion for the structures causing the most latency.

Some of these structures are smaller than the Ita-
nium L1 data cache line size of 64 bytes, and all are
smaller than the L2/L3 cache line size of 128 bytes.
Therefore, more than one structure could be packed into
an L1 or L2 cache line, but this is probably not happening
due to the memory that malloc reserves for its own data
structures before and after an allocated block.

This problem cannot be solved as easily as it could
with equake, since these structures are not allocated all at
one time during program initialization. Instead, they are
allocated and freed individually at various times. Also,
they are not always traversed in a single order. One fea-
ture we can make use of, however, is that many of the
structures contain pointers to other structures. It is likely
that if structure A points to structure B, then B will be
accessed soon after A (because the program followed the
pointer).

The method we chose to optimize the placement of
the structures is similar to the cache-conscious memory
allocation described by Chilimbi et al. [11]. We wrote a
specialized memory allocator for the small structures used
by twolf. It has two main features intended to reduce the
cache problems revealed by Cache Scope. First, it can
place small structures directly next to each other in mem-
ory. Unlike most malloc implementations, it does not re-
serve memory before or after each block for its own use;
all overhead memory is located elsewhere. Second, it uses
information about which structures point to others. When
memory is allocated, the caller can specify a “hint,”
which is the address of a structure that either will point to
the one being allocated, or be pointed to by it. In the ma-
jority of places in the code where the small structures in
question are allocated, this information is readily avail-
able. The memory allocator tries to allocate the new struc-
ture in the same L1 data cache line as the “hint” address.
If this is not possible, it tries to allocate it in the same L2
cache line. If this also cannot be done, it simply tries to
find a location in memory that will not conflict in the
cache with the cache line containing the hint address. This
allocator is used for the structures shown in Table 7 that
are smaller than 64 bytes, as well as another similar struc-
ture, CHANGRDBOX. These structures were chosen for
this optimization because of their small size, the amount
of latency they cause, and the availability of hint ad-
dresses.

Note that if this strategy is successful in placing
structures that are used together in the same cache block,
it will not only improve latency but also lower the re-
quired bandwidth to memory, because we will again be
eliminating malloc overhead memory that would have
been fetched with the data.

Running the application with this memory allocator
results in a 57% decrease in L1 data cache misses, a 26%
decrease in L2 misses, and an 11% reduction in running

time. Table 8 shows the results of running the tool on this
version of the program. The total latency and latency per
event for most stat buckets is down significantly from the
unoptimized version. For example, for heap_NBOX, the
estimated latency is down approximately 50%, and the
latency per event is down from 28.1 cycles to only 13.8
cycles. The latency for heap_CBOX is up almost 30%,
but this is more than made up for by the decreases in other
data structures.

Latency

Stat Bucket Cycles
(billions) % Per

Event
heap_NBOX 67.93 38.0% 13.8
heap_CBOX 21.59 12.1% 60.3
heap_TEBOX 15.27 8.5% 23.8
heap_DBOX 11.93 6.7% 12.1
heap_tmp_rows_
element 8.07 4.5% 20.6

<unknown> 7.62 4.3% 7.1
heap_rows_element 6.03 3.4% 20.3
heap_BINBOX 5.13 2.9% 9.9
heap_cell 4.92 2.8% 23.7

Table 8: Cache Misses in Twolf with Specialized
Memory Allocator

Below the stat buckets for the structures we have
been discussing, the stat bucket that causes the next high-
est latency is heap_tmp_rows_element. The objects asso-
ciated with this stat bucket are allocated and used in the
same way as those in heap_rows_element, so we will look
at them both. These data structures are similar to the ones
we saw in equake, in that they implement a variably sized
two-dimensional array as an array of pointers to single-
dimensional arrays (the arrays of pointers are named
“tmp_rows” and “rows”). The arrays containing the actual
data hold a small number of elements of type char; the
statistics kept by Cache Scope show that these arrays are
18 bytes long when running on the problem size used for
our experiments (this can also easily be seen by examin-
ing the source code and input). Since several of these
would fit in a cache line, we could gain some spatial lo-
cality by allocating them as one large array, like we did
for the matrices in equake. We would then set the pointers
in tmp_rows and rows to point into this array.

Making this change reduces L1 data cache misses by
33%, L2 cache misses by 29%, and running time by 16%
versus the original version of the application. If we are
willing to accept a compiled-in limit for the largest prob-
lem size we can run the application on, we could also
simply make tmp_rows and rows into statically sized two-
dimensional arrays, eliminating the need for indirection.
This change gives us further slight improvements. L1 data
cache misses are reduced by 36%, L2 cache misses are
reduced by 35%, and running time is reduced by 19%
over the unoptimized version of the application.

 10

8 Related Work
Most modern processors include some kind of per-

formance monitoring counters on-chip. These typically
provide low-level information about resource utilization
such as cache hit and miss information, stalls, and integer
and floating point instructions executed. Examples in-
clude the MIPS R10000 [29], the Compaq Alpha family
[12], the UltraSPARC family [19], the Intel Pentium [2]
and Itanium [3, 16, 27] families. All of these can provide
cache miss information.

Compaq’s DCPI [5] runs on Alpha processors and
uses hardware counters and the ability to determine the
instruction that caused a counted event to provide per-
instruction event counts. On Alpha processors that use
out-of-order execution, this requires extra hardware sup-
port called ProfileMe. This provides the ability to sample
instructions. The processor periodically tags an instruc-
tion to be sampled, which causes it to save detailed in-
formation about its execution. Afterward, it generates an
interrupt, at which time an interrupt handler can read the
saved information.

Libraries are often used to simplify the use of hard-
ware monitors, and in some cases to provide an API that
is as similar as possible across processors. These include
PAPI [24] and PCL [7], both of which run on multiple
platforms. Perfmon [4] provides access to the Itanium
family performance counters on Linux. PMAPI [1] is a
library for using the POWER family performance count-
ers on AIX.

A number of tools have been written with the pri-
mary goal of measuring memory hierarchy effects. Mtool
[14] provides information about the amount of perform-
ance lost due to the memory hierarchy by computing an
ideal execution time for each basic block in an application
and comparing this with actual measurements.

MemSpy [23] is a tool for identifying memory sys-
tem bottlenecks. It provides both data- and code-oriented
information, and allows a user to view statistics related to
particular code and data object combinations. MemSpy
uses simulation to collect its data, allowing it to track de-
tailed information about the reasons for which cache
misses take place. For instance, a cache miss may be a
cold miss or due to an earlier replacement.

MemSpy has also been used with a sampling tech-
nique, as described in [22]. The authors modified Mem-
Spy to simulate only a set of evenly spaced strings of runs
from the full trace of memory references, and found that
this technique provided accuracy to within 0.3% of the
actual cache miss rate for the cache size and applications
they tested. This differs from the sampling performed by
our tool, which samples individual misses out of the com-
plete stream.

CPROF [20] is a cache profiling system somewhat
similar to MemSpy. It uses simulation to collect detailed
information about cache misses. It is able to precisely

classify misses as compulsory, capacity, or conflict
misses, and to identify the data structure and source code
line associated with each miss.

StormWatch [10] is another system that allows a
user to study memory system interaction. It is used for
visualizing memory system protocols under Tempest [25],
a library that provides software shared memory and mes-
sage passing. It allows for selectable user-defined proto-
cols, which can be application-specific. StormWatch runs
using a trace of protocol activity, which is easy to gener-
ate since the protocols are implemented in software. The
goal of StormWatch is to allow a user to select and tune a
memory system protocol to match the communication
patterns of an application.

SIGMA [13] is a system that uses software instru-
mentation to gather a trace of the memory references in an
application, and uses the trace as input to a simulator. The
user can also try different layouts of objects in memory by
providing instructions on how to transform the addresses
in the trace to reflect the new layout. The results of the
simulation can then be examined using a set of analysis
tools.

Itzkowitz et al. [17] describe a set of extensions to
the Sun ONE Studio compilers and performance tools that
use hardware counters to gather information about the
behavior of the memory system. These extensions can
show event counts on a per-instruction basis, and can also
present them in a data-centric way by showing aggregated
counts for structure types and elements. The Ultra-
SPARC-III processors used by this tool do not provide
information about the instruction and data addresses asso-
ciated with an event, so the reported values are a best
guess based on the instruction pointer when an interrupt
occurs.

9 Conclusions
In this paper, we have described Cache Scope, an

implementation of data centric cache measurement on the
Intel Itanium 2 processor. This tool samples cache miss
addresses using the Itanium 2’s performance monitoring
features, and uses this address information to keep statis-
tics about the cache behavior of the data structures in an
application. Cache Scope is unique in using the latency of
cache misses as its metric, rather than the number of
misses. This is made possible by the fact that the Itanium
2 hardware performance monitors can provide this infor-
mation. We found this to be extremely useful; the Ita-
nium 2 has three levels of cache, and therefore the num-
ber of L1 data cache misses alone does not necessarily
determine how a data structure’s cache behavior is affect-
ing performance.

We used Cache Scope to analyze two example ap-
plications, equake and twolf, and optimized them based
on the results. Especially in the case of twolf, we were
able to reduce the observed latency per event, due to op-

 11

timizing for multiple levels of cache. We were able to
achieve a 24% reduction in running time for equake, and
an almost 19% reduction in running time for twolf. This
was done in a short time (a few days), by a programmer
who was not previously familiar with the code of either
application. In both cases, the improvements were gained
mainly by changing data structures rather than code. This
demonstrates how Cache Scope allows a programmer to
quickly identify the source of lost performance due to
poor cache utilization. The optimizations used could not
easily have been performed by a compiler, showing the
value of a tool that provides this kind of feedback to a
programmer.

Cache Scope is available for download at
http://www.dyninst.org/cachescope.

Acknowledgments
This work was supported in part by DOE Grants

DE-FG02-93ER25176, DE-CFC02-01ER25489, and DE-
FG02-01ER25510.

References
1. AIX 5L Version 5.2 Performance Tools Guide and

Reference. IBM, IBM Order Number SC23-4859-01,
2003.

2. IA-32 Intel Architecture Software Developer's Man-
ual, Volume 1:Basic Architecture. Intel, Intel Order
Number 253665, 2004.

3. Intel Itanium 2 Processor Reference Manual for
Software Development and Optimization. Intel, Intel
Order Number 251110-002, 2003.

4. Perfmon project web site, HP, 2003.
 http://www.hpl.hp.com/research/linux/perfmon/
5. Anderson, J., Berc, L., Chrysos, G., Dean, J., Ghe-

mawat, S., Hicks, J., Leung, S.-T., Licktenberg, M.,
Vandevoorder, M., Walkdspurger, C.A. and Weihl,
W.E., Transparent, Low-Overhead Profiling on
Modern Processors. In Proceedings of the Workshop
on Profile and Feedback-Directed Compilation,
(Paris, France, 1998).

6. Bao, H., Bielak, J., Ghattas, O., Kallivokas, L.F.,
O'Hallaron, D.R., Schewchuk, J.R. and Xu, J. Large-
scale simulation of elastic wave propagation in het-
erogeneous media on parallel computers. Computer
Methods in Applied Mechanics and Engineering,
152 (1-2). 85-102.

7. Berrendorf, R., Ziegler, H. and Mohr, B. PCL - The
Performance Counter Library, Research Centre
Juelich GmbH, 2003.

 http://www.fz-juelich.de/zam/PCL/
8. Buck, B.R. and Hollingsworth, J.K. An API for

Runtime Code Patching. The International Journal
of High Performance Computing Applications, 14
(4). 317-329.

9. Buck, B.R. and Hollingsworth, J.K., Using Hard-
ware Performance Monitors to Isolate Memory Bot-
tlenecks. In Proceedings of SC2000, (Dallas, TX,
2000).

10. Chilimbi, T.M., Ball, T., Eick, S.G. and Larus, J.R.,
StormWatch: A Tool for Visualizing Memory Sys-
tem Protocols. In Proceedings of Supercomputing
'95, (San Diego, CA, 1995).

11. Chilimbi, T.M., Hill, M.D. and Larus, J.R., Cache-
Conscious Structure Layout. In Proceedings of the
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), (Atlanta,
GA, 1999), 1-12.

12. Compaq Computer Corporation Alpha Architecture
Handbook (Version 4), 1998.

13. De Rose, L., Ekanadham, K. and Hollingsworth,
J.K., SIGMA: A Simulator Infrastructure to Guide
Memory Analysis. In Proceedings of SC2002, (Bal-
timore, MD, 2002).

14. Goldberg, A.J. and Hennessy, J.L. MTOOL: An
Integrated System for Performance Debugging
Shared Memory Multiprocessor Applications. IEEE
Transactions on Parallel and Distributed Systems, 4
(1). 28-40.

15. Henning, J.L. SPEC CPU2000: Measuring CPU
Performane in the New Millenium. Computer, 33 (7).
28-35.

16. Huck, J., Morris, D., Ross, J., Knies, A., Mulder, H.
and Zahir, R. Introducing the IA-64 Architecture.
IEEE Micro, 20 (5). 12-23.

17. Itzkowitz, M., Wylie, B.J.N., Aoki, C. and Kosche,
N., Memory Profiling using Hardware Counters. In
Proceedings of SC2003, (Phoenix, AZ, 2003).

18. Jalby, W. and Lemuet, C., Exploring and Optimizing
Itanium2 Cache Performance for Scientific Comput-
ing. In Proceedings of the Second Workshop on Ex-
plicitly Parallel Instruction Computing Architec-
tures and Compiler Technology, (Istanbul, Turkey,
2002).

19. Lauterbach, G. and Horel, T. UltraSPARC-III: De-
signing Third Generation 64-Bit Performance. IEEE
Micro, 19 (3). 73-85.

20. Lebeck, A.R. and Wood, D.A. Cache Profiling and
the SPEC Benchmarks: A Case Study. IEEE Com-
puter, 27 (9). 15-26.

21. Lyon, T., Delano, E., McNairy, C. and Mulla, D.,
Data Cache Design Considerations for the Itanium 2
Processor. In Proceedings of the International Con-
ference on Computer Design, (Freiburg, Germany,
2002), 356-363.

22. Martonosi, M., Gupta, A. and Anderson, T., Effec-
tiveness of Trace Sampling for Performance Debug-
ging Tools. In Proceedings of the ACM SIGMET-
RICS Conference on Measurement and Modeling of
Computer Systems, (1993).

 12

http://www.dyninst.org/cachescope
http://www.hpl.hp.com/research/linux/perfmon/
http://www.fz-juelich.de/zam/PCL/

23. Martonosi, M., Gupta, A. and Anderson, T., Mem-
Spy: Analyzing Memory System Bottlenecks in
Programs. In Proceedings of the ACM SIGMETRICS
Conference on Measurement and Modeling of Com-
puter Systems, (Newport, Rhode Island, 1992), 1-12.

24. Mucci, P.J., Browne, S., Deane, C. and Ho, G.,
PAPI: A Portable Interface to Hardware Perform-
ance Counters. In Proceedings of the Department of
Defense HPCMP Users Group Conference, (Mon-
terey, CA, 1999).

25. Reinhardt, S.K., Larus, J.R. and Wood, D.A., Ty-
phoon and Tempest: User-Level Shared Memory. In
Proceedings of the ACM/IEEE International Sympo-
sium on Computer Architecture, (1994).

26. Sechen, C. and Sangiovanni-Vincentelli, A. The
TimberWolf Placement and Routing Package. IEEE
Journal of Solid-State Circuits, 20 (2). 432-439.

27. Sharangpani, H. and Arora, K. Itanium Processor
Microarchitecture. IEEE Micro, 20 (5). 24-43.

28. Tendler, J.M., Dodson, J.S., J. S. Fields, J., Le, H.
and Sinharoy, B. POWER4 System Microarchitec-
ture. IBM Journal of Research and Development, 46
(1). 5-26.

29. Zagha, M., Larson, B., Turner, S. and Itzkowitz, M.,
Performance Analysis Using the MIPS R10000 Per-
formance Counters. In Proceedings of Supercomput-
ing '96, (Pittsburgh, PA, 1996).

 13

	Introduction
	Cache Miss Address Sampling
	Itanium 2 Performance Monitoring
	Linux Monitoring Interface
	Cache Scope
	Instrumentation for Sampling Cache Misses
	Data Analysis Tool

	Experiments
	Perturbation of Results
	Instrumentation Overhead

	Case Studies
	Equake
	Twolf

	Related Work
	Conclusions
	Acknowledgments
	References

