
Stream Ciphers and Linear Complexity

Hu Qi

April 2007

Acknowledgements

As a graduate student of Mathematics Department in National University of Singapore,

I have quite a fruitful and happy experience. My life would not be the same without my

supervisor and friends.

Many thanks to my supervisor, Professor Harald Niederreiter. Being a leading re-

searcher, he is more like an intelligent gentleman for me. I am grateful for Professor

Niederreiter’s directions on my research and study, encouragement on my work, great pa-

tience and kindly help for my thesis and graduate application.

I also would like to express my sincere thanks to Professor Alan Jon Berrick, Professor

Tay Yong Chiang, Professor Chin Chee Whye, and Professor Ma Siu Lun. They are very

nice. I really appreciate their instructions on my mathematics study and research, advices

for my future academic development and warm help.

My great gratitude goes to my parents. Many thanks for their encouragement and

support which make me strong.

Finally, many thanks to my good friends although their names are not mentioned here.

It is them that make my life colorful, interesting and happy.

i

Contents

1 Stream Ciphers and Their Realizations 1

1.1 Introduction to Stream Ciphers . 1

1.2 Theoretical Security of One-Time Pad Ciphers 9

1.3 Practical Realizations of the Key Stream in Stream Ciphers 13

2 Linear Recurring Sequences and Linear Complexity 16

2.1 Introduction and Mathematical Fundamentals 16

2.2 Two Types of Nonlinear Filters . 27

2.3 The BAA Attacks on the Two Nonlinear Filters 39

3 Random Sequences and Their Linear Complexity Profiles 42

3.1 Randomness of Sequences . 42

3.2 Probabilistic Properties of Random Sequences 49

4 The k-Error Linear Complexity 64

4.1 Bounds for the k-Error Linear Complexity 64

4.2 Lower Bounds for the k-Error Linear Complexity with Special Period . . . 69

ii

List of Figures

1.1 The basic two enciphering principles. 3

1.2 The basic working principle of stream cipher. 4

1.3 The self-synchronous stream ciphers. 7

1.4 The working principle of the key stream generator. 7

2.1 The General Form of Feedback Shift Register. 17

2.2 The First Kind of Nonlinear Filter. 28

2.3 The Second Kind of Nonlinear Filter. 33

3.1 The Linear Complexity Profile of s̃70. 47

3.2 Jump points (•) and balance points (¥). 50

3.3 Obtaining the jump point from its two adjacent balance points I. 51

3.4 Obtaining the jump point from its two adjacent balance points II. 52

3.5 One step of random walk: (a) L(s̃n) = l0 ≤ n

2
, (b) L(s̃n) = l0 >

n

2
. 58

3.6 The Linear Complexity Profile of ps̃20 . 60

iii

Abstract

The thesis mainly reviews the mathematical analysis of the security of stream ciphers.

Firstly, we will introduce the background of stream ciphers with their design principles

and theoretical security from the information theory viewpoint. Then we will introduce the

algebraic tools for the analysis of linear recurring sequences followed by discussions on the

two kinds of basic nonlinear filters. Also, we will discuss the randomness of the sequences

over Fq and justify the use of linear complexity profiles to measure the randomness of the

key streams generated by linear feedback shift registers. An exploration of the probabilistic

properties of sequences over Fq is included too. Finally, we define an important parameter

k-error linear complexity to measure the security of the key streams and discuss the lower

bounds for this parameter of periodic sequences over Fq.

Chapter 1

Stream Ciphers and Their

Realizations

In this chapter, we will give a general picture of stream ciphers. Contents include their brief

history, basic principles and their theoretical background from the viewpoint of information

theory. In the end, we will introduce some realizations of stream ciphers published in the

open literature.

1.1 Introduction to Stream Ciphers

Beginning with a short summary of the development of stream ciphers in the past 50 years,

we will introduce the basic concepts and ideas of stream ciphers, including the design prin-

ciples, the synchronous and self-synchronous problems and how the key generators work.

1. The Brief History of Stream Ciphers

The birth of stream ciphers should be attributed to the invention of electronic communi-

cation technologies. At the end of the 19th century, several scientists such as Tesla and

Marconi contributed to the invention of “radio”, which was called “wireless telegraphy” at

that time. And after about 30 years of development, radio technologies became more ma-

ture and began to be used in the daily life of humans. The long distance communication

changed a lot compared to the 19th century because humans could use radio to deliver

electronic signals carrying messages instantly. In about 1920, radio was already widely

used in both military and commercial areas to exchange information.

Because the information was transmitted by electronic signals in the open air, everyone

1

Chapter 1: Stream Ciphers and Their Realizations 2

who had a receiver could get these signals and translate them to plaintext easily. So

it was not secure to deliver secret messages directly by radios. Then, the rotor-based

electromechanical encryption device was introduced and adopted all over the world (see

Shamir [33]) to solve this secret information exchange problem. However, memories in

these devices were quite expensive so that they only could have internal states being kept.

But as for the user data, the machine itself could not store them. It was cost that forced

the encryption being processed character by character.

In 1949, Shannon proved the perfect security of the Vernam one-time pad cipher in

his famous paper [36]. So from that time, it was known as the theoretically unbreakable

cryptosystem. The effect of Shannon’s paper in 1949 was that the support and popularity of

stream ciphers increased dramatically. In a long period since that time, almost all units in

the world, such as the military and diplomatic services, commercial and spy organizations,

and telecommunication providers, used stream ciphers to exchange their secret messages.

In the 1960s, transistor-based encryption devices were introduced. They were fast but

still had little memories. Computers also were invented and had applications in that time.

But they were more used in cryptanalysis than in cryptography. So steam ciphers, encrypt-

ing each character of the plaintext due to the unavailability of external memories, remained

popular. Another milestone of stream ciphers is the invention of the linear feedback shift

register. Then the stream ciphers could be precisely analyzed and controlled by mathemat-

ical theory. Lots of research was done in the following decades since LFSR was invented.

Also it could be implemented and computed easily and fast. Therefore, stream ciphers con-

tinued their popularity. Until now, most military and diplomatic organizations still keep

their tradition to use stream ciphers to exchange important and top secret intelligence,

despite the great popularity of block ciphers in modern commercial areas.

Nowadays, lots of research efforts are devoted to stream ciphers. Generally, they could

be divided into two parts. The first one is the research for military and diplomatic purposes.

Scholars serving for this purpose conduct their research, develop and analyze their stream

cipher cryptosystems without publishing results in the open literature. Although we have

no information about their research, we are sure of one thing: there are many cryptography

researchers supported by their nations’ special foundations and the departments of defence.

The second part is the open research. Besides lots of individual stream cipher cryptogra-

phers in universities and industrial companies, there are some research organizations that

attract worldwide top cryptographers to design new stream cipher cryptosystems, ana-

lyze their security, and contribute to their applications. A good example is the ECRYPT

Stream Ciphers Project. Recently, the demand for standardized stream ciphers increased.

Chapter 1: Stream Ciphers and Their Realizations 3

? ?

k k

-m1

-ml

- c1

- cn

..............

..............

- -mj cj

Memoryless

Device

Devices with

Internal

Memory

C = Ek(M)

(a) Block Cipher

cj = Ef(k,δj)(mj)

(b) Stream Cipher

1

Figure 1.1: The basic two enciphering principles.

Therefore, stream ciphers will be a hot topic and attract lots of research attention in the

coming years. And we believe that in the near future, there will be some standardized

stream cipher that is widely used just as AES for block ciphers.

2. Basic Principles

Generally speaking, symmetric cryptosystems are divided into two types: block ciphers

and stream ciphers. Block ciphers operate an enciphering transformation on each “mes-

sage block” independently, for example every 64-bit string in DES. In contrast, stream

ciphers encipher each character of the message with a time-varying function to control its

internal state. The most obvious distinction between block and stream ciphers is “mem-

ory”, described by Figure 1.1 [32, Chapter 2].

A block cipher breaks the plaintext M = (m1,m2, . . . , ml) into a number of message

blocks with the same length and transforms them to the ciphertext C = (c1, c2, . . . , cn) via

an encryption function controlled by a secret key k. The encryption function is memoryless,

which means that the current ciphertext block depends only on the current input message

block and k. In fact, the encryption functions are permutations [3, Theorem 3.6.2]. On

the other hand, the stream cipher transforms each character of the plaintext mj to the

ciphertext cj with an encryption function having several internal memories, which implies

that the current jth state is decided by several previous states denoted by δj and the key

k. Since each enciphering step of the stream cipher is controlled by time-varying param-

eters, even two identical plaintext characters do not have the same ciphertext characters

in general. However, the encryption function of a block cipher may map two identical

Chapter 1: Stream Ciphers and Their Realizations 4

?

?

�

��

?

?

�

��

- - - -

Secret communication

channel exchanging k

Key generator
kj = f(k, δj)

Key generator
kj = f(k, δj)

Public communication channel

kj

mj cj

kj

mjcj

1

Figure 1.2: The basic working principle of stream cipher.

plaintext characters to the same objects. Therefore, the hackers may break some cipher-

text by comparing it with some ciphertext whose plaintext is already known. They also

could obtain some information about the plaintext by injecting, deleting, or replaying some

ciphertext. To avoid possible attacks against block ciphers caused by the above defect, the

block ciphers are usually implemented by encryption functions with additional memories,

such as electronic codebook mode, cipherblock chaining mode, cipher feedback mode, output

feedback mode, etc. For details, please refer to [3, Section 3.8].

The encryption function Ef(k,δj) used in stream ciphers is usually realized by a simple

operation: addition. For the convenience of implementation by hardware, the addition

is usually embedded in a field whose characteristic is 2. So one can easily see that the

encryption and decryption of stream ciphers are symmetric. The former works this way:

the cryptosystem generates a key stream by f(k, δj) for j = 1, 2, Here k is the secret

key and δj represents several previous states deciding the current jth state of the key

stream. Then each ciphertext character is given by cj = mj ⊕ f(k, δj). The procedure of

decryption is almost the same and the plaintext is obtained by mj = cj ⊕ f(k, δj). To get

a clearer picture of how it works, please see the Figure 1.2.

From the working procedures of stream ciphers, one can see that anyone having the

key stream could break the ciphertext easily because of the simplicity and symmetry of

its encryption and decryption functions. Therefore, for stream ciphers, the security of the

ciphertext relies on the secrecy of the key stream. So there are two basic requirements

on its security. The first one is that: from previous states of the key stream, one cannot

compute the next states of the key stream in a short time for practical purposes. Any

tools or methods used to predict the following states of the key stream are no better than

random guessing. Why do we require this property? This is because it is easy to obtain

Chapter 1: Stream Ciphers and Their Realizations 5

the old states of a key stream after they were used. Now suppose a key stream was used

to exchange intelligence in a local war. As the ciphertexts were transmitted in the public

communication channel, anyone would have them without any difficulty if he/she wanted.

Also some powerful men, or even ordinary people would get its corresponding plaintext

after a relatively short time, for example the secret military intelligence was released right

after the war. So these people could have the old states of the key stream just by adding

the ciphertext and plaintext. If from the previous states of the key stream, the hackers

could obtain some information about the key generator to guess the next states of the key

correctly with a high probability, then the stream ciphers obviously would be no longer

secure to exchange secret information in the future. That is why the first requirement

is imposed. The second requirement is that: the secret communication channel must be

perfectly secret, which means that only the two parties exchanging the secret information

have the secret key. Obviously, this is a universal requirement for all symmetric cryptosys-

tems. Cryptographers are usually more concerned about the first requirement. They try

their best to design fast and secure key stream generators, so that breaking the ciphertext

by usual cryptanalysis techniques is difficult and time consuming, especially for practical

purposes. Most successful breakings of the cipher, as history has shown, are due to the

violation of the second requirement caused by humans leaking secrets and bad administra-

tive procedures, especially in the key management domain [40, Chapter 2].

3. Synchronous and Self-Synchronous Stream Ciphers

The different ways to produce key streams specify two kinds of stream ciphers: synchronous

stream ciphers and self-synchronous stream ciphers. Differences between them come from

the parameters determining the current state of the key stream.

For synchronous stream ciphers, the current state is dependent on several previous key

stream states, but independent of the previous ciphertext characters. This implies that the

key stream generation is independent of the ciphertext transformation and can be carried

out separately both at the sender’s and the receiver’s ends. So when the Party A enciphers

a message using a synchronous stream cipher and sends the ciphertext to the receiver,

Party B, it must build a synchronization to guarantee the successful communication. More

exactly, when Party A sends the ciphertext character cj = mj ⊕ kj to Party B, Party B

must generate the corresponding key stream kj to obtain mj at the same time. If some

error happens during the transmission of cj, say it is lost or changed, Party A and Party

B must again set up their synchronization for communication.

Chapter 1: Stream Ciphers and Their Realizations 6

It is easy to imagine that the rebuilding of the synchronization involves quite complex

procedures. Whenever the synchronization is lost, the receiver, Party B, has two options

to deal with it. One is to search all the possible previous states of the key stream and

try to figure out the state at which the synchronization was lost, then compute the key

stream from that state. The other one is to contact the sender, Party A, then require the

sender to resend the ciphertext from some state where they could synchronize again. So

no matter which method is chosen, the resynchronization requires either lots of searching

and computation or a number of additional communication data.

However, this major disadvantage of synchronous stream ciphers is simultaneously a

defence against almost all active attacks on symmetric cryptosystems [32, Section 2.3].

Active attacks such as injection, deletion, replay of ciphertext, must lead to the loss of

synchronization. Therefore, the receiver and then the sender will be notified instantly that

there might be an active attack from a third party. If some hackers who could wiretap the

public communication channel change some characters of the ciphertext to simulate the

transmission errors caused by the communication channel, then either infrequent substitu-

tions will be corrected by the coding systems (nowadays, almost all the data transmission

hardware adopts the error-correcting coding systems), or too many substitutions will be

notified by the sender and receiver by the failure of transmissions, which is caused by the

number of errors exceeding the system’s tolerance. Therefore, these possible active attacks

on symmetric cryptosystems all fail when they are applied to synchronous stream ciphers.

Hence, we see a tradeoff between the security and the difficulty of synchronization. For

the sake of top security, it is worth the senders’ and the receivers’ great efforts to build the

synchronization between them.

As for the self-synchronous stream ciphers, the current state of the key stream is decided

by several previous characters of the ciphertext. Say the number of deciding characters

being n, and the key being k. The most common mode of self-synchronous stream ciphers

is cipher feedback mode. So with a key stream generating function f , each character of

key stream is given by: kj = f(k, cj−1, cj−2, . . . , cj−n). See Figure 1.3 to understand how it

works.

If a character of the ciphertext is lost or changed during the transmission, the error prop-

agates will forward to n characters in the key stream. Until another n correct ciphertext

characters are received, the sender and the receiver could re-establish the synchronization.

Compared to synchronous stream ciphers, the self-synchronous stream ciphers can be only

slightly immune to active attacks [32, Section 2.3], such as injection, deletion and replay

Chapter 1: Stream Ciphers and Their Realizations 7

?

?

�

��

?

?

�

��

? ?

�

cj

cj−1cj−n

? ?

-

cj

cj−1 cj−n.

- - - -

k k

Secret communication

channel exchanging k

Key Generator
kj = f(k, cj−1, . . . , cj−n)

Key Generator
kj = f(k, cj−1, . . . , cj−n)

Public communication channel

kj

mj cj

kj

mjcj

1

Figure 1.3: The self-synchronous stream ciphers.

-

?

- -

k δi ki

δi

Key stream generator f

δi+1 = f(k, δi)

Nonlinear filter F

ki = F (δi)

1

Figure 1.4: The working principle of the key stream generator.

of the ciphertext, therefore their security level is somewhat lower. And since their key

streams depend on the plaintext, more exactly on the ciphertext, there is a big limit on

the analyzability of self-synchronous stream ciphers.

4. The Key Stream Generator

As one can see from the above discussion, the key stream generator is the core part in

a stream cipher cryptosystem. So the understanding of key stream generators’ working

principles is quite important. Generally, the key stream generator consists of one or several

finite state machine/s, for example, linear feedback shift register, and a nonlinear filter.

After initialization, the finite state machine f , controlled by the secret key k, is input a

current state δi and maps it to the next state δi+1 = f(k, δi). The nonlinear filter F maps

each state to an element ki = F (δi) in its embedded field and outputs it as a character of

the key stream. See Figure 1.4.

Since the outputs of every finite state machine are ultimately periodic (it will be proved

Chapter 1: Stream Ciphers and Their Realizations 8

in Chapter 3), any key stream generators could be implemented by Linear Feedback Shift

Registers (LFSRs) for the convenience of hardware. To achieve a high level of security, a

good nonlinear filter F is needed because LFSRs are linear devices and could be analyzed

easily. Therefore the design of good nonlinear filters has to satisfy several crucial require-

ments [32, Section 2.2] for the top security. Call the sequences generated by the finite state

machine the periodic driving sequences. Now we list these requirements:

1. F transfers the statistical properties of the periodic driving sequences to the key

stream.

2. F maximizes the period of the key stream compared to the periods of the driving

sequences.

3. F maximizes the linear complexity of the key stream.

4. F does not leak, which means that it is immune to modularizing attack.

5. F is easy to implement and can be computed fast.

6. F should easily be controlled by the key k.

Under known plaintext attacks, the security of stream ciphers relies on the key stream. So

the basic idea to design the keystream generator is making the key stream unpredictable.

The above requirements are necessary to guarantee the unpredictability. To get a more

concrete picture of the key generators and nonlinear filters, one could refer to the last

section in this chapter for some real examples and Chapter 2 for principles.

Chapter 1: Stream Ciphers and Their Realizations 9

1.2 Theoretical Security of One-Time Pad Ciphers

The popularity of stream ciphers in military and diplomatic organizations is due to the

perfect security of one-time pad ciphers. In fact, the core criterion of a secure key stream,

the unpredictability, is the main characteristic of one-time pad cipher’s key stream. After

understanding the mathematical fundamentals of the theoretical security of Vernam one-

time pad ciphers, one could clearly realize the design principles of stream ciphers.

1. Perfect Security

Let M, C,K, E ,D be the finite plaintext space, the finite ciphertext space, the finite key

space, the finite family of the encryption functions and the finite family of the decryption

functions, respectively. The encryption and decryption functions with key k are denoted

by Ek and Dk, respectively. Suppose M and K represent real-valued random variables on

M and K, respectively, and let PM : M → [0, 1], PC : C → [0, 1], PK : K → [0, 1] be

the probability maps. For the simplicity of notations, use Pm, Pc and Pk to represent the

probability of the plaintext M = m for m ∈ M , the ciphertext C = c for c ∈ C and the

probability of the key K = k in the key space k ∈ K, respectively. Use H(X) to denote

the entropy of the random variable X in the space X .

Definition 1.1 A symmetric cryptosystem (M, C,K, E ,D) is called perfectly secure (or

has perfect security) if H(M |C) = H(M) for every probability distribution PM .

Therefore from the definition, in a perfectly secure cryptosystem, knowing the cipher-

text distribution does not help to lower the uncertainty of the plaintext, i.e, observing the

ciphertext via a public communication channel does not help the hackers to derive any

information on the plaintext. This would be the ideal situation for the sender and receiver

since the only information hackers could get, the ciphertext, would not leak any informa-

tion about the perfectly secure cryptosystem. So the next task is to find some perfectly

secure cryptosystem.

Since we suppose M and C are both finite spaces, we can assume that Pmi
> 0 and

Pcj
> 0 for all mi ∈ M, cj ∈ C. By the definition of entropy, H(M) =

p∑
i=1

Pmi
log2(

1

Pmi

).

Therefore for some cj, we have H(M |cj) =
q∑

i=1

Pmi|cj
log2(

1

Pmi|cj

). Then, the conditional

entropy H(M |C) is defined to be the weighted average of the conditional uncertainty of M

Chapter 1: Stream Ciphers and Their Realizations 10

given that C = cj:

H(M |C) =

q∑
j=1

Pcj
H(M |cj) =

q∑
j=1

p∑
i=1

Pcj
Pmi|cj

log2(
1

Pmi|cj

) =

q∑
j=1

p∑
i=1

P(mi,cj) log2(
1

Pmi|cj

),

where P(mi,cj) represents the probability of mi being enciphered to cj. Since the joint en-

tropy is given by H(M,C) =
p∑

i=1

q∑
j=1

P(mi,cj) log2(
1

P(mi,cj)

) and P(mi,cj) = Pcj
Pmi|cj

, we have:

H(M,C) =

p∑
i=1

Pmi
log2(

1

Pmi

) +

p∑
i=1

q∑
j=1

P(mi,cj) log2(
1

Pcj |mi

) = H(M) + H(C|M).

By the same argument, one could easily get H(M,C) = H(C) + H(M |C). Now, de-

fine the system mutual information I(M ; C) = H(M) − H(M |C). Then I(M ; C) =

H(M) + H(C)−H(M,C). Therefore, we have:

I(M ; C) =

p∑
i=1

Pmi
log2(

1

Pmi

) +

q∑
j=1

Pcj
log2(

1

Pcj

)−
p∑

i=1

q∑
j=1

P(mi,cj) log2(
1

P(mi,cj)

)

=

p∑
i=1

q∑
j=1

P(mi,cj)[log2 P(mi,cj) − log2 Pmi
− log2 Pcj

]

=

p∑
i=1

q∑
j=1

P(mi,cj) log2[
P(mi,cj)

Pmi
Pcj

].

By the Gibbs inequality, we have the I(M ; C) ≥ 0, and the equality holds only when

P(mi,cj) = Pmi
Pcj

for all i, j. This means that the cryptosystem is perfectly secure if and

only if M and C are independent. So the probabilistic independence between the plaintext

and ciphertext is the core of perfect security.

2. The Perfect Security of the Vernam One-Time Pad Cipher

The famous cryptosystem Vernam one-time pad cipher was invented and patented in 1917

by Gilbert Vernam. But its perfect security was not proved until 1949 by Shannon in

[36]. Say the finite meaningful message space M consists of strings with length n and

each character is embedded in the binary field F2, then M is a subset of Fn
2 . So is the

key space K and the ciphertext space C. The protocol of the Vernam one-time pad cipher is:

Input: A plaintext mi = (xi
1, x

i
2, . . . , x

i
n); a key kt = (kt

1, k
t
2, . . . , k

t
n), whose bits are inde-

pendent and uniformly distributed.

Output: The corresponding ciphertext cj = (xi
1 ⊕ kt

1, x
i
2 ⊕ kt

2, . . . , x
i
n ⊕ kt

n).

Chapter 1: Stream Ciphers and Their Realizations 11

Since each character of the key stream is independent and uniformly distributed, then

Pkt =
1

2n
and K = Fn

2 . Then for any mi ∈ M, mi ⊕ K .
= {mi ⊕ k, for all k ∈ K}

must be equal K, which means the ciphertext space C is equal to Fn
2 . So for any mi, cj,

there is exactly one key kt such that cj = mi ⊕ kt. Moreover, M,K, C are all finite, so

Pmi
> 0, Pcj

> 0, Pkt > 0 for any mi ∈M, cj ∈ C, kt ∈ K.

Firstly P(mi,cj) = Pmi
× 1

2n because the probability of the key k = mi ⊕ cj is 1
2n and

choosing this key is independent of the plaintext content. Although here we represent

the key k by cj, it is choosing the key first and then the ciphertext is decided. Next,

Pcj
=

∑N
e=1 Pme × Pke , where me ⊕ ke = cj. Since we already know the existence and the

uniqueness of the key k such that c = m ⊕ k for any m ∈ M, c ∈ C, me must go through

all elements in M. Since Pke = 1
2n , we have that Pcj

= 1
2n (

∑
e

Pme) = 1
2n . Therefore,

P(mi,cj) = Pmi
Pcj

for all i, j, which means H(M) = H(M |C). Hence we have proved that

the Vernam one-time pad cipher is perfectly secure.

The perfect security of the Vernam one-time pad cipher relies on the key stream, a

sequence of independent and uniformly distributed bits. So simulating a “random looking”

sequence, whose bits are uniformly and independently distributed, is the main task of

stream cipher key generator design. But it is quite a hard mission. Firstly, there is

no definite mathematical definition of true randomness. The best situation is that we

could define pseudorandomness to serve some special purpose, which we will discuss in

Chapter 3. Secondly, any concrete algorithm must be deterministic, but the deterministic

procedures cannot produce truly independent outputs since any current procedure must

rely on previous procedures. Therefore, until now, no one could design a device to produce

a truly random sequence. Moreover, the keystream should be at least as long as the

plaintext and each key should be used only once (this is because repeatedly using a key k

will render the non-first-time encryption insecure under the known plaintext attacks and

replay attacks). Then the exchanging of the private key becomes difficult due to its big

data volume and costs a lot because of its one-time use. If the sender and the receiver

have an ideal secret channel to exchange the keys of the Vernam one-time pad cipher, then

would it not be a better idea to deliver the secret messages directly via this channel? So

we say the perfect security of the Vernam one-time pad cipher is theoretical. But this

ideal model informs cryptographers that they should try to simulate random sequences to

achieve perfect security. Now we are more aware of the criteria of the practical design of

stream ciphers:

Chapter 1: Stream Ciphers and Their Realizations 12

• The key, controlling the key stream generation, should be relatively short and easy

to transmit via a secret channel with low cost.

• The generated key stream should look random from the distribution and complexity

viewpoints.

• The algorithm to generate the key stream should be computed fast and implemented

easily.

To summarize, the perfect security of the Vernam one-time pad cipher makes the stream

ciphers using the same encryption method popular because if the key stream is “truly

random”, which means all the bits distribute uniformly and independently, then the stream

ciphers must be perfectly secure. However, the intrinsic drawbacks make the Vernam one-

time pad cipher unpractical. So these operational disadvantages led to the development

of the stream ciphers, especially synchronous stream ciphers. In the next section, we

will briefly introduce some good key generators of stream ciphers published in the open

literature.

Chapter 1: Stream Ciphers and Their Realizations 13

1.3 Practical Realizations of the Key Stream in Stream

Ciphers

In this section, we divide these key stream generators into two parts. The first kind of

key stream generators is given by the combinations of Linear Feedback Shift Registers and

some special nonlinear filters. LFSRs are easy to implement by hardware and fast to com-

pute. So they are widely used in the design of the key stream generators. Here we give

some concrete examples. Denote the ith LFSR and its jth state by < Li,Mi(x) > and xj,

respectively.

1. Knapsack Generator

In fact, this is a real implementation of the first kind of the nonlinear filters which will be

described in the following chapter.

Input: An LFSR < L, M(x) > with the initial state x0 = (x0
1, x

0
2, . . . , x

0
L); modulus Q; L

knapsack weights w1, w2, . . . , wL of size n bits each.

Algorithm: For i = 1, 2, . . ., do

1. Compute the ith state of the LFSR xi.

2. Compute the knapsack sum Si =
L∑

k=1

xi
kwk mod Q.

3. Extract some bits of Si to be Zi.

Output: the sequence Zi, for i = 1, 2,

The security of the nonlinear filter, the knapsack sum, lies in the hardness of the knap-

sack problem. It is already known as an NP-complete problem [12]. For details on the

analysis of this generator, one can refer to [31].

2. Threshold Generator

Actually, this is a published proposal of a key stream generator, being an implementation

of the second type of the nonlinear filters which will be discussed later.

Input: n LFSRs < Li,Mi(x) > with initial states iI
0 = (iI

0
1 ,i I

0
2 , . . . ,i I

0
Li

).

Algorithm: For j = 1, 2, . . ., do

1. For i = 1, 2, . . . , n, compute the jth state of each LFSR < Li,Mi(x) > and extract

iI
j
1 for each i.

Chapter 1: Stream Ciphers and Their Realizations 14

2. Compute the integer sum of the current output bits sj =
n∑

i=1
iI

j
1 .

3. zj = 1 if sj >
n

2
; zj = 0 otherwise.

Output: the sequence zj, for j = 1, 2,

This generator can have large linear complexity while it still maintains good statistical

properties [2]. Its algorithm is also very simple and fast. And z = {zj} will be balanced

when n is odd [40, Chapter 2]. But there is positive correlation between z and the n LFSRs

< Li,Mi(x) >, so it is cryptographically weak [40, Chapter 2].

3. Multiplexer Generator

Multiplexer generator, although it still belongs to the second kind of nonlinear filters, repre-

sents one kind of design ideas of key stream generators: technology-driven protocols. Some

algorithms are developed according to the availability of some hardware so they could be

implemented easily and conducted fast.

Input: Two LFSRs < L1,M1(x) >,< L2,M2(x) > with initial states x0,y0; a positive

integer n; a control vector v = (v0, v1, . . . , vn−1) such that 1 ≤ v0 < v1 < · · · < vn−1 ≤ L1.

Algorithm: For i = 1, 2, . . ., do

1. Compute the ith state of each LFSR < L1,M1(x) >,< L2,M2(x) >, xi = (xi
1, x

i
2, . . . , x

i
L1

),

and yi = (yi
1, y

i
2, . . . , y

i
L2

) .

2. Compute the integer ai =
n−1∑
k=0

2kxi
vk

.

3. Extract zi = yi
θ(ai)

, where θ is an invertible mapping from {0, 1, . . . , 2n − 1} to

{1, 2, . . . , L2}.
Output: the sequence zi, for i = 1, 2,

This generator is due to the invention of the multiplexer circuit. Detailed analysis can

be found in Jennings [13], [14]. Besides multiplexer generator, Pless generator is also an

example which was developed after the availability of the hardware, J-K flip-flop circuits.

The second kind of key stream generators does not employ LFSRs. Their design ideas

originate from number theory and well-known hard problems, such as discrete logarithm,

quadratic residue, etc.. The security of most generators is built on computational complex-

ity. So ideas of these generators are classified under the complexity-theoretic approach [40,

Chapter 1: Stream Ciphers and Their Realizations 15

Chapter 2]. Let us introduce a concrete generator as an example.

4. Quadratic Residue Generator

As is well known, given y ∈ Z, it is in general hard to find x ∈ Z such that the congruence

y = x2 mod N is satisfied. If there exists such x, then y is called a quadratic residue

mod N . Denote by QRN the set of all quadratic residues mod N .

Input: A modulus N of length n; x1 ∈ QRN which is chosen randomly.

Algorithm: For i = 1, 2, . . ., do

1. zi = xi mod 2, zi ∈ {0, 1}
2. xi+1 = x2

i mod N

Output: the sequence zi, for i = 1, 2,

The security of the quadratic residue generator relies on the difficulty of solving quadratic

congruences. In [40, Chapter 2], under the quadratic residuosity assumption, the gener-

ating key stream {zi} is proved to be unpredictable, which means the probability of any

predictor to predict each key bit successfully is less than
1

2
, and indistinguishable by all

polynomial-time statistical tests. So the quadratic residue generator is called perfect.

Chapter 2

Linear Recurring Sequences and

Linear Complexity

In the 1950s, Linear Feedback Shift Registers were introduced into stream cipher appli-

cation. In the following decades, since they are easy to implement by hardware and fast

to process, LFSRs were often recommended to be the pseudorandom sequences genera-

tors. And what is more important is that because of the adoption of LFSRs in stream

ciphers, cryptographers and mathematicians could use rigorous mathematical theory to

analyze their security. Also because LFSRs are linear devices, the linear complexity is a

vital concept to determine the security levels of stream ciphers (for other complexity mea-

surements such as higher-order complexity, 2-adic complexity measures and complexity

measures based on pattern counting, one could refer to [27]). And the linear complexity

profile is also a good tool to measure the randomness of generated sequences which is

discussed in Chapter 3. Therefore, in this chapter, we will give the detailed theoretical

analysis of Linear Recurring Sequences and their linear complexities.

2.1 Introduction and Mathematical Fundamentals

In this section, we will introduce some concepts and algebraic tools which will be employed

later. There are lots of excellent references on the finite field algebraic structures. One may

refer to [18] for basic background and exciting results. Firstly, some important definitions

should be given. From now on, let Fq be the finite field of order q, where q is an arbitrary

prime power.

16

Chapter 2: Linear Recurring Sequences and Linear Complexity 17

- - - - - - - - sn

�

��

��
��

�

��

��
��

�

��

��
��

�

��

��
��

�

��

��
��

�

��

��
��

� � � �...... � �

6

6

6

6

6

6

6

6

6

6

6

6

ak
ak−1ak−2a1 a2 a3

+ + + + + +a

D D D D D D

sn+k−1 sn+k−2 sn+k−3 sn+2 sn+1

• • • • • •

1

Figure 2.1: The General Form of Feedback Shift Register.

Definition 2.1: Let k be a positive integer, and ai ∈ Fq for 1 ≤ i ≤ k + 1. Then call a

sequence s̃ = (s1, s2, . . . , si, . . .) of elements in Fq satisfying

sn+k = a1sn+k−1 + a2sn+k−2 + · · ·+ aksn + ak+1 for n = 1, 2, . . . (2.1)

a kth-order linear recurring sequence in Fq. The terms s1, s2, . . . , sk are called initial

values. If ak+1 = 0, we call (2.1) homogeneous and s̃ a homogeneous linear recur-

ring sequence. Otherwise, (2.1) and s̃ are called inhomogeneous and inhomogeneous

linear recurring sequence, respectively.

Linear recurring sequences usually are generated by a feedback shift register. It is a kind

of electronic switching circuit consisting of four basic types. The first one is an adder with

two inputs a, b ∈ Fq and one output a
⊕

b ∈ Fq; the second one is a constant k multiplier

with an input a ∈ Fq and an output ka ∈ Fq; the third one is a constant k adder with an

input a and an output a
⊕

k ∈ Fq; the last one is a delay element D with an input and an

output controlled by a time parameter such that the output is one time unit later than the

input. A general form of a feedback shift register for (2.1) is given by Figure 2.1 (a = ak+1).

Definition 2.2: Call s̃ = (s1, s2, . . . , si, . . .) ultimately periodic if there are positive

integers n0 and T such that sn+T = sn for all n ≥ n0. The number T is called a period of

s̃. If n0 = 1, then s̃ is called periodic. The smallest T is called the minimal period.

Let us consider the homogeneous linear recurring sequences in Fq satisfying the linear

recurrence relation

sn+k = a1sn+k−1 + a2sn+k−2 + · · ·+ aksn for n = 1, 2, . . . , (2.2)

Chapter 2: Linear Recurring Sequences and Linear Complexity 18

where ai ∈ Fq for 1 ≤ i ≤ k. Now we introduce some crucial definitions in the analysis of

homogeneous linear recurring sequences.

Definition 2.3: The characteristic polynomial fs̃(x) of the linear recurring sequence

s̃ = (s1, s2, . . . , si, . . .) satisfying (2.2) is defined by

fs̃(x) = xk − a1x
k−1 − a2x

k−2 − · · · − ak−1x− ak ∈ Fq[x]. (2.3)

And its reciprocal characteristic polynomial f ∗s̃ (x) is given by

f ∗s̃ (x) = xkf(
1

x
) = 1− a1x

1 − a2x
2 − · · · − ak−1x

k−1 − akx
k ∈ Fq[x]. (2.4)

Set ss̃(x) = s1x
T−1+s2x

T−2+· · ·+sT−1x+sT and a0 = −1. Then a very important relation-

ship between a homogeneous linear recurring sequence with period T and its characteristic

polynomial is given by the following identity [18, Section 6.2]:

fs̃(x)ss̃(x) = (1− xT)hs̃(x), (2.5)

where hs̃(x) is given by

hs̃(x) =
k−1∑
j=0

k−j∑
i=1

ak−i−jsix
j ∈ Fq[x]. (2.6)

There is also another very interesting connection between si and the roots of the character-

istic polynomial of s̃, when it is irreducible over Fq. Suppose s̃ is a kth order homogeneous

linear recurring sequence in Fq and fs̃(x) is irreducible. Let α be a root of fs̃(x) in the

extension field Fqk , then there exists a unique θ ∈ Fqk such that

si = TrF
qk/Fq(θα

i) = θα + (θαi)q + (θαi)q2

+ · · ·+ (θαi)qk−1

for i = 1, 2, (2.7)

Definition 2.4: A nonzero homogeneous linear recurring sequence over Fq whose char-

acteristic polynomial is a primitive polynomial over Fq is called a maximal period se-

quence.

An immediate conclusion following Definition 2.4 is that a kth order maximal period

sequence is periodic and its minimal period achieves the largest possible value qk − 1 [18,

Section 6.2].

Chapter 2: Linear Recurring Sequences and Linear Complexity 19

Definition 2.5: Let s̃ = (s1, s2, . . . , si, . . .) be a homogeneous linear recurring sequence

in Fq and L be the set of all linear recurrence relations which can generate s̃. Then the

characteristic polynomial of the minimal linear recurrence relation which has the small-

est order in L is called the minimal polynomial of s̃. And the smallest order, which is

the same as the degree of the minimal polynomial of s̃, is called the linear complexity of s̃.

Definition 2.6: Let s̃ = (s1, s2, . . . , si, . . .) over Fq. Then its generating function is

defined to be a formal power series with an indeterminate x given by

Gs̃(x) = s1 + s2x + s3x
2 + · · ·+ snx

n−1 + · · · =
∞∑
i=1

six
i−1 ∈ Fq[[x]]. (2.8)

For a finite sequence s̃ = (s1, s2, . . . , sn) over Fq, we assign zeros to be the terms after n.

The algebraic computations of these formal power series involve addition and multi-

plication. Suppose B(x) =
∞∑
i=1

bix
i−1 and C(x) =

∞∑
j=1

cjx
j−1, then their sum is defined

by

B(x) + C(x) =
∞∑

n=1

(bn + cn)xn−1

and their multiplication is given by

B(x)C(x) =
∞∑

n=1

dnx
n−1, where dn =

n∑

k=1

bkcn+1−k for n = 1, 2,

Based on the above definitions, we have [B(x)C(x)]D(x) = B(x)[C(x)D(x)] and B(x)[C(x)+

D(x)] = B(x)C(x) + B(x)D(x). Moreover, the formal power series B(x) =
∞∑
i=1

bix
i−1 has a

multiplicative inverse if and only if b1 6= 0 [18, Section 6.3]. Now we are ready to introduce

some strong tools to analyze the linear recurring sequences.

Theorem 2.1: Let s̃ = (s1, s2, . . . , si, . . .) be a kth order homogeneous linear recurring

sequence in Fq, whose linear recurrence relation is given by (2.2). Suppose f ∗s̃ (x) ∈ Fq[x]

is the reciprocal characteristic polynomial of s̃, and let Gs̃(x) ∈ Fq[[x]] be its generating

function. Set a0 = −1. Then there is a gs̃(x) ∈ Fq[x] such that

Gs̃(x) =
gs̃(x)

f ∗s̃ (x)
, where gs̃(x) = −

k−1∑
j=0

(

j+1∑
i=1

aj+1−isi)x
j. (2.9)

Chapter 2: Linear Recurring Sequences and Linear Complexity 20

Conversely, if g(x) is any polynomial over Fq with deg(g(x)) < k and if f ∗(x) is equal to

(2.4), then the formal power series G(x) ∈ Fq[[x]] defined by G(x) =
g(x)

f ∗(x)
is the gen-

erating function of a kth order homogeneous linear recurring sequence in Fq whose linear

recurrence relation is given by (2.2).

Proof: Firstly let us consider the first part of this theorem. We have

f ∗s̃ (x)Gs̃(x) = −
(k∑

n=0

anx
n
)(∞∑

n=1

snx
n−1

)

= −
k−1∑
j=0

(j+1∑
i=1

aj+1−isi

)
xj −

∞∑

j=k

(k+1∑
i=1

ak+1−isj−k+i

)
xj

= gs̃(x)−
∞∑

j=k

(k+1∑
i=1

ak+1−isj−k+i

)
xj. (2.10)

From (2.2), we have sj+1 =
k∑

i=1

aisj+1−i, which implies
k+1∑
i=1

ak+1−isj−k+i = 0. Therefore,

given f ∗(0) = 1, the identity (2.9) holds.

Then, consider the second part of this theorem. Since G(x) =
g(x)

f ∗(x)
, we have g(x) =

f ∗(x)Gs̃(x). Therefore, the fact deg(g(x)) < k forces
k+1∑
i=1

ak+1−isj−k+i = 0, which implies

sj+1 =
k∑

i=1

aisj+1−i for all j ≥ k. Hence, s̃ = (s1, s2, . . . , si, . . .) whose generating polyno-

mial is G(x) satisfies the linear recurrence relation (2.2). 2

Remark: Here we have a relation between gs̃(x) and hs̃(x) defined in (2.6), which is given

by xk−1gs̃(
1

x
) = −hs̃(x).

Theorem 2.2: Let s̃ = (s1, s2, . . . , si, . . .) be a homogeneous linear recurring sequence over

Fq. Then there exists a unique polynomial ms̃(x) such that it is the minimal polynomial of

s̃ and a monic polynomial f(x) ∈ Fq[x] with positive degree is a characteristic polynomial

of s̃ if and only if ms̃(x) | f(x).

Proof: Since every homogeneous linear recurring sequence over Fq is ultimately periodic,

we can suppose the period of s̃ is T . Now let fs̃(x) be the characteristic polynomial of s̃,

Chapter 2: Linear Recurring Sequences and Linear Complexity 21

hs̃(x) be given by (2.6) and gs̃(x) be defined as in (2.9). Suppose d(x) = gcd(fs̃(x), hs̃(x))

to be monic, then define ms̃(x) =
fs̃(x)

d(x)
. Obviously, ms̃(x) is monic.

Now let f(x) ∈ Fq[x] be an arbitrary characteristic polynomial of s̃. And let h(x) and

g(x) be its corresponding polynomials defined by (2.6) and (2.9) given the linear recurrence

relation of s̃ defined by f(x). Therefore according to Theorem 2.1, we have

Gs̃(x) =
gs̃(x)

f ∗s̃ (x)
=

g(x)

f ∗(x)
.

Hence g(x)f ∗s̃ (x) = gs̃(x)f ∗(x). By the remark after Theorem 2.1,

h(x)fs̃(x) = −xdeg[f(x)]−1g(
1

x
)xdeg[fs̃(x)]f ∗s̃ (

1

x
) = −xdeg[fs̃(x)−1]gs̃(

1

x
)xdeg[f(x)]f ∗(

1

x
) = hs̃(x)f(x).

Now divide d(x) on both sides of h(x)fs̃(x) = hs̃(x)f(x), then we have h(x)ms̃(x) =
hs̃(x)

d(x)
f(x), which forces ms̃(x) | f(x) by the definition of d(x).

Now suppose f(x) ∈ Fq is a monic polynomial and f(x) = ms̃(x)r(x). Then f ∗(x) =

m∗
s̃(x)r∗(x). Let R(x) =

hs̃(x)

d(x)
. Hence, by hs̃(x)ms̃(x) = R(x)fs̃(x), we have

gs̃(x)m∗
s̃(x) = −xdeg[fs̃(x)]−1hs̃(

1

x
)xdeg[ms̃(x)]ms̃(

1

x
) = −xdeg[ms̃(x)]−1R(

1

x
)xdeg[fs̃(x)]fs̃(

1

x
).

Since deg[R(x)] < deg[ms̃(x)], t(x) = −xdeg[ms̃(x)]−1R(
1

x
) is a polynomial in Fq[x]. By

gs̃(x)m∗
s̃(x) = t(x)f ∗s̃ (x),

Gs̃(x) =
gs̃(x)

f ∗s̃ (x)
=

t(x)

m∗
s̃(x)

=
t(x)r∗(x)

f ∗(x)
.

Because deg[t(x)r∗(x)] = deg[t(x)]+deg[r∗(x)] < deg[ms̃(x)]+deg[r(x)] = deg[f(x)], from

Theorem 2.1, we conclude that f(x) is a characteristic polynomial of s̃.

Suppose Ms̃(x) is the minimal polynomial of s̃. We have ms̃(x) | Ms̃(x). But according

to the definition of the minimal polynomial, we get deg[Ms̃(x)] ≤ deg[ms̃(x)], then we have

ms̃(x) = Ms̃(x) is the minimal polynomial. Suppose there is another minimal polynomial

m(x) of s̃. Then given both are monic, ms̃(x) | m(x) and m(x) | ms̃(x) imply the unique-

ness. 2

Chapter 2: Linear Recurring Sequences and Linear Complexity 22

Definition 2.7 Let s̃ = (s1, s2, . . . , sn) be a finite sequence over Fq. Denote the linear

complexity of the first i terms (s1, s2, . . . , si) by L(s̃i). Then the linear complexity pro-

file of s̃ is defined to be the sequence (L(s̃1), L(s̃2), . . . , L(s̃n)). For an infinite sequence

s̃ = (s1, s2, . . . , si, . . .), its linear complexity profile is defined to be the corresponding infi-

nite sequence (L(s̃1), L(s̃2), . . . , L(s̃i), . . .).

According to the discussion of Chapter 3, the linear complexity and the linear complex-

ity profile of a sequence s̃ are two vital characteristic parameters to measure its security

when it is used as the key stream. Therefore, we will introduce two methods to compute

the linear complexity profile of s̃ next. The first one is called Berlekamp-Massey algorithm

invented by J. L. Massey [20] in 1969, which is based on the iterative algorithm first intro-

duced by Berlekamp for decoding BCH codes.

Now let s̃ = (s1, s2, . . . , si, . . .) over Fq, s̃n = (s1, s2, . . . , sn) and the linear complexity

of s̃n be denoted by L(s̃n). Suppose f ∗s̃n(x) = 1 − an
1x − an

2x
2 − · · · − an

L(s̃n)x
L(s̃n) ∈ Fq[x]

to be the reciprocal characteristic polynomial of s̃n. The basic idea of the Berlekamp-

Massey algorithm is that: if for some m such that sn+m−1 =
L(s̃n)∑
i=1

an
i sn+m−1−i but sn+m 6=

L(s̃n)∑
i=1

an
i sn+m−i, then we have

L(s̃n+m) = max(L(s̃n), n + m− L(s̃n)), (2.11)

and the new reciprocal characteristic polynomial of s̃n+m is given by

f ∗s̃n+m(x) = f ∗s̃n(x)−
sn+m − (

L(s̃n)∑
i=1

an
i sn+m−i)

st − (
t−L(s̃n)∑

i=1

at
ist−i)

xn+m−tf ∗s̃t−1(x), (2.12)

where t is the positive integer such that L(s̃t−1) < L(s̃t) = L(s̃n).

Berlekamp-Massey Algorithm:

Input: s̃n = (s1, s2, . . . , sn).

1. Initialization: f ∗(x) := 1, B(x) := 1, r := 1, L := 0, b := 1, i := 1.

2. For i=1:n, do

Chapter 2: Linear Recurring Sequences and Linear Complexity 23

• Compute d = si −
L∑

j=1

ajsi−j.

Here if L = 0, let
L∑

j=1

ajsi−j = 0; If L = 1, i = 1, let
L∑

j=1

ajsi−j = 0.

• If d = 0, then let r := r + 1 and i := i + 1.

• If d 6= 0 and 2L ≤ i, then let

T (x) := f ∗(x);

f ∗(x) := f ∗(x)− db−1xrB(x);

L := i + 1− L; B(x) := T (x);

b := d, r := 1;

i := i + 1;

3. Return L.

Output: L(s̃n) = L.

The second method to determine the linear complexity of s̃ = (s1, s2, . . . , si, . . .) is

given by the continued fraction expansion of G̃s̃(x) =
∞∑
i=1

si

(1

x

)i

. This method was first

introduced by Harald Niederreiter in [26]. We summarize it here. Firstly, let D = Fq[[
1

x
]].

Then for every g ∈ D, there is a unique continued fraction expansion of g given by

g = A0 + 1/(A1 + 1/(A2 + · · ·)) := [A0, A1, A2, . . .], (2.13)

where Ai ∈ Fq[x] for all i ≥ 0 and deg(Ai) ≥ 1 for all i ≥ 1. For S =
∞∑
i=r

six
−i ∈ Fq[[

1

x
]],

define its polynomial part by

Pol(S) =
0∑

i=r

six
−i.

Now suppose s̃ = (s1, s2, . . . , si, . . .) is in Fq, s̃n = (s1, s2, . . . , sn) and G̃s̃ =
∞∑
i=1

si

(1

x

)i

. Set

A0 = Pol(G̃s̃), B0 = G̃s̃ − Pol(G̃s̃), P−1 = 1, P0 = A0, Q−1 = 0, Q0 = 1. Now define Aj,

Bj, Pj, Qj recursively by

Aj+1 = Pol(B−1
j), Bj+1 = B−1

j − Pol(B−1
j) for j ≥ 0,

Pj = AjPj−1 + Pj−2, Qj = AjQj−1 + Qj−2 for j ≥ 1.

Then, the linear complexity L(s̃n) is given by L(s̃n) = deg(Qj), where j ≥ 0 is uniquely

determined by

deg(Qj−1) + deg(Qj) ≤ n < deg(Qj) + deg(Qj+1).

Chapter 2: Linear Recurring Sequences and Linear Complexity 24

One can refer to [26] for the rigorous proof.

Besides these two algorithms, we will consider another way to find the linear complexity

of periodic sequences. This is very important for the discussion in Chapter 4.

Theorem 2.3: Let s̃ = (s1, s2, . . . , si, . . .) be a periodic sequence over Fq with the minimal

period T . Let gs̃(x) = s1 + s2x + · · · + sT xT−1 and D(x) = gcd(gs̃(x), 1 − xT). Then its

linear complexity L(s̃) is given by L(s̃) = deg
(1− xT

D(x)

)
.

Proof: Let Gs̃(x) be the generating function of s̃. Since sn+T = sn for all n ≥ 1 and the

constant term of 1− xT is nonzero, we have

Gs̃(x) =
gs̃(x)

1− xT
.

From the proof of Theorem 2.2, we know that the minimal polynomial ms̃(x) of s̃ is given

by
fs̃(x)

gcd(fs̃(x), hs̃(x))
, where hs̃(x) is defined as in (2.6). Since s̃ is periodic with the minimal

period T , its characteristic polynomial is given by fs̃(x) = xT − 1. After computation, we

have hs̃(x) = −xT−1gs̃(
1

x
) and gs̃(x) = −xT−1hs̃(

1

x
). Suppose xT − 1 = d(x)a(x) and

hs̃(x) = d(x)b(x), where d(x) = gcd(xT − 1, hs̃(x)). Then by the remark after Theorem

2.1, we have gs̃(x) = −xT−1d(
1

x
)b(

1

x
). Obviously, we have ms̃(x) = a(x), a(0) 6= 0 and

L(s̃) = T − deg(d(x)). Now consider

s̃m(x)
.
=

1− xT

gcd(1− xT , gs̃(x))
=

−d(x)a(x)

gcd(−d(x)a(x),−xT−1d(
1

x
)b(

1

x
))

=
xT d(

1

x
)a(

1

x
)

gcd
(
xT d(

1

x
)a(

1

x
),−xT−1d(

1

x
)b(

1

x
)
)

=
xdeg(a(x))a(

1

x
)

gcd
(
xdeg(a(x))a(

1

x
),−xdeg(a(x))−1b(

1

x
)
) .

For any irreducible polynomial p(x) ∈ Fq[x] with degree m ≥ 2, we have

p(x) =
m−1∏
i=0

(x− θqi

), where p(θ) = 0.

Chapter 2: Linear Recurring Sequences and Linear Complexity 25

Then,

p∗(x) = xmp(
1

x
) =

m−1∏
i=0

(−θqi

)
m−1∏
j=0

(x− (
1

θ
)qj

).

Since gcd(qm − 1, qm − 2) = 1, then
1

θ
= θqm−2 is still a defining element of Fqm , which

implies p∗(x) is also irreducible. If m = 1, the conclusion holds obviously. Now, factoring

a(x), b(x) to canonical forms, we conclude that gcd(a∗(x), b∗(x)) = 1. Because a∗(0) 6= 1

and deg(b(x)) < deg(a(x)), s̃m(x) must be equal to a∗(x) = xdeg(a(x))a(
1

x
). Therefore

deg(s̃m(x)) = deg(a∗(x)) = deg(a(x)) = T − deg(d(x)) = L(s̃). 2

Now according to Theorem 2.3, we can just find the minimal polynomial of a periodic

sequence s̃ directly from 1− xT and the corresponding polynomial of its first minimal pe-

riod terms by computing their greatest common divisor.

Proposition 2.1: Let s̃ be a periodic sequence over Fq with period T and Gs̃(x) be

its generating function. Suppose ms̃(x) is the minimal polynomial of s̃ and gs̃(x) =

s1 + s2x + · · ·+ sT xT−1. Then ms̃(x) = E∗(x), where E(x) =
1− xT

gcd(gs̃(x), 1− xT)
.

Proof: Directly from the proof of Theorem 2.3. 2

Remark: Notice that if a(x), b(x) ∈ Fq[x] such that a(0)b(0) 6= 0, then (a∗)∗(x) = a(x)

and so does b(x). Therefore, a(x) | b(x) if and only if a∗(x) | b∗(x). Consider the minimal

polynomial of periodic sequences. By Proposition 2.1, they do not contain factors xi. So

according to the above discussion, any properties of the minimal polynomial can be trans-

ferred to its reciprocal polynomial (this means we can also define E(x) in Proposition 2.1

to be the minimal polynomial by replacing the Definition 2.5, if our discussion is confined

to periodic sequences). This conclusion is important to the remaining content in this chap-

ter and Chapter 4. In the following sections, sometimes we will derive the degrees of the

minimal polynomials of periodic sequences directly from (2.9).

For the linear complexity of special sequences of cryptologic interests, a lot of research

has been done by various authors. In Caballero-Gil [4], [5], Garcia-Villalba and Fúster-

Sabater [11] and Tan [42], they have investigated the linear complexity of typical hardware

keystream generators. Konyagin et al. [16] and Meidl and Winterhof [25] considered the

linear complexity of the discrete logarithm function. For further information, one can refer

Chapter 2: Linear Recurring Sequences and Linear Complexity 26

to the books of Shparlinski [38], [39].

Chapter 2: Linear Recurring Sequences and Linear Complexity 27

2.2 Two Types of Nonlinear Filters

Generally speaking, there are two kinds of non-linear filters [32]. The first one is conducting

nonlinear operations on several states of one periodic sequence whose minimal polynomial

is irreducible. The other one is conducting nonlinear operations on the same state of several

periodic sequences. In this section, we will discuss these two types of nonlinear operations

on sequences over F2.

1. Nonlinear Operations on One Maximal Period Sequence

From the definition of the maximal period sequence, if its minimal polynomial is primitive

with degree k, then its minimal period is 2k−1. Although it has good statistical properties,

it is highly predictable in its first period. This is because its linear complexity k is very

small compared to its minimal period 2k − 1. Thus we need to employ some nonlinear

operations on k states of the sequence such that the linear complexity of the sequence

z̃ = (z1, z2, . . . , zi, . . .) filtered by the nonlinear device F , where each zj is given by zj =

F (sj, sj+1, . . . , sj+k−1), will exhibit large linear complexity. See Figure 2.2.

Suppose s̃ = (s1, s2, . . . , si, . . .) is an arbitrary maximal period sequence with the primi-

tive minimal polynomial ms̃(x) whose degree is L. And if we define σj = (sj, sj+1, . . . , sj+L−1),

it is already known that all σj are distinct and nonzero for j = 1, 2, . . . , 2L − 1. Therefore,

the nonlinear filter F , a mapping from FL
2 to F2, whose input is a vector with dimension

L, is uniquely determined by the output z̃ = (z1, z2, . . . , zi, . . .), where zj = F (σj). This

property does not hold if ms̃(x) is just irreducible but not primitive. From the discussion in

Chapter 3, there must be some sequences z̃ having large linear complexity equal or almost

equal to 2L−1. Given that we can choose each term of z̃ freely, then, there must exist some

nonlinear filter F such that the filtered sequences of arbitrary maximal period sequences

with period 2L − 1 have their linear complexities equal or almost equal to 2L − 1.

In fact, since the underlying field is F2, the function F is a sum of some products since

there is a unique canonical form, algebraic normal form for the boolean function F .

Therefore F can be represented by

F (x1, x2, . . . , xL) = a0 + a1x1 + a2x2 + · · ·+ aLxL

+a1,2x1x2 + a1,3x1x3 + · · ·+ aL−1,LxL−1xL

+ · · ·
+a1,2,...,Lx1x2 · · ·xL.

To obtain F such that F : s̃ 7→ z̃, we have three ways. Now let us briefly introduce

them. The first one is that representing F , i.e z̃, by the linear combination of the basis

Chapter 2: Linear Recurring Sequences and Linear Complexity 28

- - - - - - -

�

��

��
��

�

��

��
��

�

��

��
��

�

��

��
��

�

��

��
��

�

��

��
��

� � � �...... � �

6

6

6

6

6

6

6

6

6

6

6

6

ak
ak−1ak−2a1 a2 a3

+ + + + + +a

D D D D D D• • • • • •

? ? ? ? ? ?

F�zj

1

Figure 2.2: The First Kind of Nonlinear Filter.

of the linear space F2L−1
2 . Denote δi(s̃

2L−1) = (s1+i, s2+i, . . . , s2L−1, s1, s2, . . . , si) and s̃z̃ =

(s1z1, s2z2, . . .). When s̃2L−1 6= (0, 0, . . . , 0), the following 2L − 1 sequences

δ0(s̃
2L−1), δ1(s̃

2L−1), . . . , δL−1(s̃
2L−1),

δ0(s̃
2L−1)δ1(s̃

2L−1), . . . , δ0(s̃
2L−1)δL−1(s̃

2L−1), . . . , δL−2(s̃
2L−1)δL−1(s̃

2L−1),

· · · · · ·
δ0(s̃

2L−1)δ1(s̃
2L−1) · · · δL−2(s̃

2L−1)δL−1(s̃
2L−1),

form a basis of F2L−1
2 . If we suppose the output of F with zero input is zero, we can set

the constant term in F being 0. Now denote the matrix of this basis by S. Therefore F

can be represented by

F (x1, x2, . . . , xL) = a1x1 + a2x2 + · · ·+ aLxL

+a1,2x1x2 + a1,3x1x3 + · · ·+ aL−1,LxL−1xL

+ · · ·
+a1,2,...,Lx1x2 · · ·xL,

where xi corresponds to δi(s̃
2L−1) above. Then the coefficients vector a of the variables in

F can be obtained by a = S−1(z̃2L−1)T . Choosing this basis is very convenient since we

could directly connect some states of the LFSR generating s̃ by the logic AND and XOR

functions to implement F .

The second method is the same as the first one but employs a different basis, the natural

basis or impulse response sequences.

The third one is a little complex. Let Gz̃(x) be the generating polynomial for z̃ and

Chapter 2: Linear Recurring Sequences and Linear Complexity 29

gz̃(x) be the corresponding polynomial of z̃2L−1. Then we have

Gz̃(x) =
gz̃(x)

1 + x2L−1
=

∑
i

ci(x)

pi(x)
deg(ci(x)) < deg(pi(x)),

where pi(x) is irreducible. For each LFSR whose reciprocal minimal polynomial is pi(x),

we can (by using natural basis) find the coefficients of its corresponding polynomial ci(x),

which are actually the initial states for the LFSR. For the ci(x) 6= 0, which means the cor-

responding pi(x) contributes to the linear complexity of z̃, we can determine a nonlinear

function fi,j for this LFSR such that the filtered sequence z̃i,j of s̃ by fi,j can simulate the

behavior of this LFSR initiated by the corresponding natural base ei,j, whose length and

jth term are equal to deg(pi(x)) and 1, respectively. More exactly, denote the coefficients

of ci(x) by ci (start from zero degree, deg(c1(x)) = 0). Let C = (c1, c2, . . . , cl). And

extend the basis from the natural basis for each LFSR according to their linear recurrence

relation determined by pi(x) such that each basis has length 2L − 1. Denote the matrix of

this basis by D. Now the coefficients of F , a can be expressed by S−1DCT . One could re-

fer to [32, Section 5.1] for details and an example using the three methods introduced above.

However, in the above methods, we are facing some difficulties in application since we

have to solve a large-scale linear equation system with dimension 2L − 1. We want 2L − 1

to be large enough to achieve good security. But it renders computing F impossible.

The strategy to solve the computational difficulty for F is constructing F directly and

estimating the lower bound of the linear complexity of z̃ after having been filtered by F .

Lemma 2.1: Suppose s̃ = (s1, s2, . . . , si, . . .) is a maximal period sequence over F2 with

its minimal polynomial ms̃(x) having degree L. Let ti s̃ = δti(s̃) for i = 1, 2, . . . , k. Denote

α ∈ F2L a root of ms̃(x), the product
k∏

i=1

(ti s̃) by z̃ and the Hamming weight of the radix-2

form of N by w2(N). Then αn, where w2(n) = k, is a root of the minimal polynomial

mz̃(x) of z̃ if

Dn =

∣∣∣∣∣∣∣∣∣∣

αt12e1 αt22e1 · · · αtk2e1

αt12e2 αt22e2 · · · αtk2e2

...
...

. . .
...

αt12ek αt22ek · · · αtk2ek

∣∣∣∣∣∣∣∣∣∣

6= 0,

where n = 2e1 + 2e2 + · · ·+ 2ek and 0 ≤ e1 < e2 < · · · < ek < L.

Chapter 2: Linear Recurring Sequences and Linear Complexity 30

Proof: For the convenience of expression, we use i as internal index variable, which is only

effective for one step, and j as the global index variable, which is effective in the whole

proof. From (2.7), without loss of generality, we can assume sj = Tr(αj) = TrF
qL/Fq(α

j),

so

zj =
k∏

i=1

(tisj) =
k∏
i

Tr(αtiαj) (2.14)

=
k∏

i=1

(αtiαj + α2tiα2j + · · ·+ α2L−1tiα2L−1j).

Collect the coefficients of the αnij, then

zj =
∑

i

Eni
αnij, (2.15)

where ni = 2eni,1 + 2eni,2 + · · · + 2eni,w2(ni) and 0 ≤ eni,1 < eni,2 < · · · < eni,w2(ni) < L.

Because Eni
is only determined by ni and {t1, t2, . . . , tk}, so it is independent of j. And

when w2(ni) = k, we have Eni
= Dni

given that there is no difference between the positive

and minus signs in the determinant over F2.

Since we are working in F2, we can suppose the minimal polynomial for z̃ is

mz̃(x) = xdN + xd(N−1) + · · ·+ xd1 ,

where dN > d(N−1) > · · · > d1 ≥ 0. Therefore, we have

zdN+j = zd(N−1)+j + zd(N−2)+j + · · ·+ zd1+j. (2.16)

By (2.14) and (2.16),

k∏
i=1

Tr(αtiαdN+j) +
k∏

i=1

Tr(αtiαd(N−1)+j) +
k∏

i=1

Tr(αtiαd(N−2)+j) + · · ·+
k∏

i=1

Tr(αtiαd1+j) = 0.

Given (2.15) and Eni
is independent of j,

∑
i

Eni
(αni(dN+j) + αni(d(N−1)+j) + · · ·+ αni(d1+j)) =

∑
i

Eni
mz̃(α

ni)αnij = 0, (2.17)

for all j ≥ 1. Therefore, by constructing a Vandermonde determinant, we conclude that

Eni
mz̃(α

ni) = 0. (2.18)

Chapter 2: Linear Recurring Sequences and Linear Complexity 31

Hence, Eni
6= 0 implies αni is a root of the minimal polynomial mz̃(x) of z̃, which con-

tributes to the linear complexity of z̃. When w2(ni) = k, we have a very explicit expression

Dni
for Eni

, then the conclusion follows. 2

Lemma 2.2: Suppose s̃ = (s1, s2, . . . , si, . . .) is a maximal period sequence over F2 with its

minimal polynomial ms̃(x) having degree L. Let (t+iφ)s̃ = δ(t+iφ)(s̃) for i = 0, 1, . . . , k − 1.

Denote the product
k−1∏
i=0

[(t+iφ)s̃] by z̃. If gcd(2L − 1, φ) = 1, then L(z̃) ≥
(

L

k

)
.

Proof: Suppose α is a root of ms̃(x) in F2L and n = 2e1 + 2e2 + · · · + 2ek where 0 ≤ e1 <

e2 < · · · < ek ≤ L. Then,

Dn =

∣∣∣∣∣∣∣∣∣∣

αt2e1 α(t+φ)2e1 · · · α(t+(k−1)φ)2e1

αt2e2 α(t+φ)2e2 · · · α(t+(k−1)φ)2e2

...
...

. . .
...

αt2ek α(t+φ)2ek · · · α(t+(k−1)φ)2ek

∣∣∣∣∣∣∣∣∣∣

=
k∏

i=1

αt2ei

k∏
x=2

x−1∏
y=1

(αφ2ex − αφ2ey
).

Therefore, Dn 6= 0 by considering gcd(2L − 1, φ) = 1. According to Lemma 2.1, αn is a

root of the minimal polynomial mz̃(x) of z̃. Because we have
(

L
k

)
values for n such that

w2(n) = k, mz̃(x) must have at least
(

L
k

)
roots. Hence, L(z̃) = deg(mz̃(x)) ≥

(
L

k

)
. 2

Theorem 2.4: Let s̃ = (s1, s2, . . . , si, . . .) be a maximal period sequence over F2 with its

minimal polynomial ms̃(x) having degree L. Let (t+iφ)s̃ = δ(t+iφ)(s̃) for i = 0, 1, . . . , k − 1.

Denote the linear combination of products
N−1∑
x=0

k−1∏
y=0

cx[(tx+yφ)s̃] by z̃ where N is a posi-

tive integer, t0 < t1 < · · · < tN−1 and not all cj are zero. If gcd(2L − 1, φ) = 1, then

L(z̃) ≥
(

L

k

)
− tN−1.

Proof: Denote TrF
qL/Fq(α

j) again by Tr(αj). Suppose α is a root of ms̃(x) in F2L . Similarly

as in (2.15),

zj =
N−1∑
x=0

k−1∏
y=0

cx[(tx+yφ)sj] =
N−1∑
x=0

k−1∏
y=0

cxTr(αtx+yφαj) (2.19)

=
N−1∑
x=0

∑
i

cxEni
(tx, y)αnij. (2.20)

Here Eni
(tx, y) is independent of j.

Chapter 2: Linear Recurring Sequences and Linear Complexity 32

Still as in Lemma 2.1, we suppose the minimal polynomial for z̃ is

mz̃(x) = xdm + xd(m−1) + · · ·+ xd1 ,

where dm > d(m−1) > · · · > d1 ≥ 0. Therefore, we have

zdm+j = zd(m−1)+j + zd(m−2)+j + · · ·+ zd1+j.

By replacing each term with (2.19) and simplification,

N−1∑
x=0

k−1∏
y=0

cxTr(αx+yφαdm+j)+
N−1∑
x=0

k−1∏
y=0

cxTr(αx+yφαd(m−1)+j)+· · ·+
N−1∑
x=0

k−1∏
y=0

cxTr(αx+yφαd1+j) = 0,

m∑
v=1

(
N−1∑
x=0

∑
i

cxEni
(tx, y)αni(dv+j)) = 0,

∑
i

[
N−1∑
x=0

cxEni
(tx, y)]mz̃(α

ni)αnij = 0. (2.21)

Since (2.21) holds for all j, then by constructing a Vandermonde determinant, we conclude

that

mz̃(α
ni)[

N−1∑
x=0

cxEni
(tx, y)] = 0. (2.22)

Now we consider ni such that ni = 2e1 + 2e2 + · · ·+ 2ek where 0 ≤ e1 < e2 < · · · < ek ≤ L.

Then

Eni
(tx, y) =

k∏
i=1

αtx2ei

k∏
p=2

p−1∏
q=1

(αφ2ep − αφ2eq
).

Therefore,

N−1∑
x=0

cxEni
(tx, y) = [

k∏
p=2

p−1∏
q=1

(αφ2ep − αφ2eq
)]

N−1∑
x=0

cxα
tx(

k∑
i=1

2ei)
= A

N−1∑
x=0

cxα
txni ,

where A =
k∏

p=2

p−1∏
q=1

(αφ2ep − αφ2eq
) 6= 0 since gcd(2L − 1, φ) = 1. If αni is not a root of

B(x) = c(N−1)x
t(N−1) + c(N−2)x

t(N−2) + · · ·+ c0x
t0 ,

then from(2.21) mz̃(α
ni) = 0, which implies αni contributes to the linear complexity of z̃.

Since there are at most tN−1 roots for B(x) and
(

L
k

)
choices for such ni, then we conclude

that

L(z̃) ≥
(

L

k

)
− tN−1.

Chapter 2: Linear Recurring Sequences and Linear Complexity 33

.

.

.

-

-

-

-

LFRS1

LFRS2

LFRSn

F

1sj

2sj

nsj

zj

1

Figure 2.3: The Second Kind of Nonlinear Filter.

This completes the proof. 2

An immediate consequence of Theorem 2.4 is that L(z̃) ≥
(

L

k

)
− N + 1 by setting

ti = i for 0 ≤ i ≤ N − 1. From the proof of Theorem 2.4, we can see that the obtained

lower bound for the linear complexity of the generated sequence is only due to ni in (2.20)

with w2(ni) = k. (In fact we neglect some roots because of the difficulty in the expression

of their coefficients in (2.21).) Then, the lower bound of the linear complexity of z̃ will

not decrease if we add some extra terms into (2.19), which can be expressed by summing

p < k products of si1+j, si2+j, . . . , sip+j where iq ∈ {tx + yφ} for 1 ≤ q ≤ p, 0 ≤ x ≤ N − 1,

and 0 ≤ y ≤ k− 1. In conclusion, to choose a nonlinear filter described in Figure 2.2 for a

maximal period sequence with linear complexity L, we only need to select some appropriate

parameters k, φ, cx, tm and dm, such that

z̃ =
N−1∑
x=0

k−1∏
y=0

cx[(x+yφ)s̃] +
N−1∑
m=0

p−1∏
n=0

dm[(tm+nφ)s̃],

where p < k. Then L(z̃) ≥
(

L

k

)
−N + 1.

2. Nonlinear Operations on Several Maximal Period Sequences

The second kind of nonlinear filter consists of a nonlinear mapping device F and several

maximal period sequence generating devices. Instead of using several different states of a

maximal period sequence as the input of F in the first kind of nonlinear filter, here we use

the same state of several different maximal period sequences is̃ generated by LFSRi as the

input. See Figure 2.3.

To obtain the main results, we need some more algebraic tools.

Chapter 2: Linear Recurring Sequences and Linear Complexity 34

Lemma 2.3: Suppose α ∈ Fqm and β ∈ Fqn , where gcd(m,n) = 1, then

TrFqm/Fq(α)TrFqn/Fq(β) = TrFqmn/Fq(αβ). (2.23)

Proof: Since m | mn and n | mn, Fqm and Fqm are both subfields of Fqmn . Therefore we

have

TrFqmn/Fq(αβ) =
mn−1∑
i=0

(αβ)qi

=
mn−1∑
i=0

(α)qi

(β)qi

. (2.24)

Consider α ∈ Fqm and β ∈ Fqn , then αqi
= αqi mod m

and βqi
= βqi mod n

. Because

gcd(m,n) = 1, by the Chinese remainder theorem, there is a one-to-one correspondence

between i and (i mod m, i mod n). Therefore, replace i with (i mod m, i mod n) in (2.24)

and reorder the terms, then we have

TrFqmn/Fq(αβ) =
m−1∑
x=0

n−1∑
y=0

αqx

βqy

=
m−1∑
x=0

αqx
n−1∑
y=0

βqy

= TrFqm/Fq(α)TrFqn/Fq(β). (2.25)

2

Definition 2.8: Call α ∈ F∗qm a quintessential element of Fqm/Fq (or briefly of Fqm) if

{α, αq, αq2
, . . . , αqm−1} are all distinct.

An important fact is that a nonzero root of an irreducible polynomial f(x) over Fq is a

quintessential element of Fqdeg(f(x)) .

Lemma 2.4: Suppose gcd(m,n) = 1. Let α ∈ Fqm be a quintessential element of Fqm and

β ∈ Fqn be a quintessential element of Fqn . If gcd(q−1,m) = 1 and gcd(q−1, n) = 1, then

αβ is a quintessential element of Fqmn .

Proof: Firstly consider q = 2. Since m | mn and n | mn, F2m and F2n are both subfields of

F2mn , which implies αβ ∈ F2mn . Suppose (αβ)2x
= (αβ)2y

for some 0 ≤ x < y ≤ mn − 1,

then α2x−2y
= β2y−2x

. Because gcd(m,n) = 1, F2m ∩ F2n = F2. Then, we must have

α(2x−2y) = c and β(2y−2x) = c for some c ∈ F2. Then α2x mod m
= cα2y mod m

. Obvi-

ously, c must be 1. Otherwise we have α = 0. So c = 1 forces α(2x−2y) = 1, which

implies x ≡ y mod m. Similarly, we can conclude x ≡ y mod n by considering β. Since

0 ≤ x, y ≤ mn− 1, we must have x = y. Contradiction to x < y.

Chapter 2: Linear Recurring Sequences and Linear Complexity 35

Finally, consider q > 2. Here we claim that for any two elements in {α, αq, αq2
, . . . , αqm−1},

one cannot be a scalar multiple over Fq of the other one. Suppose not, say we have

αqx
= cαqy

where c ∈ F∗q and x < y. Since cq = c, we can raise the identity αqx
= cαqy

to the qth power for m − 1 times. Then we have m identities. Since αqx+i
and αqy+i

for

0 ≤ i ≤ m − 1 run through all elements in {α, αq, αq2
, . . . , αqm−1}, then after multiplying

the m identities, we must have cm = 1. Therefore, the order ordc of c in F∗q , the smallest

positive integer such that cordc = 1, must divide q− 1 and m. However, gcd(q− 1,m) = 1.

Hence c = 1 which is a contradiction to the definition of a quintessential element.

Now suppose (αβ)qx
= (αβ)qy

for some 0 ≤ x < y ≤ mn − 1, then αqx−qy
= βqy−qx

.

Because gcd(m,n) = 1, Fqm ∩ Fqn = Fq. Then, we must have α(qx−qy) = c and β(qy−qx) = c

for some c ∈ F∗q. Then αqx mod m
= cαqy mod m

. By our above claim, c must be 1. So c = 1

forces α(qx−qy) = 1, which implies x ≡ y mod m. Similarly, we can conclude x ≡ y mod n

by considering β. Since 0 ≤ x, y ≤ mn−1, we must have x = y. Contradiction to x < y. 2

Lemma 2.5: Let as̃ and bs̃ be two periodic sequences with the irreducible minimal poly-

nomials mas̃(x) and m
bs̃(x) over Fq. Suppose deg(mas̃(x)) = m and deg(m

bs̃(x)) = n with

q − 1,m, n being pairwise coprime. Then the minimal polynomial mz̃(x) of the product

sequence z̃ = (as̃)(bs̃) is irreducible in Fq with degree mn.

Proof: From (2.7), we can assume asj = TrFqm/Fq(θaα
j) and bsj = TrFqn/Fq(θbβ

j), where

mas̃(α) = 0, m
bs̃(β) = 0 and θa ∈ Fqm θb ∈ Fqm are nonzero elements. Therefore, α is a

quintessential element of Fqm and β is a quintessential element of Fqn given the irreducibility.

Now

zj = (asj)(bsj) = TrFqm/Fq(θaα
j)TrFqn/Fq(θbβ

j). (2.26)

By Lemma 2.3, zj = TrFqmn/Fq(θ(αβ)j) where θ = θaθb. Let

mz̃(x) = xdm − am−1x
d(m−1) − · · · − a1x

d1 ,

where dm > d(m−1) > · · · > d1 ≥ 0. Therefore, we have

zdm+j = am−1zd(m−1)+j + am−2zd(m−2)+j + · · ·+ a1zd1+j.

Next for the simplicity of expression, we denote TrFqmn/Fq(x) by Tr(x) without confusion.

So we have

Tr(θ(αβ)dm+j)− am−1Tr(θ(αβ)dm−1+j)− · · · − a1Tr(θ(αβ)d1+j) = 0. (2.27)

Chapter 2: Linear Recurring Sequences and Linear Complexity 36

Expand each term in (2.27) and simplify it, then for j ≥ 1 we have

mn−1∑
i=0

θqi

mz̃((αβ)qi

)(αβ)qij = 0. (2.28)

By Lemma 2.4, αβ is a quintessential element in Fqmn . Therefore, by constructing a

Vandermonde determinant, we conclude that

θqi

mz̃((αβ)qi

) = 0 (2.29)

for 0 ≤ i ≤ mn − 1. Since θ 6= 0, (αβ)qi
must be a root of mz̃(x), which implies the

minimal polynomial of αβ is a factor of mz̃(x). However, the minimal polynomial of αβ

is a characteristic polynomial after direct verification. Hence, mz̃(x) is the same as the

minimal polynomial of αβ, so it is irreducible over Fq and has degree mn. 2

Theorem 2.5: Let as̃ and bs̃ be two periodic sequences with the minimal polynomials

mas̃(x) and m
bs̃(x) over Fq. Suppose deg(mas̃(x)) = m, the roots of mas̃(x) are simple and

lie in FqM \Fq, and none of its roots is a scalar multiple over Fq of its any other root. Also

suppose deg(m
bs̃(x)) = n, the roots of m

bs̃(x) are simple and lie in FqN \ Fq and none of

its roots is a scalar multiple over Fq of its any other root. Let M,N , and q− 1 be pairwise

coprime. Then the minimal polynomial mz̃(x) of the product sequence z̃ = (as̃)(bs̃) has

mn simple roots in FqMN \ {FqM

⋃
FqN}.

Proof: Let Gas̃(x) and G
bs̃(x) be the generating functions of as̃, bs̃, respectively. Then by

(2.9) we have

Gas̃(x) =
gas̃(x)

m∗
as̃

(x)
=

∑
i

aQi(x)

aPi(x)
, where aPi(x) are all irreducible factors of mas̃(x),

G
bs̃(x) =

g
bs̃(x)

m∗
bs̃

(x)
=

∑
j

bQj(x)

bPj(x)
, where bPi(x) are all irreducible factors of m

bs̃(x).

Obviously, deg(aQi(x)) < deg(aPi(x)) and deg(bQj(x)) < deg(bPj(x)). If we denote ami =

deg(aPi(x)) and bmj = deg(bPj(x)), then by the field theory, ami | M and bmj | N since

all the roots of mas̃(x) are in FqM and all the roots of m
bs̃(x) are in FqN . Let i

as̃ denote the

sequence corresponding to
aQi(x)

aPi(x)
, j

bs̃ denote the sequence corresponding to
bQj(x)

bPj(x)
and ij z̃

be (i
as̃)(

j
bs̃). Therefore,

z̃ = (as̃)(bs̃) = [
∑

i

(i
as̃)][

∑
j

(j
bs̃)] =

∑
i

∑
j

(i
as̃)(

j
bs̃) =

∑
i

∑
j

(ij z̃). (2.30)

Chapter 2: Linear Recurring Sequences and Linear Complexity 37

Since M,N, q− 1 are pairwise coprime, we have ami,b mj, q− 1 are pairwise coprime for all

i, j. Now according to Lemma 2.5, we conclude that the minimal polynomial mij z̃(x) of ij z̃

is irreducible and has degree (ami)(bmj). Hence we can represent the nth term of ij z̃ by

ijzn = TrF
q
(ami)(bmj)/Fq(AiBj(αiβj)

n), (2.31)

where Ai ∈ Fq(ami) , Bj ∈ Fq(bmj) , αi is a root of aPi(x) and βj is a root of bPj(x).

Given all αi ∈ FqM \ Fq, βj ∈ FqN \ Fq, we claim that the minimal polynomial over Fq

of αiβj and the minimal polynomial over Fq of αi′βj′ are different if i 6= i
′

and j 6= j
′
.

Suppose not, then given that the roots of irreducible polynomials are conjugate, we have

αiβj = (αi′βj′)
qc

for some positive integer c. Then αiα
−qc

i
′ = βqc

j
′ β

−1
j . Since FqM ∩FqN = Fq,

we conclude that αiα
−qc

i′
, βqc

j′
β−1

j ∈ Fq, which implies αi = dαqc

i′
and βqc

j′
= dβj for some

d ∈ Fq. Contradiction. Hence we conclude that the degree of the minimal polynomial

of z̃ is
∑
i,j

(ami)(bmj) =
∑
i

(ami)n = mn. Moreover, αiβj obviously lies in FqMN . If it

is in FqM , we have βj in FqM , contradiction. Similarly for FqN . So we conclude that

αiβj ∈ FqMN \ {FqM

⋃
FqN}. 2

Theorem 2.6: Let is̃ for i = 1, 2, . . . , N be periodic sequences over Fq, whose correspond-

ing minimal polynomials are m
is̃(x) with degree m

is̃. Suppose all m
is̃(x) have only simple

roots iαj ∈ Fq
m

i s̃ \Fq where j = 1, 2, . . . , m
is̃ and none of them is a scalar multiple over Fq

of i′αj′ , which is a root of m
i
′ s̃(x) for all 1 ≤ i

′ ≤ N, 1 ≤ j
′ ≤ m

i
′
s̃
. If gcd(m

is̃,mj s̃) = 1 for

all i 6= j, then z̃ =
N∏

i=1

(is̃) has the minimal polynomial mz̃(x) of degree
N∏

i=1

m
is̃ whose roots

are all simple and lie in Fqm \⋃
j

Fqj where m =
N∏

i=1

m
is̃ and j runs through all (N − 1)th-

order products of m
is̃.

Proof: Let 1z̃ = (1s̃)(2s̃). Since none of the roots of m
is̃(x) is a scalar multiple over Fq

of i′αj′ , which is a root of m
i
′ s̃(x) for all 1 ≤ i

′ ≤ N, 1 ≤ j
′ ≤ m

i
′
s̃
, then from the proof

of Lemma 2.4, we can neglect the requirement gcd(m
is̃, q − 1) = 1. Hence, by Theorem

2.5, we conclude that 1z̃ has the minimal polynomial m1z̃(x) of degree m1s̃m2s̃ whose roots

are all simple and lie in Fq
m

1 s̃m
2 s̃ \ {Fq

m
1 s̃

⋃
Fq

m
2 s̃}. Then consider kz̃ = (k−1z̃)(k+1s̃) for

2 ≤ k ≤ N − 1 and use Theorem 2.5 repeatedly, the conclusion follows. 2

Chapter 2: Linear Recurring Sequences and Linear Complexity 38

Theorem 2.7: Suppose the nonlinear function F over Fq is given by

F (x1, x2, . . . , xn) = a0 +
∑
i

aixi +
∑
i,j

ai,jxixj + · · ·
+a1,2,...,nx1x2 · · ·xn,

where all the coefficients are in Fq. Let is̃ for i = 1, 2, . . . , n be sequences over Fq, whose

corresponding minimal polynomials are m
is̃(x) with degree m

is̃. Suppose all m
is̃(x) have

only simple roots iαj ∈ Fq
m

i s̃ \ Fq where j = 1, 2, . . . , m
is̃ and none of them is a scalar

multiple over Fq of i′αj′ , which is the root of m
i
′ s̃(x) for all 1 ≤ i

′ ≤ n, 1 ≤ j
′ ≤ m

i
′
s̃
. If

gcd(m
is̃,mj s̃) = 1 for all i 6= j, then

z̃ = F (1s̃, 2s̃, . . . , ns̃) (2.32)

has the minimal polynomial mz̃(x) of degree

M = F̄ (m1s̃,m2s̃, . . . , mns̃), (2.33)

where F̄ is defined as F , but the coefficients for each term are 1 if the corresponding coef-

ficients of F are nonzero and zero otherwise.

Proof: For each term in (2.32), by Theorem 2.5, we know that the minimal polynomial of∏
j

(ij s̃) has degree
∏
j

m
ij

s̃. The nonzero scalar multiplication over Fq of a sequence does not

change its linear recurrence relations, which implies it does not change its linear complex-

ity. Since gcd(m
is̃,mj s̃) = 1 for all i 6= j, no two distinct terms in (2.32) after expansion

have the same minimal polynomial. Thus, the sum of all the terms in (2.32), z̃ must have

its minimal polynomial being the product of all the minimal polynomials of each terms

in (2.32). Consequently, deg(mz̃(x)) must be the sum of all the degrees of the minimal

polynomials of nonzero terms in (2.32), which is expressed by (2.33). 2

Chapter 2: Linear Recurring Sequences and Linear Complexity 39

2.3 The BAA Attacks on the Two Nonlinear Filters

The best affine approximation (BAA) attack was first introduced by Rueppel for the anal-

ysis of the S-boxes of the Data Encryption Standard in about 1986. And in 1988, C. Ding,

G. Xiao and W. Shan developed the BAA method to analyze stream ciphers with some

algebraic techniques and error-correcting techniques in [9]. Under the assumption that we

have known the nonlinear filter structure already, we will introduce it in this section. Here

we denote xy =
n∑

i=1

xiyi for x, y ∈ Fn
2 and let ⊕ be the addition over F2.

Definition 2.9: Let f(x) be a function from Fn
2 to F2. Then call wx⊕ l the best affine

approximation of f(x) for w, l ∈ Fn
2 , if the sum over the real number field

∑

x∈Fn
2

f(x)⊕ wx⊕ l (2.34)

achieves its minimal value.

Definition 2.10: For x, y ∈ Fn
2 , the Walsh function Q is defined to be Q(x, y) = (−1)xy.

Definition 2.11: For any Boolean function f : Fn
2 → F2, define its first kind of Walsh

transformation Sf as

Sf (w) =
1

2n

∑

x∈Fn
2

f(x)Q(w, x), (2.35)

and its second kind of Walsh transformation S(f) as

S(f)(w) =
1

2n

∑

x∈Fn
2

Q(w, x)(−1)f(x). (2.36)

The relation between f and its two Walsh transformations is given by

f(x) =
∑

w∈Fn
2

Sf (w)Q(w, x) =
1

2
− 1

2

∑

w∈Fn
2

S(f)(w)Q(w, x), (2.37)

and

S(f)(w) =




−2Sf (w), w 6= 0,

1− 2Sf (w), w = 0.
(2.38)

Chapter 2: Linear Recurring Sequences and Linear Complexity 40

Theorem 2.8: Let Pf (wx⊕ l) denote the probability of f(x) = wx⊕ l for w, l ∈ Fn
2 . Then,

Pf (wx) =
1

2
+

1

2
S(f)(w) and Pf (wx) =

1

2
− Sf (w) if w 6= 0 while Pf (wx) = 1 − Sf (w) if

w = 0.

Proof: By the definition of the second Walsh transform, we have

S(f)(w) =
1

2n
[#{x|f(x) = wx} −#{x|f(x) 6= wx}]

=
1

2n
[#{x|f(x) 6= wx} − 2n + #{x|f(x) = wx}]

=
1

2n
[2#{x|f(x) = wx} − 2n]

= 2Pf (wx)− 1

=
1

2n
[2n − 2#{x|f(x) = wx⊕ 1}]

= 1− 2Pf (wx⊕ 1).

(2.39)

Now from the above formula and (2.38), the conclusion follows. 2

Theorem 2.9: Let M = max{|S(f)(w)| | w ∈ Fn
2} and |S(f)(w0)| = M . If S(f)(w) ≥ 0, then

w0x is the best affine approximation of f(x) and the probability of agreement is given by

Pf (wx) =
1

2
+

1

2
M ; else, where S(f)(w) < 0, w0x⊕1 is the BAA and Pf (wx⊕1) =

1

2
+

1

2
M .

Proof: From (2.39), we have Pf (wx) =
1

2
+

1

2
S(f)(w) and Pf (wx⊕ 1) =

1

2
− 1

2
S(f)(w), then

the conclusion is obvious. 2

Under the assumption of knowing the nonlinear filter, we could find |S(f)(w0)| =

max{|S(f)(w)| | w ∈ Fn
2} by computation before the cipher analysis. Then if |S(f)(w0)|

is big enough to guarantee a high agreement probability between F and w0x, then we can

use w0x to replace the nonlinear filter F , which will decrease the linear complexity of the

filtered key stream dramatically. This is the basic idea of the BAA attack. Let us consider

a nonlinear filter of the first kind pictured in Figure 2.2 for example. Suppose the sequence

generated by LFSR has linear complexity 2L and the nonlinear filter F is given by

F (x1, x2, . . . , x2L) =
L∑

i=1

xi +
2L∏

j=L+1

xj. (2.40)

According to the results in Section 2.2, we know the filtered sequence has the linear com-

plexity greater than

(
2L

L

)
− L if we fill each variable in F as in Theorem 2.4. But after

Chapter 2: Linear Recurring Sequences and Linear Complexity 41

computing the second kind of Walsh transform of F , we have M = max{|S(F)(w)| | w ∈
Fn

2} = 1− 21−L with w0x = x1 ⊕ x2 ⊕ · · · ⊕ xL and PF (w0x) =
1

2
+

1

2
S(F)(w0) = 1− 2−L.

Obviously, when L ≥ 10, PF (w0x) ≥ 0.999. And after replacing the nonlinear filter F

by w0x, the linear complexity of the generating key stream is less than or equal to the

linear complexity of the sequence obtained by the LFSR before filtering, which decreases

from

(
2L

L

)
− L to 2L with very high agreement probability greater than 0.999 if L ≥ 10.

Therefore, if we know 2L bits of the key stream, we could predict the following key stream

bits with high correct probability, which means the BAA attack to this nonlinear filter F

defined by (2.40) is very successful.

By a similar method, we conduct the BAA attack on the second kind of nonlinear filter

depicted in Figure 2.3. Suppose the linear complexity of LFSRi in Figure 2.3 is mi, and the

nonlinear filter F is given by (2.40) too. Then still after some computation, we have found

w0x = x1⊕x2⊕· · ·⊕xL and PF (w0x) =
1

2
+

1

2
S(F)(w0) = 1−2−L. Denote z̃ =

L∑
i=1

(is̃) over

F2. So we have G
is̃(x) =

g
is̃(x)

m∗
is̃
(x)

, which implies G∑
j

(j s̃)(x) =
∑
j

g
j s̃(x)

m∗
j s̃

(x)
=

gz̃(x)∏
j

m
j s̃(x)

. Let F̄

be defined as in Theorem 2.7. Since the reciprocal polynomial of the minimal polynomial

of z̃ is a factor of
∏
j

m
j s̃(x) and z̃ is periodic, L(z̃) ≤

L∑
i=1

mi, which will be generally much

smaller than F̄ (m1,m2, . . . , mL). Hence, with 2
L∑

i=1

Li consecutive bits of the key stream,

we can predict all the bits with the correct probability almost being 1. Therefore, the BAA

attack can successfully break the key stream generated by the 2L LFSRs and filtered by

the F defined in (2.40).

Chapter 3

Random Sequences and Their Linear

Complexity Profiles

From the proof of perfect security of the Vernam one-time pad cipher in Section 1.2, we

see that just a random sequence being the key stream over Fq is sufficient to guarantee

perfect security. So the task cryptographers face is to construct random sequences to be

the key streams. But how to describe the randomness using mathematical language, or

equivalently, how to measure unpredictability by mathematical tools? Answers to these

questions are the core contents in this chapter. After we justify the method to measure

the randomness by linear complexity profiles of sequences, we will explore the probabilistic

properties of random sequences.

3.1 Randomness of Sequences

In this section, we will discuss the basic fundamentals of a reasonable tool to measure

randomness. Firstly, let us consider the outputs of finite state machines. Suppose M is

an n-state machine and it is embedded in the finite field F with k elements. Each time

M maps its internal states to an output. Since it could only have kn different n-tuples

{si
1, s

i
2, . . . , s

i
n} for i = 1, 2, . . . , kn as its internal state, after finitely many steps, which is

equal to or less than kn, the internal states must repeat. Therefore, its outputs must be

ultimately periodic with the ultimate period being equal to or less than kn. If M is a linear

device, then the ultimate period of the outputs is a divisor of (kn − 1). So we have:

Theorem 3.1 The outputs of any finite state machine are ultimately periodic.

42

Chapter 3: Random Sequences and Their Linear Complexity Profiles 43

Proof: By the above discussion. 2

From Theorem 3.1, we know that any key stream coming from the practical key gen-

erators in our real world must be ultimately periodic. Say a key stream has the period T .

Then the key stream could be generated by the Linear Feedback Shift Register si+T = si

for i = 1, 2, Therefore, all the key streams could be implemented by LFSRs. Also the

“ultimately periodic” property of the finite state machine outputs forces that we cannot

generate an infinite random looking sequence, hence the best thing we can expect for the

key stream is that the first period of the sequence looks random. So we are confined to the

sequences with only finitely many terms.

1. Non-Regularity

From our intuition, a random sequence must highly lack any regularity, so each state of the

sequence is difficult to predict, or equivalently, unpredictable. Difficulty of prediction means

that the probability of successful guessing is very small. Since most of our key generators

are embedded in F2, we could say that for each bit of the key stream, the chances of correct

prediction should be equal to or less than
1

2
. Then as the finite sequences are concerned,

the longer they are, the more difficult to predict. But one should notice that, just the small

probability of the sequence being chosen from a very huge candidate space is necessary but

not sufficient to mean the unpredictability at all. For example, let us look at the following

four sequences over F2 whose lengths are all 40:

s1 = (00)

s2 = (0110011001100110011001100110011001100110)

s3 = (1001000000000011000000000101001100000001)

s4 = (0101110001101001101010110101101110010110)

No one would dispute that the four sequences are with the equal probability 2−40 if we

choose randomly from the space F40
2 and the probability is really small enough to be viewed

as 0. However, the four sequences are quite different. For s1, it is all zeros. So we could

describe it by all bits are 0. If someone sees the first ten or fifteen bits of s1, this person

could guess easily that the following bits are all 0. As for s2, we could get it by repeating

0110 for 10 times. Some persons could easily and correctly guess all the remaining bits

after observing three or more 0110. Both of s1 and s2 have so regular patterns that they

are easily predicted. But for s3 and s4, there are no no obvious regular patterns.

Let us explore more. No regular patterns implies the sequence needs much data to be

Chapter 3: Random Sequences and Their Linear Complexity Profiles 44

described exactly. If there is some regular pattern in the sequence, we could compress the

data to represent it. Still from our intuition, the more regular the sequence is, the less

data is needed to describe it. Refer to the above example again:

Sequence Representation Data Volume /characters

s1 40 0s. 6

s2 10 0110s. 9

s3 1001, 10 0s, 11, 9 0s,1010011, 7 0s, 1. 39

s4 0101110001101001101010110101101110010110. 41

One can see that the highly regular sequences s1 and s2 could be represented just by a few

characters with the data volume much less than their original lengths. So they are not

good candidates for our “random sequences”. Conversely, s3 and s4 are almost without

regularity, which means there is some difficulty to predict each bit, and they are repre-

sented with nearly the same data volumes as their lengths. So we conclude that random

sequences should be represented by almost the same amount of data as expressing them

directly. This empirical analysis inspires us to measure the randomness of the sequence by

the data volume or the size of its representation. Obviously, the description method with

the minimal data volume interests us most:

Use abstract programs to denote the different representation ways for a sequence. Say

all the programs producing the sequence s are {Pi} for i = 1, 2, . . ., then, the randomness

of s could be measured by the size of Ps, the smallest one in {Pi}.

Actually this approach leads to the formal concept of Kolmogorov complexity. In

1964 and 1965, R. Solomonov in [41] and A. Kolmogorov in [15] had used the “pattern-

lessness” of a finite sequence, which is the length of the shortest Turing machine program

generating it, to measure the randomness of this finite sequence. By the above method,

we could say the bigger the size of Ps is, the more random s should be. But one thing

which should be noticed is that for sequences with small lengths it is difficult to measure

their randomness. Why? Because their lengths are already small, the data volume of dif-

ferent representations may not be more efficient to express them than by showing each bit

directly. Look at the extreme case where the sequence only has one bit. So is {0} random

Chapter 3: Random Sequences and Their Linear Complexity Profiles 45

or {1} random? Maybe both. Maybe none.

2. Uniform Distribution

Another intuition of the random sequences is related to their distribution properties. Since

each bit of the sequence is independent and uniformly distributed, we could expect the

occurring frequency of each k-tuple for k = 1, 2, . . . is almost equal and the bigger k is,

the smaller the frequency of each k-tuple. And the theoretical value for the frequency of a

k-tuple (b1, b2, . . . , bk) in a binary sequence with length n should be:

Pk =
#{vi = (si, si+1, . . . , si+k−1) | vi = (b1, b2, . . . , bk)}

n− k + 1
≈ (

1

2
)k.

Let k = 1 for instance, then the number of 1’s and the number of 0’s should be

almost the same in a random sequence. Now look again at the four sequences s1, s2, s3, s4

above. Obviously s1 is not uniformly distributed since there is no 1 in it. s3 is lacking

regularity, but from the distribution viewpoint, the frequency
9

40
of 1’s is much smaller

than
1

2
. Therefore we do not consider s3 to be a good candidate for random sequences. If

a hacker had observed, say, the first 20 bits of s3, then she/he calculates the frequency of

1 and 0. After finding the frequency of 0 is nearly 3 times the frequency of 1, then she/he

could guess most of the next 20 bits are 0’s, which is true. After decoding the plaintext

obtained by the hacker using guessing but with high correct probability for each bit, she/he

may successfully extract the information by using the language redundancy. So s3 being

a key stream is not secure. As for s4, it looks uniformly distributed, in addition to the

independence of each of its bits (which means it is without any regularity). Therefore, we

expect that s4 could be a good key stream. In fact, s4 is produced by the author tossing a

fair Singapore one dollar coin.

However, a sequence with uniform distribution does not necessarily lack regularity. Re-

call the maximal period sequences. If their linear complexities are L, then their periods are

2L−1. And in [18, Chapter 6], the authors have shown that the maximal period sequences

pass the probabilistic tests in one of their minimal periods. These so-called pseudo-noise

sequences with 2L − 1 bits are highly predictable if L consecutive terms are observed, al-

though they have good distribution properties.

After the above discussion from our intuition, we could postulate some requirements on

a random looking finite sequence to satisfy our aims for constructing a good key stream,

although we even do not know whether there exist any finite truly random sequences.

Chapter 3: Random Sequences and Their Linear Complexity Profiles 46

Call these sequences Pseudo-Random Sequences. Requirements for a good pseudo-random

sequence S should include:

• S should have no regularity. This also means that the data volume of any represen-

tation for S must be incompressible compared to the original length of S.

• S should have uniform distribution. Any k-tuples should have equally occurring

probability for k = 1, 2, . . . and the probability decreases while k increases.

• The minimal period of S should be long enough to display some uncertainty since

randomness is meaningless for short sequences.

3. Measuring Randomness by Linear Complexity Profile

In fact, a good and practical representation method of a finite sequence, which is used

to measure the randomness, was developed in the 1970s. As mentioned before, in 1964

and 1965, R. Solomonov in [41] and A. Kolmogorov in [15] used the length of the shortest

Turing machine program generating it to measure the randomness of a finite sequence. P.

Martin-Löf further developed this approach in 1966 in [19]. Finally in [17], A. Lempel and

J. Ziv justified using the shortest length of LFSR models to measure the unpredictability of

the sequences in 1976. Referring to the discussion of “non-regularity”, each Pi is replaced

by an LFSR with an initial state, so the linear complexity of s is a measurement of its

randomness. This is very appealing postulation because each key stream generated by

some finite state machine can be produced by an LFSR and there is also a very efficient

Berlekamp-Massey algorithm to compute its linear complexity profile. One could refer to

the papers of the above authors and [6, Chapters 3, 5, 6] for rigorous mathematical proofs

from logic and algorithm perspectives.

Recall the definition of the linear complexity profile in Chapter 2. Now let us look at

the following sequence obtained from s4 above by the author tossing a fair Singapore coin

with length 31 and expand it by repeating the first 31 bits:

s̃ = (0101110001101001101010110101101)∞.

Then use the Berlekamp-Massey LFSR Synthesis Algorithm (the program by Maple 9.01

is in the Appendix) to find the linear complexity profile of s̃ for its first 62 bits:

L(s̃62) = [0, 2, 2, 2, 3, 3, 3, 3, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 11, 11, 11, 11, 12, 12, 13, 13,

14, 14, 15, 15, 16, 16, 17, 17, 17, 19, 19, 19, 19, 21, 21, 21, 21, 23, 23, 23,

23, 23, 23, 27, 27, 27, 27, 27, 27, 29, 29, 29, 29, 31, 31, 31]

Chapter 3: Random Sequences and Their Linear Complexity Profiles 47

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

Figure 3.1: The Linear Complexity Profile of s̃70.

Obviously, the minimal period of s̃ is 31. Plot the first two periods and 8 more bits as well

as their corresponding linear complexities in Figure 3.1.

One can see that the graph of the linear complexity profile of s̃ is quite close to the line

L(s̃n) =
n

2
and L(s̃n) stays at 31, its minimal period, after n = 61. Some properties showing

in this figure are not by chance. In fact, the linear complexity profile of unpredictable

sequences over F2 should be close to the
n

2
-line, at least for the first period. On one hand,

since the pseudo-random sequence are incompressible, the minimal data volume needed

to represent this sequence should be almost the same as its length. So does using LFSR.

On the other hand, for an LFSR with length L, to decide all its outputs, we need L

coefficients to determine the LFSR characteristic polynomial (notice that it is a monic

polynomial), and L values for the initial state. So 2L values are needed to determine the

outputs. Consider both, then 2L ≈ |s̃| = n. So the graph should display the property that

L(s̃n) ≈ n

2
while n ≤ T . While T < n ≤ 2T , this property should still keep to some extent,

since after repeating several bits with length less than the minimal period, it is hard to

estimate the minimal period just by observing the first n bits where n < 2T − n0 (here n0

is a small positive integer dependent on T). Also because the period of s̃ is T = 31, it could

Chapter 3: Random Sequences and Their Linear Complexity Profiles 48

be generated by si+T = si for all i. Then, L(s̃) ≤ T = 31. So 31 is the biggest possible

ultimate value for L(s̃n). Therefore, generally, the linear complexity profile of random

sequences should increase approximately as the
n

2
-line, which means its linear complexity

profile should be close to {n

2
} for n = 1, 2, . . . 2T , and achieve the minimal period T after

2T bits. A remark should be stated here. High linear complexity itself does not mean

unpredictable. For example, look at the sequence

s̃c = (0000000000000000000000000000001).

Although the linear complexity of s̃c being 31 is the same as s̃ pictured in Figure 3.1, its

linear complexity increases sharply at the 31st bit from 0 to 31, which does not grow close

to the
n

2
-line at all. And this sequence does not have uniform distribution either. So many

zeros and their regular distributions make this sequence highly predictable. Actually, in

the next chapter, one will see that the 1-error linear complexity of s̃c is zero, which renders

s̃c very insecure as a key stream.

Chapter 3: Random Sequences and Their Linear Complexity Profiles 49

3.2 Probabilistic Properties of Random Sequences

Now we will explore the probabilistic properties of sequences over some finite field in order

to find the expected linear complexity, the variation, and the expected increasing ratio

of the linear complexity. In this way, we could estimate the number of good candidate

sequences for key streams and find average behaviors of sequences randomly chosen from

all the candidates. At last, periodic sequences will be considered since most key streams

in practical use are periodic.

1. The Number of Sequences over Fq with Linear Complexity c

Firstly, we must determine the number Nn(c) of all sequences over Fq whose linear com-

plexities are c and lengths are n since this enumeration is fundamental for all discussions

of the probabilistic properties. To determine Nn(c), there are at least four methods known

up to now. The first one is based on a recursion method. One could refer to [32, Chapter

4] for a special case and expand it to the general case without difficulties. Another method

relies on the continued fraction expansion of the generating function, a Laurent series. A

detailed discussion could be found in [28, Chapter 7]. The third one is offered by W. Meidl

recently based on the relationship between linear complexity profiles and lattice profiles

in [21]. Now by introducing two concepts, jump point and balance point, we use a fourth

approach based on the Berlekamp-Massey algorithm to compute Nn(c).

Definition 3.1: Let s̃ = (s1, s2, . . . , si, . . .) be a sequence over a finite field Fq, then k ≥ 1

is called a jump point if L(s̃k−1) < L(s̃k).

Definition 3.2: Call the number 2k ≥ 2 a balance point if L(s̃2k) = k.

Lemma 3.1: The number of jump points is equal to the number of balance points in a

sequence s̃n = (s1, s2, . . . , sn) over Fq, where n ≥ 2L(s̃n).

Proof: Note that sequences in our discussion begin from s1, so s0 is not defined. But if

we define s0 = 0 and L(s̃0)=0, then the lemma must be true because between two balance

points, there must be a jump point (refer to Figure 3.2) and any jump point at i must

satisfy L(s̃i) >
i

2
according to Berlekamp-Massey algorithm. 2

Lemma 3.2: Let s̃ = (s1, s2, . . . , si, . . .) be a sequence over a finite field Fq. Suppose

Chapter 3: Random Sequences and Their Linear Complexity Profiles 50

6

-������������������������

�•

......
L(s̃n)

n

n

2
−line

• �

• �

1

Figure 3.2: Jump points (•) and balance points (¥).

the balance points are {i1, i2, . . . , it}, all being even numbers by definition, then the jump

points less than it are at:

{i1
2

,
i1 + i2

2
, . . . ,

it−1 + it
2

}.
Proof: There is one and only one jump point sx between sij , sij+1

. Also, according to

the Berlekamp-Massey algorithm, L(s̃x) = x − L(s̃x−1). So we have
ij+1

2
= x − ij

2
, then

x =
ij + ij+1

2
. 2

Remark: Lemma 3.2 means that if two adjacent balance points are given, then the jump

point between them is their middle term.

Now based on the above lemma, we conclude that a linear complexity profile is uniquely

determined by the set of balance points. So we are ready to determine the number of dif-

ferent linear complexity profiles, with the last linear complexity term being c.

Theorem 3.2: Suppose all the sequences discussed have n terms. Then the number of

different possible linear complexity profiles for the linear complexity c is 2c−1 if 0 < c ≤ n
2
,

and is 2n−c if c > n
2
.

Proof: Firstly, suppose 0 < c ≤ n

2
, then according to Lemma 3.2, the linear complexity

profile corresponds to the set of balance points. So we just need to choose some even num-

bers from {2, 4, 6, . . . , 2(c− 1)} to be the balance points in order to construct some linear

Chapter 3: Random Sequences and Their Linear Complexity Profiles 51

6

-������������������������

......
L(s̃n)

n

n

2
−line

ik, ik+1,· · · , i
k
+i

k+1

2
, · · · , ik+1

•

• •

1

Figure 3.3: Obtaining the jump point from its two adjacent balance points I.

complexity profile. Since this set has (c−1) elements, the total number N of choices is the

number of subsets of this set, which is N = 2c−1. Secondly if c >
n

2
, the last balance point

sx must satisfy
x + 2c

2
≤ n since the last jump point is in front of sn. So the set to choose

the balance points’ subscripts changes to {2, 4, . . . , 2(n− c)}. Now the total number N of

choices is the number of subsets of this set, which is N = 2n−c. 2

After the enumeration of different linear complexity profiles for the linear complexity

c, we proceed by exploring the number of candidate sequences for each linear complexity

profile. Firstly, let c be a linear complexity, satisfying c ≤ n

2
, and k be the number of

balance points, satisfying k ≤ c − 1. Start from s1 to sn. If (i, L(s̃i)) is under the
n

2
-line,

then the value of si is decided by the previous elements {s1, s2, . . . , si−1}. If i is a jump

point, then it can be any element of Fq except a special value (which is decided by the

previous terms). If (i, L(s̃i)) is above or on the
n

2
-line, then the choice for it is totally

free. So let B = {i | i is a jump point}, D = {i | L(s̃i) ≥ n

2
}. Then for this kind of linear

complexity profile, there are (q − 1)|B|q|D|−|B| candidate sequences over Fq.

From Lemma 3.1, we have |B| = k. Now let us determine |D| − |B|. Suppose ik and

ik+1 are two adjacent balance points and consider ik +1, ik +2, . . . , ik+1. Refer to Figure 3.3

above. Clearly, L(s̃j) <
j

2
when j = ik + 1, ik + 2, . . . ,

ik + ik+1

2
− 1. Therefore the number

of graph points (m,L(s̃m)) above and on the
n

2
-line is

ik+1 − ik
2

+1 in the interval (ik, ik+1].

Chapter 3: Random Sequences and Their Linear Complexity Profiles 52

6

-������������������������
......

L(s̃n)

n

n

2
−line

ik δ 2c

c

n

•

• • •

1

Figure 3.4: Obtaining the jump point from its two adjacent balance points II.

This means that the number of points belonging to D is
ik+1 − ik

2
+ 1. If we combine all

these intervals between balance points, we can get |D| =
2c

2
+ k. Then |D| − |B| = c,

which implies (q − 1)|B|q|D|−|B| = (q − 1)kqc.

Consider the other situation of c >
n

2
, and suppose ik and δ are the last balance point

and jump point, respectively. See Figure 3.4.

In {1, 2, . . . , ik}, there are
ik
2

+ k − 1 elements lying in D by the above argument since

ik = 2× ik
2

. Now in the last interval (ik, n], there are n− δ + 1 elements on or above the

n

2
-line. However, we have δ =

2c + ik
2

. So the total number in D is n − c. Therefore, in

this situation the number of candidate sequences for the linear complexity profile is given

by (q − 1)|B|q|D|−|B| = (q − 1)kqn−c. We summarize the two results:

Theorem 3.3: Suppose a linear complexity profile is {A1, A2, . . . , An = c} and there are

k different values in {A1, A2, . . . , An}, where 0 ≤ A1 ≤ A2 ≤ · · · ≤ An = c and Ai is an

integer for all 1 ≤ i ≤ n . Then the number of candidate sequences over Fq for this linear

complexity profile, whose lengths are n, is:

N =





(q − 1)kqc if 0 < c ≤ n
2
,

(q − 1)kqn−c if c > n
2
.

Chapter 3: Random Sequences and Their Linear Complexity Profiles 53

Proof: By the above discussion. 2

Based on Theorem 3.3, we can determine the exact number Nn(c) of sequences over

Fq, with length n, whose linear complexities are c. The method is that: if 0 < c ≤ n

2
,

choose i, where 0 ≤ i ≤ c, balance points from {2, 4, 6, . . . , 2(c − 1)}. If c ≥ n

2
, choose

i, s.t. 0 ≤ i ≤ (n − c), balance points from {2, 4, 6, . . . , 2(n − c)} except 0. So for both

situations, there are i + 1 jump points. Then compute the number of candidate sequences

having this special linear complexity profile. In the end, we can get the number Nn(c) just

by summing all the numbers of the sequences for a special linear complexity profile.

Theorem 3.4: The number Nn(c) of sequences s̃ = (s1, s2, . . . , si, . . .) over Fq, of length

n, whose linear complexities are exactly c, is:

Nn(c) =





(q − 1)q2c−1 if 0 < c ≤ n
2
,

(q − 1)q2n−2c if c > n
2
.

Proof: Sum up all the candidate sequences for each linear complexity profile with the final

value, i.e. the linear complexity of each sequence, being c:

If 0 < c ≤ n
2
,

Nn(c) =
c−1∑
i=0

(q − 1)i+1qc

(
c− 1

i

)
= (q − 1)qc(1 + q − 1)c−1 = (q − 1)q2c−1.

If c ≥ n
2
,

Nn(c) =
n−c∑
i=0

(q − 1)i+1qn−c

(
n− c

i

)
= (q − 1)qn−c(1 + q − 1)n−c = (q − 1)q2n−2c.

2

This is a method different from the other three we described at the beginning of this

section. We can obtain more information on the structure of the sequences with a given

linear complexity. For example, recall the phenomenon in the last section that the linear

complexity profiles of random sequences are close to the
n

2
-line. Actually, this implies that

in a random sequence, there are many balance points because the more the balance points,

the closer the linear complexity graph is to the
n

2
-line. By Theorem 3.3, a large value

for the number of balance points means a large number of the candidate sequences when

Chapter 3: Random Sequences and Their Linear Complexity Profiles 54

q 6= 2. Therefore, we could expect that a sequence chosen randomly will exhibit a close

relationship between its linear complexity profile and the
n

2
-line.

2. The Expected Linear Complexity

Next we will use the result of Theorem 3.4 to obtain the expected linear complexity

E[L(S̃n)] of the finite sequences of variables S̃n = (S1, S2, . . . , Sn) with length n over Fq.

We view all {Si} for i = 1, 2, . . . , n to be n independent random variables. Let P (X = xi)

be the probability of X = xi. By definition,

E[L(S̃n)] =

qn∑
i=1

L(s̃n
i)P (S̃n = s̃n

i), where s̃n
i ∈ Fn

q . (3.1)

Since the Si are independent and uniformly distributed random variables, then each se-

quence s̃i must be chosen with equal probability. So we have P (S̃n = s̃n
i) =

1

qn
. Then,

(3.1) can be simplified to

E[L(S̃n)] =
1

qn

qn∑
i=1

L(s̃n
i).

Now divide the qn sequences into n + 1 groups (one group is with the linear complexity

being 0). For each group, all the sequences lying in it have the same linear complexity. So

we have:

E[L(S̃n)] =
1

qn

n∑
c=1

c×Nn(c) =
1

qn
(

bn
2
c∑

c=1

c(q − 1)q2c−1 +
n∑

c=dn+1
2
e
c(q − 1)q2n−2c). (3.2)

Compute each sum term in the above formula (3.2) by introducing a formal variable: we

have
k∑

i=1

iq2i−1 =
(q2k − k − 1)q2k+1 + q

(1− q2)2
, so we get that:

bn
2
c∑

c=1

c(q − 1)q2c−1 =





(q − 1)
(q2 − 1)nqn+1 − 2qn+1 + 2q

2(1− q2)2
if n is even,

(q − 1)
(q2 − 1)nqn − (q2 + 1)qn + 2q

2(1− q2)2
if n is odd.

(3.3)

Chapter 3: Random Sequences and Their Linear Complexity Profiles 55

And we obtain
k∑

i=1

iq2n−2i = q2n−2k(
q2k+2 − (k + 1)q2 + k

(1− q2)2
), so

n∑

c=dn+1
2
e
c(q−1)q2n−2c =





(q − 1)
(q2 − 1)nqn + 2qn+2 − 2(n + 1)q2 + 2n

2(1− q2)2
for even n,

(q − 1)
(n + 1)qn+3 − (n− 1)qn+1 − 2(n + 1)q2 + 2n

2(1− q2)2
for odd n.

(3.4)

Now we are ready to conclude the exact value of E[L(S̃n)]:

Theorem 3.5: The expected linear complexity E[L(S̃n)] of the variable sequence S̃n =

(S1, S2, . . . , Sn) over Fq, where all the random variables {S1, S2, . . . , Sn} are independent

and uniformly distributed, is:

E[L(S̃n)] =





n

2
+

q

(q + 1)2
− 1

qn

(n

1 + q
+

q

(1 + q)2

)
if n is even,

n

2
+

(q2 + 1)

2(1 + q)2
− 1

qn

(n

1 + q
+

q

(1 + q)2

)
if n is odd.

(3.5)

Proof: Sum the results of (3.3) and (3.4). 2

Recall that an LFSR with linear complexity L needs 2L data to specify a sequence and

the random sequence needs almost the same amount of data as its length to represent it.

So to obtain an ideal candidate sequences space that by randomly choosing would return

a sequence with the expected linear complexity being half of its length, we at least need to

guarantee lim
n→∞

E(L(S̃n))

n
=

1

2
. Since

q

(q + 1)2
is decreasing when q > 1,

q

(q + 1)2
≤ 2

9
and

lim
q→∞

q

(q + 1)2
= 0. Also

(q2 + 1)

2(1 + q)2
≤ 1

2
although it is increasing when q > 1. Therefore,

Theorem 3.5 tells us that the expected linear complexity over any finite field will have the

value quite close to
n

2
just with a slight difference less than

1

2
. As a result, our status quo

has naturally achieved the ideal situation that a randomly chosen sequence from Fn
q will

exhibit randomness with respect to having a linear complexity close to
n

2
.

3. The Variance of the Linear Complexity

Now, let us look at the variance of the linear complexity of all the sequences with length

Chapter 3: Random Sequences and Their Linear Complexity Profiles 56

n over Fq since it is the second important parameter characterizing randomly chosen se-

quences. By definition, the variance V [L(S̃n)] is given by:

V [L(S̃n)] = E([L(S̃n)− E[L(S̃n)]]2) = E([L(S̃n)]2)− (E[L(S̃n)])2. (3.6)

Because we already have E[L(S̃n)], the rest of our task is to compute

E([L(S̃n)]2) =

qn∑
i=1

[L(s̃n
i)]2P (S̃n = s̃n

i) =
1

qn

qn∑
i=1

[L(s̃n
i)]2

=
1

qn

n∑
c=1

c2 ×Nn(c) =
1

qn
[

bn
2
c∑

c=1

c2(q − 1)q2c−1 +
n∑

c=dn+1
2
e
c2(q − 1)q2n−2c].

Following the same procedures by introducing a formal variable but with much more com-

plicated computation, we have

k∑
i=1

i2q2i−1 =
q2k+1(q2 − 1)2k2 − 2q2k+1(q2 − 1)k + (q2k − 1)(q3 + q)

(q2 − 1)3
,

k∑
i=1

i2q2n−2i =
(q2k+2 + q2k − q2 − 1)q2n−2k+2 − q2n−2k(q2 − 1)2k2 − 2q2n−2k+2(q2 − 1)k

(q2 − 1)3
.

Now we are ready to obtain the main result for this part:

Theorem 3.6: The variance V [L(S̃n)] of the linear complexity of the variable sequence

S̃n = (S1, S2, . . . , Sn) over Fq, where all the random variables {S1, S2, . . . , Sn} are indepen-

dent and uniformly distributed, is:

V [L(S̃n)] =
q5 + q4 + 4q3 + q2 + q

(q − 1)2(q + 1)4
+

1

qn
O(n) +

1

q2n
O(n2). (3.7)

Proof: By the above two summation formulas and many computations with quite compli-

cated simplifying steps, we have that when n is even,

E([L(S̃n)]2) = [
1

4
− 1

(q + 1)qn
]n2+[

q

(q + 1)2
− 2q2

(q − 1)(q + 1)2qn
]n+[

q(q2 + 1)

(q2 − 1)2
− q(q2 + 1)

(q2 − 1)2qn
],

and while n is odd,

E([L(S̃n)]2) = [
1

4
− 1

(q + 1)qn
]n2+[

q2 + 1

2(q + 1)2
− 2q2

(q − 1)(q + 1)2qn
]n+[

q4 + 6q2 + 1

4(q2 − 1)2
− q(q2 + 1)

(q2 − 1)2qn
].

Chapter 3: Random Sequences and Their Linear Complexity Profiles 57

By (3.3) and (3.4), we obtain:

V (L(S̃n)) =





q5 + q4 + 4q3 + q2 + q

(q − 1)2(q + 1)4
− 1

qn
H1(q, n)− 1

q2n
H2(q, n) if n is even ,

q5 + q4 + 4q3 + q2 + q

(q − 1)2(q + 1)4
− 1

qn
H3(q, n)− 1

q2n
H4(q, n) if n is odd.

(3.8)

And the exact value of each Hi(q, n) for i = 1, 2, 3, 4 is:

H1(q, n) =
q(q2 + 3)n

(q − 1)(q + 1)3
+

q(q4 + 6q2 + 1)

(q − 1)2(q + 1)4
,

H2(q, n) = H4(q, n) =
n2

(q + 1)2
+

2qn

(q + 1)3
+

q2

(q + 1)4
,

H3(q, n) =
(3q2 + 1)n

(q − 1)(q + 1)4
+

4q2(q2 + 1)

(q − 1)2(q + 1)4
.

Since lim
n→∞

n2

qn
= 0 when q > 1, we have lim

n→∞
Hi(q, n)

qn
= 0 for any fixed q ≥ 2. Therefore,

the assertion of (3.7) is established. 2

On one hand,
n

qn
goes to zero very fast when n is increasing given q ≥ 2. Say n = 10,

then the difference between V (L(S̃n)) and
q5 + q4 + 4q3 + q2 + q

(q − 1)2(q + 1)4
is less than 0.01 given

that the coefficients of the highest degree n terms in Hi(q, n) are smaller than 1. On the

other hand, v(q) =
q5 + q4 + 4q3 + q2 + q

(q − 1)2(q + 1)4
is strictly decreasing while q ≥ 2 and v(2) ≈

1, v(3) ≤ 0.5. Therefore, V (L(S̃n)) is really small with the value less than
86

81
. On the

whole, we conclude that the linear complexity of s̃n chosen randomly from Fn
q should be

very close to the expected value which is almost
n

2
in most cases. To get a numerical

concept of this conclusion, we employ Chebyshev’s inequality. Therefore, we have

P{|L(S̃n)− E[L(S̃n)]| ≥ r} ≤ V (L(S̃n))

r2
. (3.9)

If we let r = 3, (3.9) implies that about 90% of the sequences over any finite field with

length n will have their linear complexities in the range
n

2
± 3.

Chapter 3: Random Sequences and Their Linear Complexity Profiles 58

6

-,
,

,
,

,
,

,
,

,
,

,
,

,
,

,,
6

-,
,

,
,

,
,

,
,

,
,

,
,

,
,,

....

....

•

.........

....

•-

-

-

-

n n + k n n + k

l0

n + k − l0

l0

n + k − l0

n

2
-line

n

2
-line

(a) (b)

1

Figure 3.5: One step of random walk: (a) L(s̃n) = l0 ≤ n

2
, (b) L(s̃n) = l0 >

n

2

4. The Random Walk of Linear Complexity

Suppose s̃ = (s1, s2, . . . , si, . . .) and L(s̃n) = l0. By the Berlekamp-Massey algorithm, the

linear complexity of s̃n+k will change to n + k − l0 from l0 for some k if sn+k does not

satisfy the linear recurrence relation decided by the previous terms. Therefore, it is quite

natural to consider the expected value for k, which is the average length of the steps of

the “random walk” under or above the
n

2
-line. See Figure 3.5. This characterization of

random sequences over F2 was first investigated by Rueppel in [32, Chapter 4]. Now we

extend his discussions on binary sequences to the sequences over Fq without any difficulty.

Denote the infinite sequences over Fq by the variable sequence S̃ = (S1, S2, . . . , Si, . . .).

And here the Si are uniformly and independently distributed random variables over Fq.

Now suppose the first n terms are given by Si = si ∈ Fq for i = 1, 2, . . . , n. Firstly, consider

L(s̃n) = l0 ≤ n

2
described in Figure 3.5 (a). Then since each Sj for j ≥ n + 1 must hold

one and only one exact value in Fq to keep the line straight, then the probability of the

first jump point n + k happening when k = i0 is
1

qi0−1
× (1 − 1

q
). Therefore, given q > 1

implying the convergence of the following infinite sum, the expected value for the random

variable k is

E(k) =
∞∑
i=1

i× 1

qi−1
× q − 1

q
=

q

q − 1
, where l0 ≤ n

2
. (3.10)

Chapter 3: Random Sequences and Their Linear Complexity Profiles 59

Secondly, consider L(s̃n) = l0 >
n

2
by looking at Figure 3.5 (b). Then there must be no

jump point while k ≤ 2l0 − n by the Berlekamp-Massay algorithm. Then we just need to

concern about the variable terms after S2l0 by neglecting the values of {Sn+1, Sn+2, . . . , S2l0−1}.
By (3.10) the expected value of the random variable k′ = k − (2l0 − n), which represents

the step length starting from 2l0, is
q

q − 1
. Therefore, we have

E(k) = (2l0 − n) +
q

q − 1
, where l0 >

n

2
. (3.11)

Based on the above discussion, it is easy to conclude that the expected value for the

random variable w representing the length between two balance points is
2q

q − 1
. A little

more computation will return the variance of w:

V (w) = E(w2)− [E(w)]2 =
∞∑
i=1

(q − 1)i2

qi
− (

q

q − 1
)2 =

10q − 3

(q − 1)2
. (3.12)

Since f(q) =
10q − 3

(q − 1)2
is decreasing when q ≥ 2, and f(2) = 17, f(q) =

10q − 3

(q − 1)2
has to

be less than or equal to 17. And when q ≥ 13, the variance is already less than 1. Now

summarize the above discussions to:

Theorem 3.7: Let S̃ = (S1, S2, . . . , Si, . . .) be an infinite sequences of independent and

uniformly distributed random variables over Fq. If Si = si ∈ Fq for i = 1, 2, . . . n, and

L(s̃n) = l0 where s̃n = (s1, s2, . . . , sn), then the expected length k, such that n + k is the

first appearing jump point after n, is

E(k) =





q

q − 1
, if l0 ≤ n

2
,

(2l0 − n) +
q

q − 1
, if l0 >

n

2
.

(3.13)

And the expected length between two balance points is
2q

q − 1
with the variance

10q − 3

(q − 1)2
.

Proof: By (3.10), (3.11), and (3.12). 2

From Theorem 3.7, we could expect that the graph of the linear complexity profile of

a random sequence would look like “an irregular staircase” with most step lengths being

the expected value
2q

q − 1
and most stair heights being

q

q − 1
especially when q ≥ 13.

Again refer to Figure 3.1. Although all terms are over F2 and only finitely many terms

Chapter 3: Random Sequences and Their Linear Complexity Profiles 60

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

Figure 3.6: The Linear Complexity Profile of ps̃20

are involved, it really shows “a typical irregular staircase” with step length 4 and height

2. One should pay attention to the word “irregular”. Randomness necessarily needs

the non-regularity as we discussed in Section 1. So any regular characteristics should

be excluded from a true random sequence. Although V (w) is not very big especially

when q ≥ 13 as shown in Theorem 3.7, one cannot expect a random sequence to have

a regular linear complexity graph, which means all or almost all the “stairs” have the

length
2q

q − 1
and the height

q

q − 1
. A very famous example is given by the binary sequence

ps̃ = (s1, s2, . . . , si, . . .) where,

si =





1, if i = 2j − 1, for j = 1, 2, . . . ,

0, otherwise .

This sequence can be represented in a very simple way and it is almost a zero se-

quence. Therefore, it cannot be a random sequence from our viewpoints because each bit

in this sequence is highly predictable. However, in [32, Chapter 4], the author has shown

that L(ps̃n) = bn + 1

2
c for n = 1, 2, So the step length and the step height in the

graph of its linear complexity are 4 and 2 respectively, which are both exactly the expected

values (see Figure 3.6), which implies that the linear complexity graph of ps̃ is very regular.

Chapter 3: Random Sequences and Their Linear Complexity Profiles 61

5. Some Discussions on Periodic Sequences

In most cases, the key generators will generate periodic sequences since they are imple-

mented by linear devices such as LFSRs. Therefore the expected linear complexity of

periodic sequences should be considered. In this part, a heuristic argument is provided

and related research results are listed but without rigorous mathematical proofs.

Let s̃T = (s1, s2, . . . , sT) be the first T terms of the infinite periodic sequence s̃ =

(s1, s2, . . . , si, . . .) over Fq , where T is its minimal period and each si for i = 1, 2, . . . , T

is uniformly and independently chosen from Fq. Based on the linear recurrence relation

si+T = si, the expected linear complexity of s̃ = (s̃T , s̃T , · · · , s̃T) must be equal to or

less than T . Let s(x), s∗(x) be the generating polynomial for s̃ and the corresponding

polynomial of s̃T respectively, then we have

s(x) =
s∗(x)

1− xT
=

s1 + s2x + . . . + sT xT−1

1− xT
=

n∑
i=1

mi∑
j=1

ci,j(x)

[Pi(x)]j
, (3.14)

where Pi(x) for i = 1, 2, . . . , n are the irreducible factors over Fq with the multiplicities mi

of xT − 1 and deg[ci,j(x)] < deg[Pi(x)] for all i, j. For fixed T , it is well known that there

is a bijective mapping between s∗(x) and the partial fraction expansion
n∑

i=1

mi∑
j=1

ci,j(x)

[Pi(x)]j
.

Therefore, all the coefficients of ci,j(x) are chosen independently and uniformly from Fq

means so are all the coefficients of s∗(x). This proposition implies that all si for i =

1, 2, . . . , T are selected uniformly and independently from Fq just as random variables.

Therefore, computing the expected linear complexity of the periodic sequence s̃ could be

done by computing the expected degree of the minimal polynomial of s̃ given that all the

coefficients of ci,j(x) for all i, j are chosen independently and uniformly from Fq.

However, obtaining the expected degree of the minimal polynomial directly is generally

not easy for a symbol parameter T because it is difficulty to find all the factors over Fq

of xT − 1 and their corresponding multiplicities are highly dependent on T . Firstly, let

us consider two extreme cases for the general conclusion. For the first one, let q = 2 and

T = qp − 1 = 2p − 1 where p is a prime. In [32, Chapter 4], it was shown that

E[L(s̃)] ≥ e−
1
p (2p − 3

2
). (3.15)

Therefore, from (3.15) we conclude that E[L(s̃)] ≈ 2p − 1 − 1

2
= T − 1

2
≈ T as p → ∞,

which implies that the expected linear complexity of the periodic sequence s̃ is close to T ,

its minimal period, when T is big enough. The other extreme case is given by T = 2n. Still

Chapter 3: Random Sequences and Their Linear Complexity Profiles 62

in [32, Chapter 4], the author proved that the infinite sequence S̃ generated by repeating

(S1, S2, . . . , ST), a sequence of T independent and uniformly distributed binary variables,

has the expected linear complexity

E[L(s̃)] = 2n − 1 +
1

22n ≈ T. (3.16)

Hence, from the above two extreme but heuristic cases, we conclude that the expected

linear complexities of periodic sequences should be close to their minimal periods in general

cases. This conjecture was first given by Rueppel in [32, Chapter 4] in 1986, but it was not

proved in the following 16 years. In 2002, Meidl and Niederreiter proved it by employing

the generalized discrete Fourier transform in [24].

Suppose w ≥ 1 and j ≥ 0 are both integers and gcd(q, w) = 1, then the cyclotomic

coset Cj mod w with respect to powers of q is defined as

Cj = {0 ≤ k ≤ w − 1 : k ≡ jqr mod w for some r ≥ 0}.

Now let T = pvw, where p is the characteristic of Fq, v ≥ 0 and gcd(p, w) = 1. By

employing the different cyclotomic cosets mod w, {Bi} for i = 1, 2, . . . , h, Meidl and

Niederreiter [24] proved that

E[L(s̃)] = T −
h∑

j=1

|Bj|(1− q−|Bj |pv
)

q|Bj | − 1
. (3.17)

Then, for any T , by (3.17) we can deduce E[L(s̃)] > T− w

q − 1
. Especially, when gcd(T, q) =

1, we have E[L(s̃)] ≥ (1 − 1

q
)T . It is likely and easy to see E[L(s̃)] and T are quite close

if q is big or w is small. For some small q like q = 2, in [24], it was also shown that

E[L(s̃)] ≥ T − w + 2

3
when w > 0 and E[L(s̃)] ≥ 3T − 1

4
when w = 0. To sum up,

the expected linear complexities of periodic sequences are actually close to their minimal

period.

Therefore, by recalling the discussions in the last two sections, we could expect that

periodic sequences will have almost the same performance as or be indistinguishable from

random sequences with respect to the linear complexity profiles in their first two periods.

On the whole, from all the discussions in this chapter, we could expect that a sequence

over Fq generated by a key generator should have these properties to simulate random

sequences with respect to the linear complexity:

Chapter 3: Random Sequences and Their Linear Complexity Profiles 63

• Its linear complexity profile graph should be close to the
n

2
-line in its first two periods.

• Its linear complexity graph should consist of irregular staircases with average height
q

q − 1
and average length

2q

q − 1
in its first two periods.

• Its linear complexity should be close to its minimal period.

Chapter 4

The k-Error Linear Complexity

As we mentioned, all the practical stream ciphers are implemented by linear devices, es-

pecially by Linear Feedback Shift Registers for hardware reasons. Since the Berlekamp-

Massey algorithm is very efficient to compute the linear complexity of any sequences over

Fq, a cryptographically strong key stream should necessarily have a large linear complexity

so that from some previous states of the key stream, even if their amount is relatively huge,

it is impossible to decide the structure of the key generator for obtaining the key stream.

However, only large linear complexity itself does not guarantee the cryptographic

strength. Suppose the linear complexity of a key stream decrease dramatically after chang-

ing k terms, where k is relatively small compared to the key stream length. Then it is easy

to decide the altered key stream or so called k-error key stream by the Berlekamp-Massey

algorithm. Although the plaintext obtained by using the k-error key stream is not exactly

the original plaintext, one could recover all or most of the errors in the plaintext by the

information redundancy because the number of errors in the plaintext is relatively small

compared to the length of the plaintext given k being small. Therefore, another important

parameter to measure the security of the key stream is the so-called k-error linear com-

plexity. A cryptographically strong key stream must not only have big linear complexity

but also have large k-error linear complexity for relatively small k. In this chapter, we will

investigate the latter characteristic of the sequences.

4.1 Bounds for the k-Error Linear Complexity

Generally speaking, it is hard to decide the exact value of the k-error linear complexity

given a sequence over any finite field Fq. However, by employing some tools in number

64

Chapter 4: The k-Error Linear Complexity 65

theory, we could estimate the k-error linear complexities of periodic sequences. Obviously,

we are more concerned about the lower bound. So in this section, we will develop some

tools to obtain lower bounds for the k-error linear complexity. Firstly, let us give the exact

definition of the k-error linear complexity.

Definition 4.1: Let s̃n
i = (si

1, s
i
2, . . . , s

i
n) and s̃n

j = (sj
1, s

j
2, . . . , s

j
n) be two sequences over

Fq. Then the Hamming distance d between s̃n
i and s̃n

j is defined to be

d(s̃n
i , s̃

n
j) =

n∑

k=1

tk, where tk = 0 if si
k = sj

k, and tk = 1 otherwise.

Definition 4.2: Let s̃n = (s1, s2, . . . , sn) be a sequence over Fq, k be an integer such that

0 ≤ k ≤ n and s̃n
e be an error sequence of s̃n with length n over Fq. Then the k-error

linear complexity Lk(s̃
n) of s̃n is defined to be

Lk(s̃
n) = min

d(s̃n
e ,s̃n)≤k

L(s̃n
e).

Some notation should be clarified here. In Definition 4.2, we just define the k-error

linear complexity for finite sequences. However, in this chapter, we are more concerned

about the infinite periodic sequences with minimal period T . So we specify the notation

Lk(s̃) for s̃ = (s1, s2, . . . , si, . . .), where s̃ is an infinite periodic sequence with minimal

period T , to represent the value of min
s̃T
e

{L[(s̃T
e)∞] | d(s̃T

e , s̃T) ≤ k}.
Before any discussion, we should offer an extreme example to show the dramatic dif-

ference between the linear complexity and the k-error linear complexity of a sequence. Let

us consider

s̃c = (0000000000000000000000000000001).

By the Berlekamp-Massey algorithm, the linear complexity of s̃c is 31, the same as its

length. However, its 1-error linear complexity is obviously 0 since the Hamming distance

between s̃c and the zero sequence with length 31 is just 1.

To find the connection between periodic sequences over Fq and number theory, we need

to introduce some number-theoretic tools first.

Definition 4.3: Let n be a positive integer and B = {mi | gcd(n,mi) = 1 and 1 ≤ mi ≤
n}. Then the Euler function φ(n) is defined to be |B|, the cardinality of the finite set B.

Chapter 4: The k-Error Linear Complexity 66

Definition 4.4: Let ϕ, n be positive integers such that gcd(ϕ, n) = 1. Then the order

of ϕ modulo n, denoted by ordn(ϕ), is defined to be the smallest positive integer k such

that ϕk ≡ 1 mod n.

Definition 4.5: Call ϕ a primitive root modulo n if ordn(ϕ) = φ(n). For an element

ξ ∈ Fq, if n is the smallest positive number such that ξn = 1 over Fq, then ξ is called an

nth primitive root unity over Fq.

Definition 4.6: Let n be a positive integer and p be the characteristic of Fq, where p - n.

Let ξ be an nth primitive root of unity over Fq. Then the nth cyclotomic polynomial

over Fq is defined to be

Qn(x) =
∏

1≤s≤n, gcd(s,n)=1

(x− ξs).

From the definitions, it is not hard to obtain some basic properties. For the Euler

function, it is actually multiplicative, which means that for any positive integers m,n, if

gcd(m,n) = 1, then φ(mn) = φ(m)φ(n). For the cyclotomic polynomial we have:

1. deg[Qn(x)] = φ(n).

2. xn − 1 =
∏
d|n

Qd(x).

3. Qn(x) is independent of the choice of the nth primitive root of unity.

4. Suppose Qn(x) =
φ(n)∑
i=0

aix
i, then ai ∈ Fq for all i.

5. If gcd(q, n) = 1, then Qn(x) is factored into
φ(n)

d
distinct monic irreducible polyno-

mials in Fq[x] with the same degree d, where d is the order of q mod n, ordn(q).

Other interesting properties of Euler function, primitive root and cyclotomic polynomial

with rigorous mathematical proofs can be found in [30, Chapter 6] and [18, Chapter 2].

Lemma 4.1: Let n1, n2, . . . , nt be positive integers and gcd(ni, nj) = 1 for all 1 ≤ i < j ≤ t.

Suppose m ≥ 1 is an integer with gcd(nk,m) = 1 for all 1 ≤ k ≤ t, then

ordn1n2···nt(m) = lcm[ordn1(m), ordn2(m), . . . , ordnt(m)].

Chapter 4: The k-Error Linear Complexity 67

Proof: Let n = n1n2 · · ·nt. Since gcd(ni, nj) = 1 for i 6= j, by the Chinese remainder

theorem, we have Zn
∼= Zn1 × Zn2 × · · · × Znt and the isomorphism f is given by

f(x mod n) = (x mod n1, x mod n2, . . . , x mod nt).

Denote lcm[ordn1(m), ordn2(m), . . . , ordnt(m)] by l. On one hand, given that f(1) is the

unit of Zn1 × Zn2 × · · · × Znt , for any positive integer d such that md ≡ 1 mod n, we have

f(md mod n) = f(1 mod n) = (1, 1, . . . , 1) = (md mod n1, md mod n2, . . . , md mod nt).

This forces md ≡ 1 mod ni for all 1 ≤ i ≤ t. Therefore ordni
(m) | d for all i, which implies

that l must divide d. Thus, we have

lcm[ordn1(m), ordn2(m), . . . , ordnt(m)] | ordn(m). (4.1)

On the other hand, ml ≡ 1 mod ni for all 1 ≤ i ≤ t. Therefore, f(ml mod n) = (1, 1, . . . , 1),

which forces ml ≡ 1 mod n. So by the definition of order, we have

ordn(m) | lcm[ordn1(m), ordn2(m), . . . , ordnt(m)]. (4.2)

By (4.1) and (4.2), we conclude that ordn(m) = lcm[ordn1(m), ordn2(m), . . . , ordnt(m)].2

Lemma 4.2: Let p be a prime, then for any positive integers k and c with gcd(c, p) = 1

we have ordpk(c) ≥ ordp(c).

Proof: Let d = ordpk(c). Then cd ≡ 1 mod pk. Hence, cd ≡ 1 mod p. Still by the definition

of order, we have that ordp(c) | d = ordpk(c), which implies ordpk(c) ≥ ordp(c). 2

Now based on the above two lemmas, we are ready to set up the connection between

periodic sequences and number theory. This connection originated from [10] and was de-

scribed in detail in [8, Chapter 3]. From now on, use w(s̃n) = w[(s1, s2, . . . , sn)] to represent

the Hamming weight of s̃n.

Theorem 4.1: Let N = pe1
1 pe2

2 · · · pet
t , where p1, p2, . . . , pi are pairwise distinct primes

and ei ≥ 1 for all i. Let q be a prime power such that gcd(q, N) = 1. Suppose k <

min{w(s̃N), N−w(s̃N)}, then for each periodic sequence s̃ over Fq with the minimal period

N ,

L(s̃) ≥ min{ordp1(q), ordp2(q), . . . , ordpt(q)},
Lk(s̃) ≥ min{ordp1(q), ordp2(q), . . . , ordpt(q)}.

Chapter 4: The k-Error Linear Complexity 68

Proof: Recall the properties we listed earlier for cyclotomic polynomials, and the fact that

s̃ is periodic with minimal period N . Next, we note that a characteristic polynomial for s̃

is

xN − 1 =
∏

ni|N
Qni

(x).

which is the same as its reciprocal polynomial. And Qni
(x) is the product of

φ(ni)

ordni
(q)

distinct monic irreducible polynomials over Fq with the same degree ordni
(q).

Suppose ni | N , then we have ni = p
ri1
i1

p
ri2
i2
· · · pris

is
, where 1 ≤ rij ≤ eij for 1 ≤ j ≤ s.

Here 1 ≤ s ≤ t. According to Lemma 4.1, we have

ordni
(q) = lcm[ord

p
ri1
i1

(q), ord
p

ri2
i2

(q), . . . , ord
p

ris
is

(q)].

Therefore, ordni
(q) ≥ max[ord

p
ri1
i1

(q), ord
p

ri2
i2

(q), . . . , ord
p

ris
is

(q)]. By Lemma 4.2, however,

we have
ordni

(q) ≥ max[ord
p

ri1
i1

(q), ord
p

ri2
i2

(q), . . . , ord
p

ris
is

(q)]

≥ max[ordpi1
(q), ordpi2

(q), . . . , ordpis
(q)]

≥ min[ordp1(q), ordp2(q), . . . , ordpt(q)].

Hence the degree of the minimal polynomial for every periodic sequence over Fq with the

minimal period N must be equal to or greater than ordni
(q). Proposition 2.1 implies that

L(s̃) ≥ min{ordp1(q), ordp2(q), . . . , ordpt(q)}. (4.3)

Now because k < min{w(s̃N), N − w(s̃N)}, after changing the same k terms in every

minimal period of s̃ , the error sequence must be non-constant and it is still periodic

with the period N . Then its minimal polynomial cannot be x − 1. Therefore, its linear

complexity should be equal to the degree of the product of some factors of xN − 1. Hence,

we have that

Lk(s̃) ≥ min{ordp1(q), ordp2(q), . . . , ordpt(q)}. (4.4)

2

Now, from Theorem 4.1, we see the basic connection between the lower bounds for the

linear complexity and the k-error linear complexity of a sequence and number theory. In

fact, the main idea of Theorem 4.1 inspires us to find some special N and q, such that all

the nontrivial factors of xN − 1 over Fq, except x− 1, have large degrees.

Chapter 4: The k-Error Linear Complexity 69

4.2 Lower Bounds for the k-Error Linear Complexity

with Special Period

To proceed for the lower bounds, we need some preparation on the existence of the prim-

itive roots modulo n. Denote the group of units of Z/nZ by (Z/nZ)∗, where n ≥ 2 is an

integer. Then it is well known that (Z/nZ)∗ is a cyclic group if and only if n = 2, 4, pm, 2pm

for some odd prime p. Therefore, we could find g ∈ (Z/nZ)∗ such that it is a primitive

root modulo n if n = 2, 4, pm, 2pm. In fact, this assertion originated from a number theory

result first given by C. F. Gauss in the book Disquisitiones Arithmeticae. One could refer

to lots of books on number theory, for example [34, Section 33], for details and proofs.

Furthermore, to serve our purpose, we just cite a useful result on primitive roots modulo

n = pm from number theory but without showing proofs.

Lemma 4.3: Let p, k be an odd prime and a positive integer, respectively. Say g is a

primitive root modulo p. Then

• g is also a primitive root modulo p2 if gp−1 6≡ 1 mod p2.

• g + p is a primitive root modulo p2 if gp−1 ≡ 1 mod p2.

• g is a primitive root modulo pk+1 if g is a primitive root modulo pk, where k ≥ 2.

Proof: Refer to [30, Theorem 8.8, Theorem 8.9]. 2

Now we are ready to obtain some good bounds for the k-error linear complexity based

on Theorem 4.1 and Lemma 4.3.

Theorem 4.2: Let p be an odd prime and N = pm where m ≥ 1. For any nonconstant

sequence s̃ = (s̃N)∞ whose period is N over Fq, if q is a primitive root modulo p and

qp−1 6≡ 1 mod p2, then for any k < min{w(s̃N), N − w(s̃N)} we have Lk(s̃) ≥ p− 1.

Proof: Firstly, from Lemma 4.3, we conclude that q is a primitive root modulo pt for any

t ≥ 2. From the property (2) of the cyclotomic polynomials we listed, we have that in the

finite field Fq, the characteristic polynomial of s̃ can be factored as

xN − 1 = xpm − 1 = (x− 1)
m∏

i=1

Qpi(x). (4.5)

Chapter 4: The k-Error Linear Complexity 70

By the property (5) of the cyclotomic polynomials, Qpi(x) could be factored into
φ(pi)

ordpi(q)
ir-

reducible polynomials over Fq. However, by Lemma 4.3, ordpi(q) = φ(pi). That means that

Qpi(x) itself is an irreducible polynomial over Fq. Since φ(pi) = (p− 1)pi−1, deg[Qpi(x)] =

(p − 1)pi−1 ≥ p − 1 for all 1 ≤ i ≤ m. Still according to k < min{w(s̃N), N − w(s̃N)},
the k-error sequence s̃e after changing the same k terms in its every period cannot be a

constant sequence. So 1 and x− 1 cannot be its minimal polynomial. Hence we conclude

that Lk(s̃) ≥ p− 1. 2

It is known that for every prime p, there are φ[φ(p)] = φ(p − 1) primitive elements in

(Z/pZ)∗. Now suppose q + pZ ∈ (Z/pZ)∗ is the generating element of this cyclic group

under multiplication, and the representing element q satisfying 1 < q ≤ p − 1 is equal to

some power of some prime. Then the significance of Theorem 4.2 arises: if we have a huge

prime p, then according to Theorem 4.2, we could obtain an ideal lower bound.

Proposition 4.1: Let p be an odd prime. For any nonconstant sequence s̃ = (s̃p)∞ whose

period is p over Fq, if q is a primitive root modulo p, then for any k < min{w(s̃p), N−w(s̃p)}
we have Lk(s̃) ≥ p− 1.

Proof: Let m = 1. Then the conclusion directly follows Theorem 4.2 and its proof. 2

Proposition 4.1 tells us that for a periodic sequence with its period being a large prime

p, if the cardinality of its underlying field is a primitive root modulo p, then the k-error

linear complexity for s̃ = (s̃p)∞ has a lower bound just slightly less than its period. Since

the difference is just 1, this lower bound could be viewed the same as its period. Still by

the same argument in Theorem 4.2, we have the linear complexity of this sequence is p or

p− 1, which also could be viewed the same as its period. Therefore, s̃ = (s̃p)∞ is an ideal

key stream with respect to the linear complexity and k-error linear complexity since both

of them almost achieve the maximal value, the minimal period of the sequence.

Since the cardinality of any finite field must be a power of some prime, the remaining

task is to find a primitive root q modulo pm, such that q = rt where r is a prime.

Definition 4.7: Let g, n be positive integers such that gcd(g, n) = 1. Call e the negative

order modulo n of g if e is the smallest positive integer such that ge ≡ −1 mod n and

Chapter 4: The k-Error Linear Complexity 71

denote it by nordn(g).

Lemma 4.4: For n > 4, g is a primitive root modulo n if and only if
φ(n)

2
is the negative

order of g mod n.

Proof: (=⇒) Suppose g is a primitive root modulo n. Then by definition or Fermat’s

little theorem, gφ(n) ≡ 1 mod n. Recall the fact that there are primitive roots mod-

ulo n if and only if n = 2, 4, pe, 2pe. Therefore, φ(n) must be an even number. Then

gφ(n) − 1 = (g
φ(n)

2 + 1)(g
φ(n)

2 − 1) = In, where I is an integer. Hence, g
φ(n)

2 must be equiv-

alent to -1 modulo n, otherwise we will have g
φ(n)

2 ≡ 1 mod n, which contradicts to g is a

primitive root modulo n. This proves the existence of the negative order of g mod n and

informs us that nordn(g) ≤ φ(n)

2
. Obviously, φ(n) = ordn(g) | 2nordn(g). This forces

nordn(g) ≥ φ(n)

2
, then nordn(g) =

φ(n)

2
.

(⇐=) Consider nordn(g) =
φ(n)

2
. Then ordn(g) | φ(n) = 2nordn(g). Suppose ordn(g) <

nordn(g) =
φ(n)

2
, then let e ≡ nordn(g) (mod ordn(g)) < nordn(g). However, ge ≡

−1 mod n. Contradicts to the definition of negative order. If nordn(g) ≤ ordn(g) <

2nordn(g), e = 2nordn(g) − ordn(g) is also less than nordn(g), which leads to another

contradiction ge ≡ −1 mod n. Therefore, we must have ordn(g) ≥ 2nordn(g) = φ(n). Still

by Fermat’s little theorem, we conclude that ordn(g) = φ(n). 2

Lemma 4.5: If g is a primitive root modulo n, where n is an integer greater than 2, it

must not be a quadratic residue modulo n.

Proof: Primitive root implies that g
φ(n)

2 ≡ −1 mod n. If g is a quadratic residue, by sup-

posing g ≡ g2
0 mod n, then g

φ(n)
2 ≡ g

φ(n)
0 ≡ 1 mod n, which is an immediate contradiction

given n > 2. 2

Therefore, from Lemma 4.5, if rt is a primitive root modulo pm, then t is necessarily an

odd integer. Because the key streams embedded in the finite field with characteristic 2 are

easy to be implemented by hardware, we are more concerned about r = 2 here. Next we

will check whether 2t = 22u+1 for some non-negative integer u is a primitive root modulo

pm or not based on the above lemmas. Generally, it is not easy to decide the primitive root

Chapter 4: The k-Error Linear Complexity 72

modulo pm especially when p is huge. Therefore, we limit p to some special forms and m

to be 1 for discussion. Introduce two properties of the Legendre symbol from [29, Chapter

3]. Suppose p is an odd prime and gcd(a, p) = gcd(b, p) = 1, then

(
a2b

p

)
=

(
b

p

)
,

(
−1

p

)
= (−1)

p−1
2 . (4.6)

Therefore by (4.6), for 22u+1 and the odd prime p, we have

(
22u+1

p

)
=

(
2

p

)
= (−1)

p2−1
8 =





+1 if p = 8a + 1, or p = 8a + 7,

−1 if p = 8a + 3, or p = 8a + 5.
(4.7)

If the Legendre symbol of p modulo n is 1, then p is a quadratic residue. If the Legendre

symbol of p is -1, then p is not a quadratic residue modulo n.

Theorem 4.3: If p = 4p∗ + 1 where p∗ is a prime and 24u+2 < p − 1, then 22u+1 is a

primitive root modulo p.

Proof: By Fermat’s little theorem and given φ(p) = 4p∗, after factoring, we have

(22u+1)φ(p) − 1 ≡ [(22u+1)
φ(p)

2 + 1][(22u+1)p∗ + 1][(22u+1)p∗ − 1] ≡ 0 mod p. (4.8)

Firstly, by (4.6), −1 is a quadratic residue. Then since p∗ = 2a + 1 is a prime, p must be

in the form of 8a + 5. Because

(
[22u+1]p

∗

p

)
=

(
22up∗+2a+1

p

)
=

(
2

p

)
= −1,

we conclude that (22u+1)p∗ is not a quadratic residue, which implies (22u+1)p∗ 6≡ ±1 mod p.

Therefore, we must have (22u+1)
φ(p)

2 ≡ −1 mod p. Hence nordp(2
2u+1) | 2p∗. Now consider

0 < 24u+2 < p − 1, so we have (22u+1)2 6≡ −1 mod p. Thus, by employing the fact that

(22u+1)p∗ 6≡ −1 mod p, nordp(2
2u+1) must be equal to 2p∗ =

φ(p)

2
. Then by Lemma 4.4,

22u+1 is a primitive root modulo p. 2

Of course, there are lots of results on primitive roots by setting different conditions on

the modulus n. One could refer to [8, Section 3.4] for different conclusions. Moreover, in

[7] one could find discussions on the distribution properties of primitive roots over finite

fields. Also one could refer to [37] for algorithms to find primitive roots. Now combine the

Chapter 4: The k-Error Linear Complexity 73

results of Theorem 4.2 and Theorem 4.3, we could achieve our aims to construct the ideal

key streams, for which both linear complexities and k-error linear complexities are almost

the same as their minimal periods with the little difference being 1 at most.

Theorem 4.4: Let N = p = 4p∗ + 1 be an odd prime and q = 22u+1, where p∗ is also a

prime and q2 < p − 1. For any nonconstant periodic sequence s̃ = (s̃N)∞ with the period

N (minimal) over Fq we have L(s̃) ≥ N − 1, and for any k < min{w(s̃N), N − w(s̃N)} we

have Lk(s̃) ≥ N − 1.

Proof: From Theorem 4.2 and Theorem 4.3, we have Lk(s̃) ≥ N−1 for any k < min{w(s̃N), p−
w(s̃N)}. Then let k = 0, we have L(s̃) ≥ N − 1. 2

However, up to now, we still do not have any good method to find such big primes

p = 4p∗+1 where p∗ is also a prime. Whether there are infinitely many such primes is still

one of the difficult open problems in number theory. Right now the only available method

for constructing these primes is just searching a large prime table for a matched pair (p, p∗)

such that p = 4p∗ + 1.

For the probabilistic properties, one could refer to Meidl and Niederreiter [23], [24] for

lower bounds on the expected value of the k-error linear complexity. A special case when

the period N is a prime different from the characteristic of Fq, was considered in [22].

Bibliography

[1] N. Abramson, Information Theory and Coding, McGraw-Hill, New York, 1963.

[2] J. O. Bruer, On pseudorandom sequences as crypto generators, Proceeding Int. Zurich

Seminar on Digital Commmunication, Switzerland, 1984.

[3] J. A. Buchmann, Introduction to Cryptography, Second Edition, Springer, New York,

2004.

[4] P. Caballero-Gil, Regular cosets and upper bounds on the linear complexity of certain

sequences, Sequences and Their Applications (C. Ding, T. Helleseth, and H. Nieder-

reiter, eds.), pp. 161-170, Springer, London, 1999.

[5] P. Caballero-Gil, New upper bounds on the linear complexity, Computational Mathe-

matics Applications, vol. 39, no. 3-4, pp. 31-38, 2000.

[6] C. Calude, Information and Randomness, An Algorithmic Perspective, Springer-

Verlag, Berlin, 1994.

[7] C. Carlitz, Distribution of primitive roots in a finite field, Quarterly Journal of Math-

ematics, vol. 4, pp. 4-10, 1953.

[8] T. W. Cusick, C. Ding, A. Renvall, Stream Ciphers and Number Theory, Elsevier,

Amsterdam, 1998

[9] C. Ding, G. Xiao, W. Shan, New measure indexes on the security of stream ciphers,

Proceedings of the Third Chinese National Workshop on Cryptology, Xi’an, China, pp.

5-15, 1988.

[10] C. Ding, G. Xiao, W. Shan, The Stability Theory of Stream Ciphers, Springer-Verlag,

Berlin, 1991.

74

Chapter 4: The k-Error Linear Complexity 75

[11] L. J. Garcia-Villalba and A. Fúster-Sabater, On the linear complexity of the sequences

generated by nonlinear filterings, Information Processing Letters, vol. 76, no. 1-2, pp.

67-73, 2000.

[12] M. R. Garey and D.S. Johnson, Computers and Intractability, W.H. Freeman, New

York, 1979.

[13] S. M. Jennings, Multiplexed sequences: some properties of the minimum polynomial,

Proceedings Workshop on Cryptography, Springer-Verlag, Berlin, LNCS vol. 149, pp.

189-206, 1983.

[14] S. M. Jennings, Autocorrelation function of the multiplexed sequences, IEEE Proceed-

ings, vol. 131, no. 2, pp. 169-172, 1984.

[15] A. N. Kolmogorov, Three approaches to the quantitative definition of information,

Problems Information Transmission, vol. 1, pp. 1-7, 1965.

[16] S. Konyagin, T. Lange, and I. E. Shparlinski, Linear complexity of the discrete loga-

rithm, Designs Codes Cryptography, vol. 28, pp. 135-146, 2003.

[17] A. Lempel, J. Ziv, On the complexity of finite sequences, IEEE Transactions on

Information Theory, vol. 22, no. 1, pp. 75-81, 1976.

[18] R. Lidl, H. Niederreiter, Introduction to Finite Fields and Their Applications, Cam-

bridge University Press, Cambridge, 1994.

[19] P. Martin-Löf, The definition of random sequences, Information and Control, vol. 9,

pp. 602-619, 1966.

[20] J. L. Massey, Shift-register synthesis and BCH decoding, IEEE Transactions on In-

formation Theory, vol. 15, no. 1, pp. 122-127, 1969.

[21] W. Meidl, Enumeration results on linear complexity profiles and lattice profiles, Jour-

nal of Complexity, vol. 22, pp. 275-286, 2006.

[22] W. Meidl and H. Niederreiter, Linear complexity, k-error linear complexity, and the

discrete Fourier transform, Journal of Complexity, vol. 18, pp. 87-103, 2002.

[23] W. Meidl and H. Niederreiter, Counting functions and expected values for the k-error

linear complexity, Finite Fields Applications, vol. 8, pp. 142-154, 2002.

Chapter 4: The k-Error Linear Complexity 76

[24] W. Meidl and H. Niederreiter, On the expected value of the linear complexity and the

k-error linear complexity of periodic sequences, IEEE Transactions on Information

Theory, vol. 48, pp. 2817-2825, 2002.

[25] W. Meidl and A. Winterhof, Lower bounds on the linear complexity of the discrete

logarithm in finite fields, IEEE Transactions on Information Theory, vol. 47, pp.

2807-2811, 2001.

[26] H. Niederreiter, Sequences with almost perfect linear complexity profile, Advances in

Cryptology - EUROCRYPT’ 87: Workshop on the Theory and Application of Crypto-

graphic Techniques, Amsterdam, The Netherlands, April 1987. Proceedings, Springer,

Berlin, LNCS vol. 304, pp. 37-51, 1988.

[27] H. Niederreiter, Some computable complexity measures for binary sequences, Se-

quences and Their Applications (C. Ding, T. Helleseth, and H. Niederreiter, eds.),

pp. 67-78, Springer, London, 1999.

[28] H. Niederreiter, C. P. Xing, Rational Points on Curves over Finite Fields, Theory

and Applications, London Mathematical Society Lecture Note Series 285, Cambridge

University Press, Cambridge, 2001.

[29] D. Redmond, Number Theory, An Introduction, Marcel Dekker, New York, 1996.

[30] K. H. Rosen, Elementary Number Theory and Its Applications, Addison-Wesley Pub-

lishing Company, Reading, Massachusetts, 1984.

[31] R. A. Rueppel, Correlation immunity and the summation combiners, Advances in

Cryptology: Proceeding Cryptography 85, Springer-Verlag, Berlin, pp. 260-272, 1986.

[32] R. A. Rueppel, Analysis and Design of Stream Ciphers, Springer-Verlag, Berlin, 1986.

[33] A. Shamir, Stream cipher: dead or alive, Advances in Cryptology - ASIACRYPT

2004: 10th International Conference on the Theory and Application of Cryptology

and Information Security, Jeju Island, Korea, Springer, Berlin, p. 78, 2004.

[34] D. Shanks, Solved and Unsolved Problems in Number Theory, Chelsea Publishing

Company, New York, 1985.

[35] C. E. Shannon, The mathematical theory of communication, The Bell System Tech-

nical Journal, vol. 27, pp. 379-423, 1948.

Chapter 4: The k-Error Linear Complexity 77

[36] C. E. Shannon, Communication theory of secrecy systems, The Bell System Technical

Journal, vol. 28, pp. 656-715, 1949.

[37] V. Shoup, Searching for primitive roots in finite fields, Mathematics of Computation,

vol. 58, pp. 369-380, 1992.

[38] I. E. Shparlinski, Number Theoretic Methods in Cryptography: Complexity Lower

Bounds, Birkhäuser, Basel, 1999.

[39] I. E. Shparlinski, Cryptographic Applications of Analytic Number Theory: Complexity

Lower Bounds and Pseudorandomness, Birkhäuser, Basel, 2003.

[40] G. J. Simmons, Contemporary Cryptology, The Science of Information Integrity, IEEE

Press, Piscataway, 1992.

[41] R. J. Solomonov, A formal theory of inductive inference, Part I, Information and

Control, vol. 7, pp. 1-22, 1964.

[42] C. H. Tan, Period and linear complexity of cascaded clock-controlled generators, Se-

quences and Their Applications (C. Ding, T. Helleseth, and H. Niederreiter, eds.), pp.

371-378, Springer, London, 1999.

Appendix: The Maple Program of

the Berlekamp-Massey Algorithm

% Input s is the sequence;

% N is its length;

% P is the number of elements in the underlying field;

% x is a formal symbol.

% The returning value of function ‘BM’ is the linear complexity of s.

% The file is saved as ‘BMA’ in the working space of Maple.

BM := proc(s,N, P, x)

local C, B, T, L, k, i, n, d, b, safemod;

safemod := (exp, P) − > ‘if’(P=0, exp, exp mod P);

B := 1; C := 1; L := 0;

k := 1; b := 1;

for n from 0 to N − 1 do

d := s[n + 1];

for i from 1 to L do

d := safemod(d + coeff(C, xi) ∗ s[n− i + 1], P);

od;

if d=0 then k := k + 1 fi;

if (d <> 0 and 2 ∗ L > n) then

C := safemod(expand(C − d ∗ xk ∗B/b), P);

k := k + 1;

fi;

if (d <> 0 and 2 ∗ L <= n) then

T := C;

78

Chapter 4: The k-Error Linear Complexity 79

C := safemod(expand(C − d ∗ xk ∗B/b), P);

B := T ;

L := n + 1− L;

k := 1;

b := d;

fi;

od;

return C;

save BM, BMA;

