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Abstract 
Processor speed continues to increase faster than the 
speed of access to main memory, making effective use of 
memory caches more important. Information about an 
application’s interaction with the cache is therefore criti-
cal to performance tuning. To be most useful, tools that 
measure this information should relate it to the source 
code level data structures in an application. We describe 
how to gather such information by using hardware per-
formance counters to sample cache miss addresses, and 
present a new tool named Cache Scope that does this us-
ing the Intel Itanium 2 performance monitors. We present 
experimental results concerning Cache Scope’s accuracy 
and perturbation of cache behavior. We also describe a 
case study of using Cache Scope to tune two applications, 
achieving 24% and 19% reductions in running time. 

1 Introduction 
Increases in processor speed continue to outpace in-

creases in the speed of access to main memory. Because 
of this, it is becoming ever more important that applica-
tions make effective use of memory caches. Information 
about an application’s interaction with the cache is there-
fore crucial to tuning its performance. This information 
can be gathered using a variety of instrumentation tech-
niques that can be broadly categorized as software tech-
niques and techniques that use hardware performance 
monitoring support. 

All-software approaches are more flexible. For in-
stance, a simulator can be made to provide almost any 
kind of information desired, depending only on the level 
of detail and fidelity of the simulation. However, simula-
tion can be slow, often prohibitively so. Hardware per-
formance monitors allow data to be gathered with much 
lower overhead, with the tradeoff that the types of data 
that can be collected are limited to those the system’s 
designers decided to support. 

To be most useful to a programmer in manually tun-
ing an application, information about cache behavior 
should be presented in a way that relates it to program 
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data structures at the source code level. We refer to this as 
data centric cache information. 

Relating cache information to data structures re-
quires not only counting cache-related events, but also 
determining the areas of memory that are associated with 
these events. In the past, this has been difficult to accom-
plish using hardware monitors, due to limited support for 
gathering such data. As an example, processors that in-
clude support for counting cache misses have often not 
provided any way to determine the addresses that were 
being accessed to cause them. 

The situation is now changing. Several recent proc-
essors include increased support for performance monitor-
ing. Many processors have for some time included ways 
to count cache misses, and to trigger an interrupt when a 
given number of events (such as cache misses) occur. 
Some recent processors provide the ability to determine 
the address that was accessed to cause a particular cache 
miss; by triggering an interrupt periodically on a cache 
miss and reading this information, a tool can sample 
cache miss addresses. One such processor is the Intel Ita-
nium 2 [3]. This paper presents a tool named Cache Scope 
that runs under Linux on the Itanium 2 and uses these 
hardware features to collect data centric cache informa-
tion. 

2 Cache Miss Address Sampling 
In order for a tool to relate cache misses to data 

structures, it must be able to determine the addresses that 
were accessed to cause those misses. However, running 
instrumentation code to read and process these addresses 
every time a cache miss occurs is likely to lead to an un-
acceptable slowdown in the application being measured. 

One solution to this problem is to sample the cache 
misses. This can be accomplished with the hardware 
counters on some processors. For instance, many proces-
sors provide a way to count cache misses, and a way to 
cause an interrupt when a hardware counter overflows. By 
setting an initial value in the counter for cache misses, we 
can receive an interrupt after a chosen number of misses 
have occurred. We also need for the processor to identify 
the address that was being accessed to cause the miss. 
This is necessary because the interrupt that occurs when a 
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cache miss counter overflows is typically not precise. On 
modern processors with features such as multiple instruc-
tion issue and out-of-order execution, the point at which 
the execution is interrupted could be a considerable dis-
tance from the instruction that actually caused the miss. 
For instance, on the Itanium 2 the program counter could 
be up to 48 dynamic instructions away in the instruction 
stream from where the event occurred [3]. Other proces-
sor state, such as registers, may also have changed, mak-
ing it difficult or impossible to reconstruct the effective 
address accessed by an instruction, even if the correct 
instruction could be located. 

A further argument for sampling is that on many 
processors that provide the features described above, it is 
not possible to obtain the address of every cache miss. For 
instance, on the Intel Itanium 2 [3] and IBM POWER4 
[28], a subset of instructions are selected to be followed 
through the execution pipeline. Detailed information such 
as cache miss addresses is saved only for these instruc-
tions. This is necessary in order to reduce the complexity 
of the hardware counters. 

Given the hardware support described above, it is 
possible to maintain sampled statistics about the cache 
misses taking place in an application’s data structures. We 
associate a set of statistics with each variable or dynami-
cally allocated block of memory (or group of related 
blocks). We then set the hardware counters to generate an 
interrupt after some chosen number of cache misses. This 
number should be varied throughout the run, in order to 
prevent the sampling frequency from being inadvertently 
synchronized to the access patterns of the application. 
When the interrupt occurs, an interrupt handler reads the 
address of the cache miss from the hardware, matches it 
to the object in memory that contains it, and updates the 
statistics for that object. After processing the current sam-
ple, the entire process is repeated. 

The mapping of addresses to objects is performed 
for program variables by using the debug information in 
an executable. For dynamically allocated memory, we 
instrument the memory allocation routines to maintain the 
information needed to perform the mapping. 

If the number of misses sampled for each object is 
proportional to the total number, then at the end of a run 
the statistics gathered will provide the programmer with 
an accurate idea of which program objects are experienc-
ing the worst cache behavior. 

3 Itanium 2 Performance Monitoring 
The Itanium 2 is a VLIW processor with many fea-

tures for speculation and for making use of instruction 
level parallelism [16, 27]. It is an implementation of the 
IA-64 architecture, which was developed by Intel and 
Hewlett-Packard. 

The Itanium 2 features four 48-bit performance 
counters that can be set to monitor over a hundred differ-

ent events. These counters can be configured so that they 
can be read from user mode or so that they must be read 
only from privilege level zero (kernel mode). The regis-
ters used to configure which events will be counted and to 
perform other control functions are accessible only in 
privilege level zero. 

The Itanium 2 provides a performance monitor over-
flow interrupt and writable performance counters, which 
can be used together to trigger an interrupt after a chosen 
number of cache misses. 

In the Itanium 2, data address support is provided by 
the Event Address Registers (EARs). These registers pro-
vide address and other information about events taking 
place in the cache and TLB. The Data EAR records in-
formation about L1 data cache misses, data TLB misses, 
and ALAT misses. This information includes the address 
that was accessed, the instruction that performed the ac-
cess, and the latency of the miss (defined as the number of 
cycles the instruction was in flight). The Instruction EAR 
records similar information about instruction cache and 
TLB misses. The EAR registers can also be set to monitor 
only events with a given latency or higher. 

In the case of data cache load misses, the processor 
must track load instructions as they pass through the pipe-
line in order to determine the information recorded by the 
Data EAR. The processor can track only one instruction at 
a time, so not all miss events can be recorded by the Data 
EAR; while it is tracking one load, all others are ignored. 
The processor randomizes which load to track, in order 
not to skew sampling results. 

On the Itanium 2, the L1 data cache handles only in-
teger loads, so all floating point loads go to the L2 cache 
and may be sampled by the Data EAR. As a result, the 
Data EAR mode that tracks L1 data cache load misses 
also tracks floating point loads. 

4 Linux Monitoring Interface 
Access to the performance monitors under Linux is 

through the “perfmon” kernel interface [4], which is part 
of the standard Linux kernel for IA-64.  A kernel interface 
is needed because the performance monitors can only be 
controlled from privilege level zero. 

Perfmon virtualizes the counters on a per-process 
basis. A program can choose between monitoring events 
system-wide or for a single process. In order to accom-
plish this, perfmon must be called from the context-switch 
code, and for this reason it was made a part of the kernel, 
not an installable device driver. 

Perfmon also provides support for randomizing the 
interval between counter overflows. The user specifies a 
mask that will be anded with a random number, with the 
result being added to the number of events that will pass 
before an overflow. 
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5 Cache Scope 
We implemented a tool named Cache Scope that 

gathers data-centric cache information using the Itanium 2 
performance counters. The tool consists of a program that 
adds instrumentation code to the application that is to be 
measured, and an analysis program that allows a user to 
examine the data that was gathered. These are described 
below. 

5.1 Instrumentation for Sampling Cache 
Misses 

The part of Cache Scope that gathers the data-centric 
cache information is a program named “cscope.”  The 
user gives as parameters to cscope the name of and argu-
ments for an application to be measured, and cscope starts 
the application and uses the Dyninst API [8] run-time 
instrumentation library to load code into it that will per-
form the cache measurement2.  It also instruments mem-
ory allocation functions in order to track dynamic mem-
ory allocations. 

Optionally, the user can link the application with a 
library named libcscope, which contains functions that 
can be called to interact with the instrumentation. For 
instance, calls are provided to control what part of the 
execution will be monitored. When an application that 
uses these calls is run outside of cscope, the calls do noth-
ing. 

The instrumentation code uses perfmon to set the 
Itanium 2 hardware performance monitors to count L1 
data cache read misses, L1 data cache reads, L2 cache 
misses, and Data EAR events. The Data EAR is set to 
record information about L1 data cache load misses and 
floating point loads. 

The overflow interrupt is enabled for the counter 
counting Data EAR events (cache misses and floating 
point loads). The number of Data EAR events between 
interrupts is controllable by the user, by setting an envi-
ronment variable before executing the program to be 
measured. By default, this value is randomly varied 
throughout the run to ensure a representative sampling of 
events. When the interrupt occurs, the instrumentation 
code takes a sample by reading the address that was being 
accessed, the address of the instruction that caused the 
event, and its latency. It then updates the data structures 
for the appropriate memory object (as described below) 
and restarts the counters. When restarting the counters, if 
randomization has been enabled, then the instrumentation 

                                                           
2 An earlier version of Cache Scope, which was used to collect 
most of the data for this study, did not use the Dyninst API. 
Instead, it required the user to link a measurement library with 
the application and to manually insert calls into the application 
to start and stop measurement. This version of the tool and the 
Dyninst version use the same instrumentation code to sample 
cache events. 

code uses the randomization feature of perfmon to vary 
the sampling interval. 

For purposes of keeping statistics, memory objects 
are grouped into equivalence classes, which we refer to as 
stat buckets. Each global or static variable in the program 
is assigned its own stat bucket. When a block of memory 
is dynamically allocated, a bucket name is either auto-
matically generated or is supplied by the user, as de-
scribed below; this name identifies the bucket to which 
the block is assigned. Different blocks may have the same 
bucket name, so that multiple blocks are assigned to a 
single bucket. This is useful when a group of blocks are 
part of the same data structure, as in a tree or linked list. 
Automatically assigned names are generated based on the 
names of the top three functions on the call stack above 
the memory allocation function that allocated the object. 
Explicit bucket names are assigned by the user, by replac-
ing the call to an allocation function with a call to a rou-
tine in Cache Scope’s libcscope library that takes an extra 
parameter, which is the bucket name to assign to the 
block. 
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Stat Bucket for array1

Cache Misses 
func1() 

misses: 1,863 
latency: 60,820 

func2() 
misses: 53 

latency: 7,420 

Total bytes allocated: 128,000 
Number of objects: 2,000 
Max object size: 64 

 
Figure 1: Bucket Data Structure 
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e number that identifies the function associated 
h entry, so the entry for a function can be found 
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possible, the overhead of using this data structure has not 
been a problem. In addition to the cache information, each 
bucket also contains various statistics such as the number 
of objects assigned to the bucket and their sizes. 

5.2 Data Analysis Tool 
When measurement has completed, Cache Scope 

writes all the data it collected out to a file in a compact 
format. This file can be read in by an analysis program 
called cscope_view. Cscope_view is written in Java, and 
so is portable to any system for which Java is available. 

Figure 2 shows an example of cscope_view’s inter-
face, displaying cache events in the application mgrid. 
The user can view tables of the objects or functions caus-
ing the most latency, and can combine the data and code 
centric data by filtering by function or object. For instance, 
by choosing a function from the list box on the left when 
viewing by object, a user can see a table of the data struc-
tures experiencing the most latency in the chosen function. 
Note that the tool presents information in terms of the 
latency associated with sampled events, rather than sim-
ply counts of cache misses.  For each object or function, 
the tool shows the absolute number of cycles of latency, 
the percentage of total latency, and the latency per event. 
The absolute value for latency is based on multiplying the 
sum of the sampled latencies by the sampling frequency. 
Since not all instructions are tracked by the Data EAR (as 
described in Section 3), this will be lower than the actual 
value, but it is useful in comparing runs (for instance, of 
an unoptimized versus an optimized version of an applica-
tion). 

 

 
Figure 2: Cscope_view Interface 

Cscope_view is also able to provide information 
about the non-cache-related statistics that are kept by the 
instrumentation code, such as the number of allocated 
memory objects that belong to a given bucket, and the 
size of those objects. This can be useful in tuning cache 
performance, as will be seen in the examples in Sections 
7.1 and 7.2. 

6 Experiments 
We ran a series of experiments in which we used 

Cache Scope to measure the cache misses in a set of ap-
plications from the SPEC CPU2000 benchmark suite. 

The applications used in the experiments were 
wupwise, swim, mgrid, applu, gcc, mesa, art, mcf, equake, 
crafty, ammp, parser, gap, and twolf. They were compiled 
using gcc 3.3.3. We ran each application a number of 
times while sampling cache misses at different rates, in 
order to examine the effect of varying this parameter. The 
rates given are averages; actual number of events between 
samples was randomly varied throughout the run, using 
the randomization feature of the perfmon kernel interface, 
which was described in Section 4. For tests in which we 
did not vary the sampling frequency, we chose 1 in 32K 
events as our default rate. Since the hardware counters 
cannot provide information about all cache events, this 
study did not directly examine the accuracy of sampling 
at the rates used. For information about accuracy, see the 
authors’ paper from SC2000 [9], which describes results 
gathered under a simulator that allowed a comparison of 
sampled data with exact information. 

We also ran tests in which we did not sample cache 
misses, but used the hardware counters to gather various 
overall statistics to be compared with the runs in which 
sampling was performed. The only statistics gathered in 
these runs were those that could be measured with almost 
no overhead, by starting the counters at the beginning of 
execution and reading their values at the end, with no 
interrupts while the applications were running. 

The results presented are averages over three runs of 
each application. The following sections describe the data 
obtained from these experiments. 

6.1 Perturbation of Results 
Figure 3 shows the increase in L2 cache misses seen 

in each application we tested when sampling at the rates 
shown in the legend. This increase is over the number of 
cache misses observed when no sampling was performed. 
Striped bars represent negative values with the absolute 
value shown. Note that the scale of the y axis is logarith-
mic. We are concerned primarily with the L2 cache be-
cause most optimization will probably be for this level. 
This is because of the fact that the L1 data cache does not 
store floating point values, and the penalty for going to 
the L2 cache is small, as low as five cycles for an integer 
load and seven cycles for a floating point load [21]. These, 
combined with the fact that the L1 cache is only 16KB 
while the L2 is 256KB, make the L2 cache more signifi-
cant to performance. As an example of this, we saw in our 
experiments variations in L1 cache misses between runs 
that did not translate into significant variations in running 
time. 

The increase in L2 cache misses for most applica-
tions was relatively small except at the two highest sam-
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pling frequencies, and as will be discussed below, some 
applications actually showed a decrease in cache misses 
in the sampled runs. 

When sampling 1 in 512K events, the highest in-
crease in misses was seen in gcc, which had an approxi-
mately 5.3% increase. One feature of this application that 
differentiates it from most of the others is that it fre-
quently allocates and deallocates memory in the heap. 
Therefore, we suspected that the instrumentation code that 
maintains the map of dynamically allocated memory may 
be the cause of the cache disruption. In order to test this 
possibility, we reran gcc with the code that maintains the 
dynamic memory map, but without doing any sampling. 
These runs produced an average increase in L2 cache 
misses of 6.9%, which was very close to and actually 
slightly higher than the 5.3% we saw when sampling. 
Therefore, we conclude that the increase in cache misses 
is primarily due to the code for maintaining the map of 
dynamically allocated memory. After gcc, the next high-
est increase in L2 misses was seen with crafty, with a 
2.3% increase. 

At a sampling frequency of 1 in 32K events, the 
highest increases in cache misses are seen in gcc, with a 
6.1% increase, crafty with 6.3%, and mesa, with 6.5%. 

As we increase the sampling frequency, we see in-
creases in cache misses as high as 168%, seen when run-
ning crafty while sampling 1 in 128 cache misses. This 
shows that increasing the sampling rate does not necessar-
ily lead to increased accuracy, due to the instrumentation 
code significantly affecting cache behavior. 

As noted above, some applications showed a small 
decrease in cache misses when running with sampling as 
compared to runs without. The largest of these was seen 
in equake, which showed a decrease in L2 cache misses 
of 5.3% when sampling 1 in 512K events. This is likely 
due to the fact that the instrumentation code allocates 
memory, which can affect the position of memory blocks 

allocated by the application. It was observed by Jalby and 
Lemuet [18] that for a set of applications they examined 
running on the Itanium 2, factors such as the starting ad-
dresses of arrays had a significant effect on cache behav-
ior. In Section 7.1, we present data from equake and how 
the data was used to perform optimizations; while we 
were doing this work, we found equake to be particularly 
sensitive to this phenomenon. 
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Figure 3: Increase in L2 Cache Misses 

6.2 Instrumentation Overhead 
Figure 4 shows the percent increase in running time 

for each application when sampling at the frequencies 
shown in the legend. This increase is over the running 
time of the application with no sampling instrumentation. 
The scale of the y axis is logarithmic, with striped bars 
representing negative values with the absolute value 
shown. The overhead measured includes all instrumenta-
tion, both for sampling cache miss addresses and for 
tracking dynamic memory allocations. 

For the two lowest sampling frequencies tested, the 
overhead was acceptable for all applications. Looking at 
the higher of these frequencies, sampling 1 in 32K events, 
the overhead was less than 1% for ten out of the fourteen 
applications tested. The remaining applications were 
ammp and swim with overheads between 1 and 2%, gcc 
with an overhead of approximately 2.3%, and equake with 
an overhead of approximately 7.7%. 

One reason for the higher overhead in equake ap-
pears to be the number of memory objects it allocates. 
More memory objects lead to a larger data structure that 
the instrumentation code must search through in order to 
map an address to a stat bucket. Equake allocates 
1,335,667 objects during its run, while the application 
with the next highest number of allocations, twolf, allo-
cates 575,418. Eight of the thirteen applications allocate 
approximately 1,000 or fewer objects. 
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7 Case Studies 
This section will examine two example applications 

from the SPEC CPU2000 benchmarks, equake and twolf. 
We used Cache Scope to analyze these applications and to 
tune their performance by improving their utilization of 
the cache. We will follow this analysis and optimization 
step by step, to demonstrate how the tool allowed us to 
quickly locate where the applications were losing per-
formance due to poor cache utilization, and to determine 
how data structures could be changed to enable better 
cache use. 

We were able to achieve significant gains in per-
formance for both applications, showing the usefulness of 
the information provided by the tool. This was accom-
plished in a short time; one day for equake, and a few 
days for twolf. The programmer optimizing the applica-
tions (one of the paper’s authors) had no prior familiarity 
with the source code of either application, and relied en-
tirely on the cache tool to determine what data structures 
and code to focus on for tuning. Furthermore, the optimi-
zations we will describe consisted almost entirely of 
changes to the data structures in the applications, with few 
changes to the code. 

7.1 Equake 
We will first examine equake. This is an application 

that simulates seismic wave propagation in large valleys, 
and was written by David R. O'Hallaron and Loukas F. 
Kallivokas [6, 15]. It takes as input a description of a val-
ley and seismic event, and computes a history of the 
ground motion. It performs the computations on an un-
structured mesh using a finite element method. 

We ran this application with Cache Scope to meas-
ure its cache behavior. The first interesting piece of in-
formation this provided was that the hit ratio of loads in 
the L1 data cache is only about 64% (this is the ratio of 

L1 data cache hits to loads that are eligible to be cached in 
the L1 data cache). This low hit ratio suggests that cache 
behavior could be a performance problem in this applica-
tion, although it is important to remember that on Itanium 
2 the L1 cache is not used for floating point loads. 

Another piece of information that the tool can pro-
vide is the average latency of a cache miss (or floating 
point load). For equake, this is 21.3 cycles. This is high 
relative to most of the other applications tested. Average 
latency ranged from 6.5 cycles for mgrid to 73.2 cycles 
for mcf; however, only three of the applications tested had 
average latencies greater than equake’s. This is another 
indication that the application may be losing performance 
due to poor cache utilization. 

Next we will look at which data structures in the ap-
plication are causing the most latency. As noted in Sec-
tion 5.2, Cache Scope returns information in terms of la-
tency rather than the number of cache misses. It is impor-
tant to note that the latency does not indicate the number 
of cycles the processor is stalled waiting for a load. The 
Itanium 2 performance monitor defines the latency of a 
load instruction as the number of cycles the instruction is 
in flight. Multiple loads may be outstanding at any given 
time, and instruction level parallelism may allow the 
processor to continue executing other instructions while 
waiting for data. 

Table 1 shows the stat buckets in the application that 
cause the most latency, sorted by latency. As described in 
Section 5.1, a stat bucket represents a data structure in 
memory. It can be a global or static variable, a block of 
dynamically allocated memory, or a number of related 
blocks of dynamically allocated memory. For this run, we 
allowed the tool to automatically group dynamically allo-
cated memory into stat buckets. When this option is se-
lected, Cache Scope will generate a stat bucket name for 
each allocated block of memory based on the names of 
the last three functions on the call stack above the actual 
memory allocation function. Blocks that have the same 
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Figure 4: Instrumentation Overhead 
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stat bucket name are grouped together. In this example, 
there are two automatically named buckets, mem_init-
main and readpackafile-main. 

 
Latency

 Stat Bucket Cycles 
(billions) % Per 

Event 
mem_init-main 97.18 95.6% 24.0 
Exc 2.10 2.1% 5.4 
<stack> 1.12 1.1% 5.0 

readpackfile-main 0.68 0.7% 102.1 

<unknown> 0.55 0.5% 5.0 

Table 1: Data Structure Statistics for Equake 

The “Cycles” column shows an estimate of the abso-
lute number of cycles of latency caused by objects as-
signed to the given stat bucket, in billions. This is com-
puted by multiplying the recorded cycles for each sample 
by the sampling frequency. The “%” column shows the 
percentage of all latency in the application that was 
caused by the stat bucket. “Per Event” shows the average 
latency for the cache events caused by the bucket. 

The <stack> bucket represents the stack. The tool 
includes an option to create a separate bucket for the stack 
frame of each function, but this creates additional over-
head and was not used in this run. <unknown> represents 
all memory that is not associated with a known object. 
This includes such objects as memory used by runtime 
libraries that do not have debug information. As men-
tioned above, the remaining two buckets are automatically 
named, indicating that they were allocated from the func-
tions mem_init and readpackfile, both of which were 
called from main. 

The most important bucket is obviously mem_init-
main, which causes 95.6% of the latency in the applica-
tion. Looking at the function mem_init, we see that it uses 
malloc to allocate a large number of arrays. It would be 
useful to break this down further, by the individual arrays 
or groups of related arrays. As described in Section 5.1, 

the user can explicitly name a bucket by providing a 
string name to a special allocation function. We did this 
for the memory allocation calls in mem_init. 

Table 2 shows the results of re-running the tool with 
explicitly named buckets. The buckets with names begin-
ning with “heap_” represent arrays or groups of arrays 
that were dynamically allocated with explicit bucket 
names. Those shown are all allocated by the function 
mem_init. Most of these are parts of a set of two- and 
three-dimensional matrices, where each matrix is made up 
of a group of independently allocated blocks of memory. 
The reason they are allocated in this way is to allow their 
sizes to be determined at runtime, while still making them 
easy to use in C. An example of this is the array “disp,” 
which is declared as “double ***disp.” The elements of 
disp are then allocated as in the abbreviated code from 
equake shown in Figure 5. 

 
Latency 

Stat Bucket Cycles 
(billions) % Per 

Event 
heap_K_2 23.67 35.4% 118.5 
heap_disp_3 18.41 27.5% 10.7 
heap_K_3 7.49 11.2% 5.4 
heap_disp_2 3.47 5.2% 22.8 
Exc 2.13 3.2% 5.5 
heap_M_2 1.53 2.3% 15.2 
heap_C_2 1.49 2.2% 14.7 
<stack> 1.12 1.7% 5.0 
heap_M_1 0.95 1.4% 23.9 
heap_K_1 0.93 1.4% 80.0 

Table 2: Data Structure Statistics in Equake 

The advantage of this is that the matrix can be ac-
cessed using the syntax disp[i][j][k]. The only way to use 
this syntax without the multiple indirections is to declare 
the size statically. 

The numbers at the end of the names in Table 2 
show which matrix dimension each stat bucket is associ-
ated with. For the first two dimensions, these are arrays of 

 double ***disp; 
 
 /* Displacement array disp[3][ARCHnodes][3] */ 
 
  disp = (double ***) malloc(3 * sizeof(double **)); 
 

for (i = 0; i < 3; i++) { 
disp[i] = 
  (double **) malloc(ARCHnodes * sizeof(double *)); 
 
for (j = 0; j < ARCHnodes; j++) { 

disp[i][j] = 
  (double *) malloc(3 * sizeof(double)); 

} 
} 

Figure 5: Memory Allocation in Equake 

 7



pointers to the arrays that make up the next dimension. 
For the third dimension, the arrays contain the actual data. 
The second dimension of K, heap_K_2, causes 35.4% of 
the total latency. The third dimension of the arrays disp 
and K, heap_disp_3 and heap_K_3, together cause ap-
proximately 38.7% of the total latency. Using the code 
features of our tool shows that the vast majority of these 
misses take place in the function smvp. Nearly 100% of 
the latency when accessing heap_K_2, 69.6% percent 
when accessing heap_disp_3, and 99.8% when accessing 
heap_K_3 take place in this function. Smvp computes a 
matrix vector product, and contains a loop that iterates 
over the matrices. 

One potential problem here is that the size of the in-
dividual arrays that make up these buckets is very small. 
Heap_K_2 contains arrays of three pointers, while 
heap_K_3 and heap_disp_3 contain arrays of three dou-
bles. Therefore, each of these arrays is only 24 bytes long. 
This can easily be seen using the cscope_view tool, which 
can show statistics about the sizes of the blocks of mem-
ory that make up each stat bucket. When malloc creates a 
block of memory, it reserves some memory before and 
after the block for its own internal data structures. Since 
the L2/L3 data cache line size on the Itanium 2 is 128 
bytes, we could pack 5 of the arrays that make up 
heap_K_2, heap_K_3, and heap_disp_3 into a single 
cache line, but this does not happen due to the overhead 
of malloc. To improve this situation, we modified the 
program to allocate one large contiguous array to hold all 
the pointers or data for each dimension matrix, and then 
set the pointer arrays to point into them. This modified 
code is shown in Figure 6. 

This change decreases L1 cache misses in the appli-
cation by 57%, L2 cache misses by 30%, and running 
time by 10%. The results of re-running Cache Scope on 

the new version of the application are shown in Table 3. 
 

Latency 
Stat Bucket Cycles 

(billions) % Per 
Event 

heap_K_3 14.89 49.4% 22.5 
heap_disp_3 7.43 24.7% 9.1 
heap_K_2 1.32 4.4% 52.4 
mem_init-main 1.17 3.9% 15.8 
heap_disp_2 1.11 3.7% 35.8 
Exc 1.01 3.4% 5.5 
heap_C_2 0.64 2.1% 13.4 
<stack> 0.53 1.8% 5.0 

Table 3: Results for Optimized Equake 

The absolute amount of estimated latency for 
heap_K_2 is reduced by approximately 94%, and for 
heap_disp_3 it is reduced by 40%. The latency for 
heap_K_3 has almost doubled, but this is more than made 
up for by the gains in the other two buckets. Note that this 
optimization not only improves latency, but lowers the 
required bandwidth to memory as well, since more of 
each cache line fetched is useful data, rather than over-
head bytes used by malloc for its internal data structures. 

The arrangement of K and disp each into two pointer 
arrays (for example, heap_K_1 and heap_K_2) and a data 
array (heap_K_3) continues to be a source of latency. The 
heap_K_2 bucket is causing 4.4% of the latency in the 
application, and heap_disp_2 is two places below it with 
3.7%. These misses could easily be avoided by eliminat-
ing the need for those arrays entirely. If we are willing to 
accept statically sized matrices, we could simply declare 
disp and K as three-dimensional arrays. 

Table 4 shows the results of making this change. 
Note that the latency for K is significantly less than the 

double ***disp; 
 
double *disp_3; 
double **disp_2; 
double ***disp_1; 

   
disp_3 = malloc(3 * ARCHnodes * 3 * sizeof(double)); 
   
disp_2 = malloc(ARCHnodes * 3 * sizeof(double *)); 
 
disp_1 = dctl_mallocn(3 * sizeof(double **)); 
 
disp = disp_1; 
 
for (i = 0; i < 3; i++) { 

disp[i] = &disp_2[i*ARCHnodes]; 
 
for (j = 0; j < ARCHnodes; j++) { 
disp[i][j] = &disp_3[i*ARCHnodes*3 + j*3]; 
} 

} 

Figure 6: Modified Memory Allocation in Equake 
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latency for heap_K_3, where the actual data for the array 
was previously stored. This is probably because eliminat-
ing the pointers in heap_K_1 and heap_K_2 freed a large 
amount of space in the L2 cache that could then be used 
for the actual data. In addition, the compiler is more likely 
to be able to prefetch data, since the location of the data is 
computed rather than read from pointers. All of this is 
also true for the other main array, disp. 

 
Latency 

Stat Bucket Cycles 
(billions) % Per 

Event 
K 6.84 53.4% 21.8 
disp 3.50 27.3% 8.9 
Exc 0.37 2.9% 5.5 
heap_M_2 0.31 2.4% 13.7 
heap_C_2 0.30 2.3% 13.3 
<stack> 0.27 2.1% 5.1 
heap_C23_2 0.20 1.5% 14.7 
heap_V23_2 0.15 1.2% 13.6 
<unknown> 0.14 1.1% 5.2 
heap_M23_2 0.13 1.0% 13.5 

Table 4: Results for Second Optimization of Equake 

Overall, this version of the application shows an 
80% reduction in L1 cache misses, a 46% reduction in L2 
cache misses, and a 24% reduction in running time over 
the original, unoptimized application. This required 
changing only the layout of data structures and basically 
no change to the code of the application other than in the 
initialization code. 

 

7.2 Twolf 
The second example program we will look at is 

twolf. This is a placement and routing package for creat-
ing the lithography artwork for microchip manufacturing 
[15, 26], which uses simulated annealing to arrive at a 
result. 

Using Cache Scope, we find that the L1 data cache 
hit ratio of this application is about 74%, which is fairly 
low, although not as low as our previous example. The 
average latency is 21.9 cycles, slightly larger than equake. 
These are an indication that poor cache utilization may be 
a performance problem. 

Table 5 shows the stat buckets causing the most la-
tency in the application. All of the stat buckets shown are 
automatically named.  The safe_malloc function that ap-
pears in the bucket names is used wherever twolf allo-
cates memory. It simply calls malloc and checks that the 
return value is not NULL; therefore the functions we are 
interested in are those that call safe_malloc. The majority 
of cache misses were caused by memory allocated by a 
small set of functions: readcell, initialize_rows, findcostf, 
and parser. To get more useful information about specific 
data structures in this application, we must manually 

name the blocks of memory that are allocated by these 
functions. Most of these blocks are allocated as space to 
hold a particular C struct; the easiest and most useful way 
to name them is after the name of the structure. 

 
Latency 

Stat Bucket Cycles 
(billions) % Per 

Event 
Safe_malloc-readcell-main 193.33 62.0% 30.1 
Safe_malloc-
initialize_rows-main 35.75 11.5% 14.9 

Safe_malloc-parser-
readcell 33.25 10.7% 23.4 

Safe_malloc-findcostf-
controlf 27.65 8.9% 21.0 

<unknown> 7.40 2.4% 6.9 

Table 5: Cache Misses in Twolf 

Table 6 shows the results of re-running the tool, af-
ter altering memory allocation calls to provide a name for 
the stat bucket with which the memory should be associ-
ated. We have again used the convention that the named 
buckets begin with “heap_” to show that they are dynami-
cally allocated memory. 

 
Latency 

Stat Bucket Cycles 
(billions) % Per 

Event 
heap_NBOX 137.55 42.9% 28.1 
heap_rows_ 
element 44.42 13.8% 8.4 

heap_DBOX 23.81 7.4% 22.0 
heap_TEBOX 19.58 6.1% 26.7 
heap_CBOX 16.64 5.2% 27.5 
heap_TIBOX 14.30 4.5% 45.6 
heap_BINBOX 13.71 4.3% 15.5 
<unknown> 7.46 2.3% 7.0 
heap_cell 6.32 2.0% 30.4 
heap_netarray 3.33 1.0% 8.8 

Table 6: Cache Misses in Twolf with Named Buckets 

Structure Size Number Allocated 
BINBOX 24 224,352 
CBOX 48 2,724 
DBOX 96 1,920 
NBOX 48 16,255 
TEBOX 40 17,893 
TIBOX 16 2,724 

Table 7: Structures in Twolf 

At the top of the list is a cluster of blocks allocated 
to hold C structs named NBOX, DBOX, TEBOX, CBOX, 
TIBOX, and BINBOX. These are all small structures. The 
cscope_view program can provide statistics about the size 
of the objects in a stat bucket and how many of them were 
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allocated by the application. Table 7 shows this informa-
tion for the structures causing the most latency. 

Some of these structures are smaller than the Ita-
nium L1 data cache line size of 64 bytes, and all are 
smaller than the L2/L3 cache line size of 128 bytes. 
Therefore, more than one structure could be packed into 
an L1 or L2 cache line, but this is probably not happening 
due to the memory that malloc reserves for its own data 
structures before and after an allocated block. 

This problem cannot be solved as easily as it could 
with equake, since these structures are not allocated all at 
one time during program initialization. Instead, they are 
allocated and freed individually at various times. Also, 
they are not always traversed in a single order. One fea-
ture we can make use of, however, is that many of the 
structures contain pointers to other structures. It is likely 
that if structure A points to structure B, then B will be 
accessed soon after A (because the program followed the 
pointer). 

The method we chose to optimize the placement of 
the structures is similar to the cache-conscious memory 
allocation described by Chilimbi et al. [11]. We wrote a 
specialized memory allocator for the small structures used 
by twolf. It has two main features intended to reduce the 
cache problems revealed by Cache Scope. First, it can 
place small structures directly next to each other in mem-
ory. Unlike most malloc implementations, it does not re-
serve memory before or after each block for its own use; 
all overhead memory is located elsewhere. Second, it uses 
information about which structures point to others. When 
memory is allocated, the caller can specify a “hint,” 
which is the address of a structure that either will point to 
the one being allocated, or be pointed to by it. In the ma-
jority of places in the code where the small structures in 
question are allocated, this information is readily avail-
able. The memory allocator tries to allocate the new struc-
ture in the same L1 data cache line as the “hint” address. 
If this is not possible, it tries to allocate it in the same L2 
cache line. If this also cannot be done, it simply tries to 
find a location in memory that will not conflict in the 
cache with the cache line containing the hint address. This 
allocator is used for the structures shown in Table 7 that 
are smaller than 64 bytes, as well as another similar struc-
ture, CHANGRDBOX. These structures were chosen for 
this optimization because of their small size, the amount 
of latency they cause, and the availability of hint ad-
dresses. 

Note that if this strategy is successful in placing 
structures that are used together in the same cache block, 
it will not only improve latency but also lower the re-
quired bandwidth to memory, because we will again be 
eliminating malloc overhead memory that would have 
been fetched with the data. 

Running the application with this memory allocator 
results in a 57% decrease in L1 data cache misses, a 26% 
decrease in L2 misses, and an 11% reduction in running 

time. Table 8 shows the results of running the tool on this 
version of the program. The total latency and latency per 
event for most stat buckets is down significantly from the 
unoptimized version. For example, for heap_NBOX, the 
estimated latency is down approximately 50%, and the 
latency per event is down from 28.1 cycles to only 13.8 
cycles. The latency for heap_CBOX is up almost 30%, 
but this is more than made up for by the decreases in other 
data structures. 

 
Latency 

Stat Bucket Cycles 
(billions) % Per 

Event 
heap_NBOX 67.93 38.0% 13.8 
heap_CBOX 21.59 12.1% 60.3 
heap_TEBOX 15.27 8.5% 23.8 
heap_DBOX 11.93 6.7% 12.1 
heap_tmp_rows_ 
element 8.07 4.5% 20.6 

<unknown> 7.62 4.3% 7.1 
heap_rows_element 6.03 3.4% 20.3 
heap_BINBOX 5.13 2.9% 9.9 
heap_cell 4.92 2.8% 23.7 

Table 8: Cache Misses in Twolf with Specialized 
Memory Allocator 

Below the stat buckets for the structures we have 
been discussing, the stat bucket that causes the next high-
est latency is heap_tmp_rows_element. The objects asso-
ciated with this stat bucket are allocated and used in the 
same way as those in heap_rows_element, so we will look 
at them both. These data structures are similar to the ones 
we saw in equake, in that they implement a variably sized 
two-dimensional array as an array of pointers to single-
dimensional arrays (the arrays of pointers are named 
“tmp_rows” and “rows”). The arrays containing the actual 
data hold a small number of elements of type char; the 
statistics kept by Cache Scope show that these arrays are 
18 bytes long when running on the problem size used for 
our experiments (this can also easily be seen by examin-
ing the source code and input). Since several of these 
would fit in a cache line, we could gain some spatial lo-
cality by allocating them as one large array, like we did 
for the matrices in equake. We would then set the pointers 
in tmp_rows and rows to point into this array. 

Making this change reduces L1 data cache misses by 
33%, L2 cache misses by 29%, and running time by 16% 
versus the original version of the application. If we are 
willing to accept a compiled-in limit for the largest prob-
lem size we can run the application on, we could also 
simply make tmp_rows and rows into statically sized two-
dimensional arrays, eliminating the need for indirection. 
This change gives us further slight improvements. L1 data 
cache misses are reduced by 36%, L2 cache misses are 
reduced by 35%, and running time is reduced by 19% 
over the unoptimized version of the application. 
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8 Related Work 
Most modern processors include some kind of per-

formance monitoring counters on-chip. These typically 
provide low-level information about resource utilization 
such as cache hit and miss information, stalls, and integer 
and floating point instructions executed. Examples in-
clude the MIPS R10000 [29], the Compaq Alpha family 
[12], the UltraSPARC family [19], the Intel Pentium [2] 
and Itanium [3, 16, 27] families. All of these can provide 
cache miss information. 

Compaq’s DCPI [5] runs on Alpha processors and 
uses hardware counters and the ability to determine the 
instruction that caused a counted event to provide per-
instruction event counts. On Alpha processors that use 
out-of-order execution, this requires extra hardware sup-
port called ProfileMe. This provides the ability to sample 
instructions. The processor periodically tags an instruc-
tion to be sampled, which causes it to save detailed in-
formation about its execution. Afterward, it generates an 
interrupt, at which time an interrupt handler can read the 
saved information. 

Libraries are often used to simplify the use of hard-
ware monitors, and in some cases to provide an API that 
is as similar as possible across processors. These include 
PAPI [24] and PCL [7], both of which run on multiple 
platforms. Perfmon [4] provides access to the Itanium 
family performance counters on Linux. PMAPI [1] is a 
library for using the POWER family performance count-
ers on AIX. 

A number of tools have been written with the pri-
mary goal of measuring memory hierarchy effects. Mtool 
[14] provides information about the amount of perform-
ance lost due to the memory hierarchy by computing an 
ideal execution time for each basic block in an application 
and comparing this with actual measurements. 

MemSpy [23] is a tool for identifying memory sys-
tem bottlenecks. It provides both data- and code-oriented 
information, and allows a user to view statistics related to 
particular code and data object combinations. MemSpy 
uses simulation to collect its data, allowing it to track de-
tailed information about the reasons for which cache 
misses take place. For instance, a cache miss may be a 
cold miss or due to an earlier replacement. 

MemSpy has also been used with a sampling tech-
nique, as described in [22]. The authors modified Mem-
Spy to simulate only a set of evenly spaced strings of runs 
from the full trace of memory references, and found that 
this technique provided accuracy to within 0.3% of the 
actual cache miss rate for the cache size and applications 
they tested. This differs from the sampling performed by 
our tool, which samples individual misses out of the com-
plete stream. 

CPROF [20] is a cache profiling system somewhat 
similar to MemSpy. It uses simulation to collect detailed 
information about cache misses. It is able to precisely 

classify misses as compulsory, capacity, or conflict 
misses, and to identify the data structure and source code 
line associated with each miss. 

StormWatch [10] is another system that allows a 
user to study memory system interaction. It is used for 
visualizing memory system protocols under Tempest [25], 
a library that provides software shared memory and mes-
sage passing. It allows for selectable user-defined proto-
cols, which can be application-specific. StormWatch runs 
using a trace of protocol activity, which is easy to gener-
ate since the protocols are implemented in software. The 
goal of StormWatch is to allow a user to select and tune a 
memory system protocol to match the communication 
patterns of an application. 

SIGMA [13] is a system that uses software instru-
mentation to gather a trace of the memory references in an 
application, and uses the trace as input to a simulator. The 
user can also try different layouts of objects in memory by 
providing instructions on how to transform the addresses 
in the trace to reflect the new layout. The results of the 
simulation can then be examined using a set of analysis 
tools. 

Itzkowitz et al. [17] describe a set of extensions to 
the Sun ONE Studio compilers and performance tools that 
use hardware counters to gather information about the 
behavior of the memory system. These extensions can 
show event counts on a per-instruction basis, and can also 
present them in a data-centric way by showing aggregated 
counts for structure types and elements. The Ultra-
SPARC-III processors used by this tool do not provide 
information about the instruction and data addresses asso-
ciated with an event, so the reported values are a best 
guess based on the instruction pointer when an interrupt 
occurs. 

9 Conclusions 
In this paper, we have described Cache Scope, an 

implementation of data centric cache measurement on the 
Intel Itanium 2 processor.  This tool samples cache miss 
addresses using the Itanium 2’s performance monitoring 
features, and uses this address information to keep statis-
tics about the cache behavior of the data structures in an 
application. Cache Scope is unique in using the latency of 
cache misses as its metric, rather than the number of 
misses.  This is made possible by the fact that the Itanium 
2 hardware performance monitors can provide this infor-
mation.  We found this to be extremely useful; the Ita-
nium 2 has three levels of cache, and therefore the num-
ber of L1 data cache misses alone does not necessarily 
determine how a data structure’s cache behavior is affect-
ing performance. 

We used Cache Scope to analyze two example ap-
plications, equake and twolf, and optimized them based 
on the results. Especially in the case of twolf, we were 
able to reduce the observed latency per event, due to op-
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timizing for multiple levels of cache. We were able to 
achieve a 24% reduction in running time for equake, and 
an almost 19% reduction in running time for twolf. This 
was done in a short time (a few days), by a programmer 
who was not previously familiar with the code of either 
application. In both cases, the improvements were gained 
mainly by changing data structures rather than code. This 
demonstrates how Cache Scope allows a programmer to 
quickly identify the source of lost performance due to 
poor cache utilization. The optimizations used could not 
easily have been performed by a compiler, showing the 
value of a tool that provides this kind of feedback to a 
programmer. 

Cache Scope is available for download at 
http://www.dyninst.org/cachescope. 
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