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Abstract

We present a new primitive supporting file replication in distributed storage networks (DSNs) called
a Public Incompressible Encoding (PIE). PIEs operate in the challenging public DSN setting where
files must be encoded and decoded with public randomness—i.e., without encryption—and retention of
redundant data must be publicly verifiable. They prevent undetectable data compression, allowing DSNs
to use monetary rewards or penalties in incentivizing economically rational servers to properly replicate
data. Their definition also precludes critical, demonstrated attacks involving parallelism via ASICs and
other custom hardware.

Our PIE construction is the first to achieve experimentally validated near-optimal performance—
within a factor of 4 of optimal by one metric. It also allows decoding orders of magnitude faster than
encoding, unlike other comparable constructions. We achieve this high security and performance using
a graph construction called a Dagwood Sandwich Graph (DSaG), built from a novel interleaving of
depth-robust graphs and superconcentrators.

PIEs’ performance makes them appealing for DSNs, such as the proposed Filecoin system and
Ethereum data sharding. Conversely, their near-optimality establishes concerning bounds on the practical
financial and energy costs of DSNs allowing arbitrary data.

1 Introduction

The world’s data storage demands are ballooning, with annual growth rates of 42% and a projected 50
zettabytes required by 2020 [46]. Supply, however, is lagging [23], while much of the world’s hard drive
space sits idle. This has led to the rise of decentralized storage networks (DSNs) such as Sia [55], Storj [51],
MaidSafe, and Filecoin [43] that store data on unused devices in peer-to-peer systems. DSNs meet not
only a universal demand for storage, but also specific needs in blockchain systems. Ethereum’s heavily
replicated blockchain, for example, has grown extremely rapidly—over 160 GB in its most efficient standard
representation [27]—prompting calls for new decentralized storage architectures [16].

All DSNs pose a fundamental technical challenge: proving data is stored robustly. DSNs need to assure
users that their files are not just stored, but stored redundantly—with replication or other erasure coding—to
prevent data loss resulting from hardware and software failures or lost peers. In conventional cloud storage
systems, users simply trust providers to faithfully replicate files (e.g., Amazon S3 stores three replicas).
Decentralized systems, in contrast, involve untrusted peers that must prove they have done so.

Well-established proof of storage techniques such as Proofs of Retrievability (PoRs) [34, 49] and Proofs of
Data Possession (PDPs) [8] allow an untrusted server to efficiently prove retention of a file F . Unfortunately,
these techniques do not enable a client or verifier to distinguish between an honest provider robustly storing
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three copies of F and a cheating provider that stores a single, brittle copy. Proving file replication thus
requires a different set of techniques. This is particularly true given that proposed DSNs are designed to
reward replication, creating a monetary incentive for providers to cheat and save storage by falsely claiming
to replicate files.

1.1 The Challenge of Proving Replication

It is straightforward to prove replication in a restricted trusted-encoder, private-reader setting where the
file owner/client can share secret keys. To store three copies of F , the client simply encrypts F under three
different secret keys and uploads the resulting ciphertext triple G = (C1, C2, C3). The provider can then use
a PoR/PDP on G to prove that it is storing all copies. Use of encryption prevents the provider from cheating
and discarding a file copy or compressing file contents—but it also means only the owner can retrieve F .
Systems such as Sia [55] and Storj [51] support this approach.

Proving replication is also possible in a trusted-encoder, public-reader setting. Existing mechanisms [22,
54] show how a file owner can perform a private-key operation using a trapdoor one-way function (RSA) to
encode multiple replicas of F . Any entity can recover F from this encoding with a public key, and anyone
can verify storage of any replica using a publicly verifiable PoR/PDP.

The biggest challenge arises in the untrusted-encoder, public-reader setting—which we call the public
setting for simplicity. In this setting, any (untrusted) entity can apply a publicly specified encoding function
ENCODE to multiple copies of a file F , yielding a redundant encoding G. (For example, a set of encoders
{ENCODEi} could yield G = ENCODE1(F ) ‖ ENCODE2(F ) ‖ ENCODE3(F ).) The correctness of these
encodings should be publicly verifiable. Anyone should be able to verify a proof of storage (e.g., PoR) for G,
and anyone should be able to decode a sufficiently intact G to recover F (via a function DECODE). Critically,
in this setting, no operation by any entity requires secret keys: all randomness is public.

The public setting is essential for several applications. In Filecoin, for instance, miners prove replicated
storage of public files [43]. Similarly, when sharding Ethereum data across multiple providers, no individual
owns the data. In both cases providers have an incentive to reduce their storage costs by cheating, and are
thus untrusted.

Proving replicated file storage in the public setting is difficult. To begin with, any proof of storage of
G must seemingly rely on timing assumptions.1 Since ENCODE is public, a cheating prover given arbitrary
time to respond to challenges can just recompute G = ENCODE(F ). Constructing a function ENCODE that
imposes a strong lower bound on a cheating prover’s response time is thus a major technical challenge.
Moreover, it impossible to guarantee that a prover is really storing G directly [29]. For example, the prover
might store an encryption of G with key unknown to the client. The ENCODE function can at best allow for
detection (and subsequent punishment) of providers who attempt to reduce storage costs.

As we explain in Section 2.1, previous attempts have failed to construct a practical, provably secure
encoder in the public setting without relying on implausible assumptions.

1.2 A Public Incompressible Encoding (PIE)

We introduce a provably secure technical tool to enable proofs of replication in the public setting: a public
incompressible encoding (PIE). Our construction has two main features that distinguish it over prior work.
First, we show that it requires computation within a small constant factor of optimal. Second, it supports
fast decoding, making it particularly appealing for DSNs, which are write-once, read-many systems. This
fast decoding can take the form of parallelization in a basic construction or leverage asymmetric-speed

1Other options may be possible. Encodings using very long private keys could incentivize economically rational servers to discard
the keys and be unable to recompute encodings on the fly. The feasibility of such approaches is an open research question.
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permutations, such as Sloth [36], for strictly faster serial decoding. Together, these two properties make our
construction among the most appealing for practical applications.

A PIE is a type of proof of space [7, 25, 30] with the special requirement that it can encode files [29,
41]. Informally, it prevents an adversary from undetectably compressing G by more than a tiny amount.
Specifically, suppose an adversary stores a compressed representation G′ such that |G′| ≤ (1− ε)|G|. Our
main result states that any adversary challenged to produce a randomly selected block of G must perform
a long sequential computation with probability at least ε (minus a negligible term). The resulting delayed
response will be detectable by the verifier. We can boost soundness in the standard way with multiple queries.

In DSNs, providers are monetarily rewarded for periodically proving retention of an encoded file G and
delivering it on demand. Such a system could likely create incentives for servers to fully store G as long as
they could detect any compression or data loss—precisely what PIEs allow.

We deviate from existing proof of space (PoS) and proof of replication (PoRep) terminology because our
concerns, while related, are fundamentally different. First, a PIE is a perfectly-tight PoS that also allows for
data decoding. Second, PIEs are unnecessary for PoRep systems that allow secret information. Finally, while
a public-setting PoRep system would likely use a PIE, it should also prove retention of data over time and,
preferably, distribution of data not just replication. PIEs perform neither of these functions.

We therefore believe new terminology is warranted to more precisely describe what our primitive does
and does not guarantee.

Our Construction. Our PIE is a graph-based file transformation. It depends on a new construct we call
a Dagwood Sandwich Graph (DSaG),2 an iterated interleaving of a depth-robust graph (DRG) with a
superconcentrator [53]. Intuitively, a DRG is a directed acyclic graph that retains a long path even if an
adversary removes a many nodes. DRGs are used in memory-hard hash functions [2–4, 13] and to enforce
long sequential computations [38], including in proofs of space [25, 30, 41], a purpose we exploit in our
DSaG construction. Superconcentrators are graphs with many vertex-disjoint paths between input and output
nodes, creating a strong dependency of any output on all inputs. We show a good practical choice to be a
doubling of the classic butterfly graph [21]. By sandwiching these two components and iterating, we can
prove that any attempt at compression, such as discarding blocks and recomputing them on the fly, forces a
storage provider to perform expensively slow and detectable computation.

We show experimentally that, for several realistic and highly tunable concrete timing bounds, our
construction is very efficient. With slowness as an explicit goal, we cannot measure performance by simple
running time. Instead we develop a new metric called the Security Efficiency Ratio (SER), which measures
the computational overhead imposed by the encoding beyond the theoretical optimum for a given security
bound. By this metric, our construction is only a factor of 4 from optimal. We can additionally improve serial
decoding speed by an order of magnitude over typical parameters using Sloth [36]. Our construction operates
on small files and scales by achieving high parallelism where it does not damage security.

Limitations. The near-optimality of our construction (under the SER) also supports a negative result. It
establishes performance bounds on general-purpose, public-setting DSNs such as Filecoin and reveals
fundamental practical limitations. The computational costs needed to secure such systems appear to render
them economically infeasible for most data.

Our PIEs, however, show strong practical promise in settings where limitations on the data the DSN
can store allow us to avoid these untenable computational costs. These contexts include proposed schemes
for storage of Ethereum blockchain data [1], minimizing storage in permissioned blockchains via verifiable
erasure coding across nodes and, in cloud systems, enforcing file properties such as at-rest encryption,
watermarking of files, binding of licenses to data, etc. [54].

2A Dagwood is a many-layered sandwich made famous in the classic cartoon strip Blondie. It is visually evocative of our
construction.
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Paper Organization and Contributions

After discussing background on DSNs and prior approaches in Section 2, we present our main contributions:

• Public Incompressible Encodings (PIEs): We define the security of a PIE in Section 3. Our PIE
construction follows in Section 4, where we introduce the Dagwood Sandwich Graph (DSaG), our
novel graph construction.

• Implementation and experiments: We eliminate unnecessary overhead in Section 5 and define the
security efficiency ratio (SER), our main efficiency metric, in Section 6. In Section 8 we report
experimental performance results.

• PIE applicability: In Section 9 we discuss what is needed to build a DSN from a PIE and how the
near-optimal performance of our construction provides cost lower bounds that are both concerning for
some DSNs and promising for other, more restricted ones.

Section 10 discusses related work and Section 11 concludes.

2 Using Incompressible Encodings

Incompressible encodings alone cannot ensure file storage robustness in a DSN. They do not spread storage
across multiple nodes or ensure data availability. They do, however, provide a necessary component for
building such a system: detection of malicious nodes that use less storage than claimed.

DSNs aim to ensure that a file F is stored with erasure coding or replication so it is recoverable even
if some copies or pieces are lost or corrupted. In a public DSN, storage servers are considered potentially
untrustworthy. To encourage good behavior, they are periodically compensated for storing data, thereby
providing an incentive to reduce storage costs wherever possible. The more data a server can claim to store,
the more revenue it can generate. The best way to reduce storage costs, of course, is for a server to simply
not store the data for which it is responsible, but this is only beneficial if it can escape detection of this bad
behavior.

Proofs of storage [8, 34, 49], as noted above, can detect when a server fails to store a target file, but they
cannot detect failures of redundancy. Suppose three servers S1, S2, and S3 are each supposed to store a copy
of F . Even if each proves it can access F , they may collude to store only one copy in S1, and none in S2 and
S3. When challenged to furnish or prove storage of F , S2 or S3 simply access the copy of S1. The problem,
of course, is that if the single copy held by S1 is lost or damaged, F will be unrecoverable.

Another way to detect deduplication is to time responses. If S2 must obtain F from S1, it will respond to
challenges more slowly than S1, which can access F directly. Such timing, though, is unreliable given the
variance in network latency and the ability of servers to co-locate. Public Incompressible Encodings (PIEs),
our focus here, provide a slow file transformation that makes response times of cheating servers tunable and
independent of the network. PIEs are designed so that a malicious server that has deduplicated data will take
much longer to respond than an honest server.

To use a PIE in a DSN, the system transforms a file F into a redundant state, such as replicating
(F1, F2, F3) where Fi = F , and then uses the PIE to encode this redundant version into a representation G.
The DSN servers distribute the pieces of G across multiple servers and store each piece only once, as storing
all of G once already contains all necessary redundancy. Consequently, the DSN can verify that F is stored
in erasure-resistant fashion by simply verifying that each piece of G is present. Other applications of PIEs,
such as proving files bear watermarks [54], look similar.

Note that PIEs are only one component of a DSN. A PIE itself only ensures that correctly-encoded data
cannot be compressed. A full system must ensure that data is encoded correctly, distribute data to different
servers, and incentivize servers to store it. Systems with financial rewards can levy penalties for not storing
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Figure 1: The basic structure of a DSN using a PIE to ensure data robustness. (1) First, file F is replicated or erasure-
coded to ensure robustness. (2) The server runs this robust data through ENCODE yielding incompressible representation
G. (3) The network/DSN queries the server to prove the data was encoded properly. (4) The network/DSN repeatedly
queries the servers storing the pieces of G and times responses to ensure the data is properly stored. (5) Upon request, a
client can download and decode the stored data to recover F . If some of the stored data is lost or corrupted the DSN can
detect this and the client can still recover F .

data (see, e.g., Filecoin [43]), but how to set and levy those fines and ensuring that data is distributed across
multiple servers [11, 15] is beyond the scope of this work.

We also provide no new efficient means to verify that G is a correct encoding of F . In some sense this is
trivial. Anyone can encode or decode the data, so anyone can check that G = ENCODE(F ). Requiring every
node to validate every encoding, however, would incur prohibitive overhead. We discuss some directions in
Section 9.1 that incorporate prior work and depend on the DSN structure.

2.1 Previous Approaches to PIEs

To understand the challenges of constructing a PIE, we briefly describe previous works with similar guarantees.

Proofs of Space. PIEs are closely related to Proofs of Space (PoS) [25], interactive protocols in which a
prover publicly commits to using some amount of space and then responds to challenges. Soundness requires
that the prover fail with high probability if it is using significantly less space than claimed. In fact, the formal
soundness definition of a PoS is very similar to the incompressibility requirement of a PIE.

PoS soundness and incompressibility differ in two key ways. First, most PoS definitions include verifi-
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cation of the encoding correctness, while we separate this problem from proving the incompressibility of a
correct encoding. Second, a PoS adversary might be able to save a constant fraction of the space promised
and evade detection with overwhelming probability. PIEs do not allow this. This makes a PIE more similar to
a tight PoS [30, 41], in which an adversary saving any ε fraction of space must fail a random challenge with
probability proportional to ε (for PIEs, that proportion is 1). Until recently, no PoS construction provided
proof that an adversary must use even half of the promised storage.

The similarity to a tight PoS is so strong, in fact, that any perfectly tight PoS can be used to construct
a PIE. A generic construction of Pietrzak [41], called a proof of catalytic space, simply derives a PoS S of
the same size as F and outputs F ⊕ S. Inverting this encoding, however, requires re-deriving S making it
extremely inefficient to recover F . To improve on this, efficient data extraction is a major goal of this work.

Replicated Storage. Several PIE constructions (under various names) aim to prove replicated storage.
Lerner [37] suggests using “time-asymmetric encodings,” such as a Pohlig-Hellman cipher [42] based on
modular exponentiation, to apply a slow transformation to each input file block using a unique identifier
as a key. Boneh et al. [12] generalize this construction as decodable verifiable delay functions. Intuitively,
this yields a sound PIE—re-deriving any block of the encoding is slow—but the encoding time for these
constructions scales poorly with file size, resulting in a poor security efficiency ratio (SER)—our efficiency
metric defined in Section 6.

The Filecoin [43] project introduced the term proof of replication to codify the desired properties of a
primitive for their DSN. They propose using this primitive to both encode data and provide Sybil resistance
for a blockchain by replacing proof-of-work with proof-of-space. Their initial technical report [10] proposed
interleaving multiple chained (CBC) encryption passes under a public key κ with block permutations. Unfor-
tunately, previous work [54] shows an attack in which a cheating prover checkpoints specific intermediate
blocks of the encryption as “shortcuts” to quickly recompute discarded output. It can recompute outputs of a√
d-pass CBC in at most d steps, so an encoding time of at least n

√
d is required for a file of size n to achieve

sequential security of d operations.
Hourglass functions [54] provably resist such “shortcuts” by applying published-key pseudorandom

permutation (PRP) to pairs of blocks of F in a sequence determined by a butterfly network. Unfortunately,
they assume slow retrieval of F due to use of rotational hard drives, which is clearly invalid given the
proliferation of fast solid-state drives (SSDs) and monetary incentives to cheat in systems like Filecoin.

Consequently, previous work offers no general, practical approach to remotely prove storage redundancy
for a file while supporting efficient public decoding.

3 Security Definitions

Here we define a secure public incompressible encoding (PIE) scheme. An encoding is a function pair
(ENCODE,DECODE) such that for all files F and randomness ρ,

Pr[(G, κ)← ENCODE(F ; ρ) : DECODE(G, κ) = F ] = 1.

Here, κ is a key output by ENCODE and stored with F for use by DECODE. An encoding is public if the ρ is
public.

Recall that our goal is to ensure that any adversary that uses a PIE to encode data must actually store as
much data as claimed, regardless of data contents. We must guard against both on-the-fly re-encoding, and
more subtle forms of cheating like storing intermediate values used to encode F .

We define the incompressibility of a PIE with a game between the encoder and a public challenger. For
any adversary A and set of (not necessarily distinct) files {Fi}, A is given {Fi} and public randomness {ρi}
and allowed to perform any preprocessing it would like. We then encode to some G = {Gi} using {ρi}
and challenge A to produce randomly-selected blocks of G. The encoding is incompressible if A can only
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respond successfully to challenges (except with negligible probability) by using at least |G| storage, i.e. A
cannot compress or deduplicate G. Such incompressibility is impossible to achieve in the public setting
without further assumptions. For example, if F1 = F2 = F , a cheating A could just store F and compute
blocks of G = (G1, G2) on demand when challenged.

In practice we can avoid this impossibility by making ENCODE time consuming. Specifically, any cheating
adversary must incur a detectably long delay before responding to challenges, even if it is allowed to use
unbounded (feasible) parallel computation. Addressing parallel computation is important given current
developments in application-specific integrated circuits (ASICs) [50], which achieve modest improvements
in sequential performance and drastically increased parallelism. This security notion has been used before in
time-lock puzzles [45], proofs of sequential work (PoSW) [18, 38], verifiable delay functions (VDFs) [12],
and more.

Modeling time-consuming computation is tricky as the computation may involve a mixture of heteroge-
nous operations. Time-lock puzzles and related primitives are easiest to analyze when they involve an iterated
atomic operation, such as a hash function, and their hardness can be measured as the minimum number of
sequential invocations of this operation, modeled as queries to an oracle. Indeed, this technique has been
proven to require sequential work in the parallel random oracle model [38, 41].

We follow this approach and limit the number of times an attacker can execute an intentionally slowed
key derivation function modeled as a random oracle O. We constrain the number of sequential calls to O by
defining a parallel oracle O?d that will respond to any number of simultaneous queries to O, but only d− 1
sequential ones. In practice, adversaries who attempt to make more than d − 1 sequential oracle queries
would be caught by timing measures. Formally, we define O?d as follows, initializing c = 1:

O?d(x1, x2, . . . )

if c ≥ d then abort

c← c+ 1

return (O(x1),O(x2), . . . )
We now define security in terms of an adversary who must return encoded file blocks given limited

storage and access to O?d. We let |G| denote the length of a file G in units of λ-bit blocks and G[i] be the
ith such block. Definition 1 considers an adversary A who claims to store m encoded files, but attempts to
compress the combined encodings by a factor of ε. A PIE scheme is secure if A can do no better than simply
discarding an ε fraction of the final blocks, hoping that the random challenge will not be in this set.

Definition 1 (Public incompressible encoding). A public encoding algorithm ENCODE is d-oracle incom-
pressible if for any compression factor ε ≤ 1 and any PPT A = (A1,A2), there exists a negligible function
negl such that for all sets of files {Fi}mi=1,

Pr
[
EXPPIE

A,O(λ, {Fi}mi=1, ε, d) = 1
]
≤ (1− ε) + negl(λ),

where

EXPPIE
A,O(λ, {Fi}mi=1, ε, d)

1 : {ρi}mi=1←$ {0, 1}λ×m
2 : G′←$AO1 ({(Fi, ρi)}mi=1)

3 : for i ∈ [1,m] : (Gi, κi)← ENCODEO(Fi ; ρi)

4 : G := G1 ‖ · · · ‖Gm
5 : j←$ [1, |G|]
6 : blk ←$AO

?
d

2 (j,G′, {(Fi, ρi, κi)}mi=1)

7 : return

( |G′|
|G| ≤ 1− ε

)
∧ (blk = G[j]) .
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Figure 2: The high level structure of an encoding based on a DAG. Solid black edges are data edges, dashed red edges
are key edges, and blue arrows from O to PRP show the use of derived keys.

Challenges to A2 model the online portion of a real-world protocol in which a challenger can institute a
configurable timing bound on an adversarial storage server. To realize this, it suffices to assume only that
inherently sequential random oracle queries are slow. This allows us to configure a bound and avoids relying
on questionable timing assumptions about rotational hard drive latency [54] or other explicit timing. A1 is
only bounded by standard polynomial time, as it represents an attacker’s offline attempt to compress outputs.

Multiple Queries. This definition allows only a single query to A, but any practical usage would increase
soundness through multiple queries. To avoid concerns of amortization across challenges, we consider a
definition that allows multiple challenges and prove it equivalent in Appendix A.

4 Building a PIE

Now that we have formally defined the security of PIEs, we need to construct one. We begin with an informal
overview.

To satisfy our security definition and catch a cheating attacker, our encoding will require a large number
of inherently sequential calls to some moderately slow operation. As we will see later this can either be a key
derivation function KDF or a pseudorandom permutation PRP. For now we will use a KDF, which we model
as a random oracle O.

A naı̈ve approach would be to encode each block of a file F separately, making d calls to O for
each; to compute G[i], we compute κi = O(d)(i ‖ F [i]) and then encode F [i] using κi (e.g., by letting
G[i] = κi ⊕ F [i] if |κi| = |F [i]|). To avoid a costly computation the attacker can store either the encoded
block or the derived key. Since both are the same size, both require at least |G| storage, making the encoding
incompressible. This approach, however, is extremely expensive, as it requires nd oracle calls to achieve
d-oracle incompressibility for an n-block file.

To reduce the cost without damaging security, we aim to amortize the inherently slow work across
multiple file blocks. Optimally, recovering a single discarded block would require the same amount of
computation as encoding the entire file. We describe below how to get within a small constant factor of this
ideal.

Intuitively, this amortization requires entangling the encodings of different blocks in the file, making
them rely on each other. We do this by following prior and concurrent work on proofs of inherently sequential
work [19, 38] and proofs of space [7, 25, 30, 41, 44] and use a directed acyclic graph (DAG) to define our
encoding. Each vertex in the graph defines a computation that is dependent on each of that vertex’s parents.
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Proofs of space typically derive labels for each vertex by hashing the labels of its parents. By analyzing the
graph, we can determine the level of interdependency between the encodings of different blocks of the file.
Specifically, paths in the DAG result in inherently sequential work during encoding.

Using only non-invertible hash functions, it is unclear how to support rapid decoding, which we consider
critical, so we add extra structure to our graphs. This structure allows us to weave meaningful data through
the whole computation in a way that preserves the incompressibility while allowing efficient decoding.
Specifically, we partition the edges in our graph into key edges and data edges. Data edges represent
lossless flows of data; we must be able to recover blocks passed along data edges. We therefore use a keyed
psuedorandom permutation PRPκ for these transformations. Key edges represent (lossy) dependencies used
to determine keys, and thus how other data is transformed. Figure 2 depicts how we call O on all incoming
data from key edges and use the resulting key κ to permute data passed in along data edges with PRPκ.

We now discuss what this means formally and what properties a DAG needs to define a valid encoding.
We then detail our specific graph construction and how it guarantees incompressibility.

4.1 Encoder Graphs

The DAG-based data transformation described above is not always invertible. Undoing the operation at a
given vertex requires the values assigned to outgoing data edges and incoming key edges. We can define
a decoder graph representing these dependencies by reversing the direction of appropriate edges. If this
decoder is a DAG, the transformation is invertible. A cycle in the decoder graph, however, would indicate
some intermediate state that is necessary for decoding and yet not computable from encoding output.

We use this intuition to formally define n-encoder graphs.

Definition 2 (Encoder graph). Let G = (V,E) be a DAG where E can be partitioned into data edges ED and
key edges EK . For a vertex v ∈ V , let DEGD(v) denote the number of incident edges in ED and DEGK(v)
the number of incident edges in EK . We say that G is an n-encoder graph if the following hold.

1. G contains n source nodes and n sink nodes.

2. For all v ∈ V , either

a) v is a source or sink node that produces or consumes a single block of data (DEGD(v) = 1) and
has no key edges in or out (DEGK(v) = 0), or

b) v produces the same amount of data as it consumes (DEGDin(v) = DEGDout(v)).

3. G represents an invertible transform. Specifically, there are no cycles in G−1 = (V,E−1), where

E−1 = {(u, v) | (v, u) ∈ ED}
∪ {(u, v) | ∃w ∈ V such that (w, u) ∈ ED and (w, v) ∈ EK}.

We say that G is data a-regular if DEGDin(v) = a for all non-source, non-sink vertices v.

Condition 3 formalizes the intuition about when decoding is possible. We provide detail about how to
execute decoding after formalizing encoding.

While Definition 2 is far from totally general—it does not allow encoding to condition on data, for
example—it provides a sufficient condition that we meet.

4.2 Building an Encoding

Given a data a-regular n-encoder graph G, we can define an encoding following the intuition of Figure 2. At
each vertex vi, we invoke O on all incoming key edges to derive a key κi. We then permute the concatenation
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of all incoming data edges using a pseudorandom permutation (PRP) keyed by κi. The result is sent out along
all outgoing key edges and partitioned among outgoing data edges.

Formally, we let KDF : {0, 1}∗ → {0, 1}λ be a key derivation function modeled as a random oracle,
and PRPκ : {0, 1}λ → {0, 1}λ be a keyed PRP modeled as an ideal cipher. We assume for simplicity that a
evenly divides λ. Using this notation, Construction 1 specifies how to compute ENCODEG(F ; ρ).

Construction 1. Let G = (V,E) be a data a-regular n-encoder graph where vi denotes the ith vertex
in a fixed topological sort. Given randomness ρ and input F = F [1] ‖ · · · ‖F [n] where each F [i] is λ

a
bits, we first compute κ = KDF(ρ ‖ F ).

We assign a value to each edge in E as follows.

• For input vertices v1, . . . , vn, assign F [i] to vi’s single outgoing (data) edge.

• If vi is neither a source nor sink, let x1, . . . , xk be the values assigned to incoming key edges
and y1, . . . , ya be the values assigned to incoming data edges.

κi = KDF(κ ‖ i ‖ x1 ‖ · · · ‖xk)
y′ = y′1 ‖ · · · ‖ y′a = PRPκi(y1 ‖ · · · ‖ ya).

Output y′ along each outgoing key edge. For the a outgoing data edges ei1, . . . , e
i
a ordered by

the topological sort of their terminal vertices, output y′j along eij .

Let y?1, . . . , y
?
n be the values assigned to the incoming (data) edges of each sink node in G. We define

ENCODEG(F ; ρ) = (y?1 ‖ · · · ‖ y?n, κ).

Decoding. Decoding a file requires reversing the computation described in Construction 1. For an arbitrary
graph this may be infeasible because computing κi may require data we cannot access. For encoder graphs,
however, Condition 3 of Definition 2 ensures that all information is available.

For vertex vi in G, we must compute y1 ‖ · · · ‖ ya = PRP−1κi (y
′). This requires both y′ and the ability to

compute κi. To compute y′, we need the values originally output along all data edges emitting from vi. That
is, we must decode each vertex u with (vi, u) ∈ ED. To compute κi, we need the values of all incoming key
edges. That is, for each (w, vi) ∈ EK , we need the value output when computing w during encoding. During
decoding, those values are output by decoding the data-edge children of w. Therefore, if (w,w′) ∈ ED and
(w, vi) ∈ EK , we must decode w′ before we can decode vi.

The edges of G−1 defined in Condition 3 of Definition 2 are precisely the computational dependencies
described above. If G−1 is acyclic, ordering the vertices based on a topological sort of G−1 and decoding
them in that order ensures that we have already computed y′ and x1, . . . , xk as defined by Construction 1
before we try to decode vi. We can then simply compute κi = KDF(κ ‖ i ‖ x1 ‖ · · · ‖ xk) and y = PRP−1κi (y

′),
exactly inverting the encoding operation. While there is no requirement that this decoding order relate to the
encoding order in any particular way, for our construction, and others that are straightforwardly invertible, it
is exactly the reverse of the encoding order.

Lastly, because we simply reversed the direction of all data edges in G, the source vertices of G−1 are
precisely the sink vertices of G.3 Since these vertices are the outputs of ENCODE, the values required to
initialize the above algorithm—the inputs to source vertices of G−1 and κ—are exactly the inputs provided to
DECODE.

Note that if G is not data a-regular, the above technique works with a minor modification: it requires
families of KDFs and PRPs to operate on each data size that appears at a vertex.

3Vertices in G with no connected data edges neither produce nor consume data and can therefore be ignored.
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4.3 Guaranteeing Sequential Work

For any encoder graph, Construction 1 always produces an invertible encoding, but it does not always produce
a PIE. A PIE requires that an adversary A must make many inherently sequential calls to O to recompute
discarded data. As the edges in the encoder graph G represent data dependencies, paths in G translate to
inherently sequential operations in ENCODEG . This means that G must contain long paths to ensure significant
sequential work.

The path lengths in G, however, determine only the work needed for the initial encoding. The security of
a PIE prohibits A from recomputing discarded data efficiently even if it stores intermediate data. We can use
the structure of G to analyze how A can use this intermediate data and ensure that there are still long paths of
computational dependencies.

If A is storing intermediate data, that data must correspond to one or more vertices in G. We can model
this by marking, or pebbling those vertices. An unpebbled path ending in a sink node then represents an
inherently sequential computation that A must perform to recompute a discarded data block. We employ this
technique formally in Appendix B to prove our main security result.

Depth-robust graphs. To guarantee long paths in similar adversarial settings, much prior and concurrent
work [25, 30, 41] relies on depth-robust graphs (DRGs). Originally due to Erdös, Graham, and Szemerédi [26],
a DRG is a graph that retains high depth even when many vertices are removed.

Definition 3 (Depth Robustness). A graph G = (V,E) is (α, β)-depth-robust if for all Ṽ ⊆ V with
|Ṽ | ≥ α|V |, the induced subgraph on Ṽ contains a path of length at least β|V |.

Prior work uses DRGs to construct proofs of space, memory-hard functions [2–4, 13], and proofs of
inherently sequential work [38]—a use very similar to ours and proofs of space.

We can straightforwardly construct an n-encoder graph from a DRG G by converting all edges in G into
key edges and adding source and sink nodes for each existing vertex connected via data edges. The resulting
encoding, however, is not a PIE. G is a DAG, so an adversary A can simply discard the output produced
by a source node of G and recompute it very rapidly. Pietrzak [41] showed how to overcome this attack to
construct a tight proof of space by only considering the outputs from a subset of the vertices. Unfortunately,
when applied as a PIE, this technique would require an honest decoder to recompute any part of G not used
as output, making decoding an inherently sequential operation.

Multiple DRGs. To retain the ability to decode efficiently while attempting to mitigate the above attack, we
can attempt to layer multiple copies of G. We can connect each vertex of one copy with a unique vertex of the
next, and again make all edges in all copies of G key edges. While intuitively sensible—if A discards data
there should always be an unpebbled long path somewhere—this may not be sufficient. If A discards an ε
fraction of blocks, we can guarantee that an unpebbled long path exists in some copy of G, but the end of that
path may not longer connect to any output vertex of the encoder graph. Thus A may not need to recompute
any such values.

To ensure security, we must guarantee that the end of any such long path connects to an output of the
encoder graph. The easiest way to do this is to require that every input to one DRG layer depend on every
output from the previous. This way, the end of any unpebbled path of key edges connects to some vertex on
the next layer, which connects to a vertex on the layer above that, and so on until we reach an output vertex.

We must, however, take care performing this connection. If the connection between two layers is brittle,
A can sever it with a small amount of intermediate data. For example, multiple passes of a block cipher
in CBC mode—originally suggested as an entire encoding scheme by Filecoin [10]—appears to create the
required connection, but any reasonable number of passes is succeptible to “shortcut” attacks, as discussed in
Section 2.1.
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Figure 3: B3, a butterfly superconcentrator on 8 elements.

4.4 Dagwood Sandwich Graphs

There is a much more robust connector than a series of CBC passes: a superconcentrator [53]. Supercon-
centrators are graphs where any subset of r inputs and r outputs are connected by r vertex-disjoint paths.
This means severing connections between inputs and outputs requires just as much data as storing the
corresponding outputs. Their formal definition is as follows.

Definition 4 (Superconcentrator). Let G = (V,E) be a DAG with source vertices I and sink vertices O. We
say G is an n-superconcentrator if |I| = |O| = n and for all r ∈ [0, n] and all I ′ ⊆ I and O′ ⊆ O with
|I ′| = |O′| = r, there exist r vertex-disjoint paths connecting I ′ to O′.

Perhaps the simplest construction is the butterfly superconcentrator, created by connecting two classic
butterfly graphs. These graphs have the added benefit of being 2-regular—all (non-source/sink) vertices have
both in and out-degree 2. The number of inputs and outputs of such a graph must be a power of 2, so we let
Bk be the butterfly 2k-superconcentrator. Figure 3 shows B3.

This construction appears as a good candidate to connect our layers of DRGs, and indeed, for a
(α, β)-DRG G with n vertices, it is sufficient to layer ` =

⌈
1

1−α

⌉
copies of G, each connected by an

n-superconcentrator. We refer to this multi-layered construction as a Dagwood Sandwich Graph (DSaG),
shown graphically in Figure 4. We define a DSaG formally in Construction 2.

Construction 2 (Dagwood Sandwich Graph). Let G be a (α, β)-DRG with n = 2k vertices, Bk by
the butterfly n-superconcentrator, and ` =

⌈
1

1−α

⌉
. We construct a Dagwood Sandwich Graph (DSaG)

Ĝ as follows.
Let G1, . . . ,G` be ` independent copies of G and B1, . . . ,B`−1 be ` − 1 independent copies of

Bk. For each vertex in G1, connect two new vertices to it that are inputs of Ĝ. For each vertex in G`,
connect it to two new output vertices of Ĝ. For i ∈ [1, `], connect the ith vertex of Gi to the ith vertex
of Bi twice, and for i < ` connect the ith vertex of Bi to the ith vertex of Gi+1, also twice.

The vertices V̂ of Ĝ are all vertices specified above. The key edges ÊK are the edges of the Gis,
and the data edges ÊD are all other edges.
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(a) DSaG macro-structure
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(b) Micro-structure of DSaG layers

Figure 4: The structure of a Dagwood Sandwich Graph. The left shows many layers of alternating DRGs (Gi) and
superconcentrators (Bi). The right shows the edge structure, with data edges in solid gray and key edges in dashed red.

With
⌈

1
1−α

⌉
layers, no adversary A can eliminate all long paths in all copies of G using less data than the

full file size. The vertex-disjointness condition in Definition 4 further prevents A from gaining any advantage
by storing data inside the connectors. Construction 2 therefore defines a data 2-regular 2n-encoder graph that
defines a PIE using Construction 1 when the adversary is restricted to attacks that follow a pebbling game.
The current state of pebbling analysis theory unfortunately does not rule out a ROM adversary achieving a
small compression advantage. Nonetheless, there are no known attacks, so we assume as a conjecture that
none exist.

Conjecture 1 (Informal). If G is an n-encoder graph and no adversary beginning with k or fewer pebbles on
G can pebble more than k output vertices in fewer than d rounds, then ENCODEG (defined by Construction 1)
is d-oracle incompressible.

Theorem 1. Assuming Conjecture 1, if G is a (α, β)-DRG with n vertices, then ENCODEĜ defined by
Construction 1 on the DSaG Ĝ defined by Construction 2 is βn-oracle incompressible.

We provide a more formal version of Conjecture 1 and a proof of Theorem 1 in Appendix B.

5 Improving Efficiency

The DSaG construction provides strong security, but in its simplest form is highly inefficient. There are,
however, several ways to significantly improve performance.

5.1 Rapid Decoding

One critical performance component is the decoding speed, and our construction provides two routes to make
it fast. The first is parallelism, which applies generally regardless of the slow function used. The second
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replaces the slow KDF operation with an asymmetric-speed permutation, allowing even single-threaded
decoding to far outpace encoding.

Parallel Decoding. We enforce inherently sequential work in ENCODE by making key dependencies within
individual layers of a DSaG form a DRG. As a result, outputs of encoding some vertices are needed to
compute the keys used to encode (and decode) other vertices in the same layer. The values output by a vertex
during encoding are, however, the values input to that vertex during decoding. This means that, in order to
derive the key necessary to decode a block in a DRG layer, we need only the inputs of other vertices in the
same layer. Since these inputs are produced by the superconcentrator connecting DRG layers, they can easily
be made available in parallel. Therefore, while decoding, we can compute the data transformation for every
vertex in a given DRG layer simultaneously, massively reducing the required wall-clock time.

Faster Sequential Decoding. Using an asymmetric-speed PRP, we can significantly hasten even sequential
decoding. Instead of modeling KDF as a slow random oracle and PRPk as an ideal cipher, we can model KDF

as a fast random oracle, and PRPk as a cipher that is moderately slow to compute but highly efficient to invert.
This results in a PIE with the same security, but much faster decoding.

Asymmetric PRPs are not new. For example, Lenstra and Wesolowski propose the Sloth permutation [36]
based on modular square roots interleaved with a fast PRPs. Boneh et al. [12] note that separately applying
such a PRP to each small file block is sufficient to construct a PIE without a complicated encoding scheme. A
DSaG complements that approach by massively increasing the sequential work needed to encode a file, with
only minor overhead in overall work.

As we show in Section 8.3, both of these rapid decoding approaches are borne out in practice. Indeed,
both allow our DECODE operation to complete in significantly less time than even the inherently-sequential
security bound placed on ENCODE.

5.2 Removing Unnecessary Slow Operations

The proof that a DSaG produces a PIE relies on the fact that paths with d key edges require d inherently
sequential calls to KDF to compute. To ensure this, we need any vertex with an incoming key edge to call
KDF and supply that key data (and possibly more) as an argument. Construction 1 does this by calling KDF

at every vertex.
Vertices with no incoming key edges, however, need not call KDF to ensure this property. In fact, an

adversary needs no intermediate state to recompute such keys, meaning the work cannot be sequential, so
the slowness of these KDF calls provides no security. Instead of KDF, we can call some other, faster key
derivation function KDF′ at these vertices. We still model KDF′ as a random oracle O′, but we need not
bound the number of calls to O′. This means that, in practice, we can implement O′ using a fast function,
like a SHA hash, while we still need a slow hash function for O.

If G has many vertices with no incoming key edges, this can significantly reduce the runtime of ENCODEG
without impacting security. As our DSaG construction in Section 4.4 contains mostly vertices with no incoming
key edges, this optimization makes a dramatic impact.

5.3 Chunking Files

Meaningful parallelization during encoding appears impossible by construction. We designed ENCODE to
require inherently sequential work. For large files, however, the sequential work guaranteed by a single DSaG
may be far larger than necessary to enforce practical security. Moreover, the DSaG itself may scale poorly to
large file sizes, introducing unnecessary overhead in such cases.

To bypass these impediments, we note that multiple disconnected copies of a DSaG Ĝ together have
all of the properties needed for a PIE. This is because m disconnected copies of an (α, β)-DRG together
form a (α, β/m)-DRG. As the copies are disconnected, we do not need to connect them to each other using
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superconcentrators and our security arguments will still hold. Specifically, m copies of an n-input DSaG Ĝ
built using a (α, β)-DRG will produce a βn-oracle incompressible encoding on mn blocks.

Because the copies of Ĝ are disconnected, we can split the file into n-block chunks and encode those
chunks in parallel. This insight provides the additional benefit that we do not need to generate different
graphs for different files; one global graph is sufficient. The size of that graph determines the chunk size and
thus presents an opportunity for configuration. With small chunks more parallelism is possible and padding
out files to an even number of chunks is inexpensive, allowing efficient use of the same graph for small
or oddly-sized files. Large chunks mean larger βn, requiring more inherently sequential work. This allows
us to reduce the cost of a single slow operation while maintaining wall-clock timing assumptions, making
(sequential) encoding faster.

Regardless of the parameterization, any fixed chunk size n allows the encoding time to scale efficiently
with large file size. Specifically, the cost of encoding any F is now O (|G||F |/n)—linear in |F |.

6 Security Efficiency Ratio

Measuring the efficiency of a PIE is not as straightforward as measuring the performance of ENCODE and
DECODE. ENCODE must be slow to provide security, but we do not want it to be slower than necessary.
Instead, we compare the execution time of ENCODE to the guaranteed sequential work needed to recompute
a discarded block. We call this ratio the security efficiency ratio (SER). An SER of 1 would indicate that the
time needed for ENCODE is the same as the time needed to recompute a single discarded block—a bound
no secure PIE can ever break. The SER therefore measures how far ENCODE’s performance is from the
theoretical optimum.

SER is an empirical measure, so it accounts for computational overhead without security benefit and
varies with parallelism for a PIE that allows it during encoding. While it is possible to cut a file into chunks
and parallelize encoding across chunks (Section 5.3), DSaGs preclude parallelism within a file chunk, so we
only measure the SER for a single chunk.

We can also lower bound the SER based on the DRG parameters to help choose which graph to use. Ideally
the cost of ENCODE will be dominated by the number of calls to KDF. Using the fast KDF′ optimization
from Section 5.2, we need one KDF operation for each vertex with an incoming key edge. For a DSaG, this
is precisely the vertices in DRG layers. If the DRG is (α, β)-depth-robust with n vertices, the minimum
sequential work requires βn calls to KDF, while the total work requires `n calls. Therefore the SER is at least
`n/βn = `/β. Construction 2 sets ` =

⌈
1

1−α

⌉
, meaning

SER ≥ 1

(1− α)β .

If α and β are constants—a common goal of DRG constructions—this lower bound is independent of n.
To see what DRGs will produce the most efficient PIEs, we note that no graph can have depth-robustness

better than (α, α). Thus we aim to minimize 1
α(1−α) . Since α ∈ (0, 1), we achieve this minimum at α = 1

2 ,
providing a lower bound of 4 for the SER.

The actual SER may be higher for two reasons: overhead from fast operations (e.g., KDF′) and nonuniform
runtime of KDF. The first is straightforward and, as we see in Section 8.1, is minimal in our implementation.
The second results from varying in-degree of the DRG. The in-degree of a vertex determines the input length
of the corresponding KDF call, so longer inputs take more time. Since we cannot force recomputation of any
specific vertices, our wall-clock security bound conservatively assumes the minimum input length for every
KDF call. As this bound defines the “security” portion of SER, larger in-degree graphs may have higher SER
for a given α and β. As we see in Section 8, we are able to achieve SERs extremely close to this bound for
small files and when using a heuristically-secure DRG.
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7 Building a DRG

Constructing a DSaG—and thus to implement a PIE using our construction—requires a depth-robust graph. A
variety of prior work has explored building DRGs [2, 38] with low α and high β while minimizing in-degree
and complexity of graph construction. Despite good asymptotic bounds, none of these graphs provide both
proofs of depth-robustness and practical performance.

Mahmoody et al. [38] provide a theoretically-efficient construction for (α, α− ε)-DRGs with in-degree
Õ(log2 n) for any α ∈ (0, 1) and any ε > 0. While such graphs could result in very efficient PIEs in theory,
there is not sufficient detail to compute the precise in-degree or implement the construction.

Alwen et al. [2] present two related randomized constructions: one has in-degree 2, but 1 − α ≈
1/(4100 log n), while the other has α < 1

25 and, experimentally, average in-degree 41 log2 n − 275. Even
the second of these has β = 3/10, resulting in an SER over 80. Moreover, both constructions are only
depth-robust with high probability and it is not clear how to verify the depth-robustness of a particular graph.

To measure the performance of a provably-secure PIE, we therefore rely on a naı̈vely-constructed DRG.
Specifically, for any α ∈ (0, 1), we can easily build an (α, α)-DRG with n vertices and in-degree (1− α)n
(see Appendix C.1). Unfortunately, as we would expect, this linear in-degree results in poor scaling on large
files. We can encode large files in multiple independent chunks to alleviate the need for large DRGs (see
Section 5.3), but more efficient DRGs are still desirable.

Despite the poor proven bounds, the Alwen et al. construction appears to effectively resist known
depth-reduction attacks in practice, providing evidence of highly scalable efficiently computable DRGs. A
slight modification by Fisch et al. [32] produces graphs with small constant in-degree that effectively resist
known depth-reduction attacks. In particular, they found that a maximum in-degree of 21 was sufficient to
prevent known attacks from reducing the depth of an n-degree graph below n/4 when removing fewer than
0.58n vertices. Given these results, we additionally provide benchmark results for these graphs, heuristically
assuming they are (0.5, 0.25)-depth robust. We provide the exact construction algorithm for convenience in
Appendix C.2.

8 Experiments

We now present performance results for our PIE implementation. Our PIE implementation is 650 lines of Java
code that rely on BouncyCastle [14] for all hash and cipher primitives. For all benchmarks, we let λ = 512 be
the block size. We make this choice because smaller blocks result in more operations, slowing performance,
while most common and efficient hash functions and block ciphers operate on at most 512-bit values. Except
where otherwise noted, we ran all benchmarks on a c5.large Amazon EC2 instance, which provides 2
cores of an Intel Xeon Platinum 8124M CPU.

We benchmark the two constructions described above. For the naı̈ve DRG, we set α = 1
2 to minimize

SER based on the computation in Section 6. While we get a near-optimal SER of 4 on small file sizes, the
linear in-degree results in poor performance on large file chunks. We can break large files into smaller chunks
to avoid this overhead (see Section 5.3), but doing so limits our ability to amortize the slow operations over
larger amounts of data. Here we use only fast PRPs and instantiate a slow KDF as scrypt [40]. We choose
scrypt due to its popularity and tunable performance. Its memory-hardness may appeal to some applications,
but any tunable-speed cryptographic hash function would produce the same results in our benchmarks.

For the heuristically-robust graph specified by Fisch et al. [32], we assume it is (0.5, 0.25)-depth-robust
based on Fisch’s experimental results. This provides an SER bound of 8 and much better scaling, allowing
us to encode more data with the same total amount of computation for a given security bound. To enable
extra-fast decoding, we use only fast KDFs and employ Sloth [36] as an asymmetric-speed PRP. We provide
more detail on these constructions in Appendix 7.
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Figure 5: Fast operation overhead for different layer types and sizes. Naı̈ve DRG run time grows quadratically with the
graph size, while the others grow roughly linearly.

In both cases we instantiate all fast PRPs as Threefish [28]—a block cipher with a fast 512-bit imple-
mentation in BouncyCastle—and all fast KDFs as SHA512. We additionally use fast KDFs and PRPs in the
superconcentrator layers as discussed in Section 5.2.

8.1 Micro-benchmarks

Our security model assumes all operations except the slow KDF or PRP are instantaneous. To confirm that
they add minimal overhead in practice, we benchmarked each operation separately. Indeed, Threefish on a
single 512-bit block took only 0.36 µs, while SHA512 took 0.67 µs on small inputs.

We also benchmarked single iterations of the butterfly superconcentrator and the DRG transformations
within our PIE. For each transform, we measured the run time for a variety of graph sizes. SHA512’s
compression algorithm is far faster than scrypt’s, so even when using scrypt in the DRG layer we first
compress the key inputs using SHA512. We therefore include SHA512’s compression time when measuring
this overhead, but not timing for either scrypt or Sloth. The results in Figure 5 show that all layers impose
very small overhead for reasonably-sized graphs, but the naı̈ve DRG performance scales poorly due to its
linear degree.

8.2 ENCODE Performance

To ensure that the formal security of a PIE corresponds to practical security, our “slow” operation to be
sufficiently slow. Specifically, if an encoding is d-oracle incompressible, the time required for d sequential
executions must be noticeable. By configuring the slow operation to different speeds, we can tune this value.

For both implementations we benchmarked performance for different speeds of the slow operation and
different file sizes. We measured files ranging from 32 KiB to 4 MiB in size. Larger files can be broken into
independent chunks and transformed in parallel, as described in Section 5.3. For each file size we tuned the
inherent sequential work to require roughly 1, 5, and 30 sec on the machine running the encoding. Figure 6
shows these benchmarks.

For small files, the provably-secure PIE with a naı̈ve DRG performs extremely well. Even with a security
bound of 1 sec, the SER ranges from 4.1 to 5.0 for files up to 128 KiB. For larger security bounds, scrypt
calls dominate the runtime longer, with the SER between 4.0 and 4.6 for files up to 0.5 MiB with a 30-sec
bound. Unfortunately, the poor scaling of the naı̈ve DRG completely dominates the encoding time of 2 MiB
files, resulting in a SER over 13 with a 30-sec security bound and over 100 with a 1-sec bound.
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Figure 6: ENCODE time by file size for wall-clock security bounds of at least 1, 5, and 30 sec. Solid lines use scrypt
as a slow KDF and a provably-secure naı̈ve DRG that scales poorly to large files. Dotted lines use a heuristically
depth-robust graph and Sloth as a slow PRP. These scale to large files, but Sloth’s fastest configuration takes 420 µs
per 512-bit operation, limiting tuning. For example, security bound for a 4 MiB file must be a multiple of 6.8 second.
Overhead of “fast” operations remains minimal.

The heuristically-secure PIE, however, scales extremely well. While encoding time increases for larger
file sizes, this because Sloth’s speed cannot be tuned to a fine enough granularity. The only tunable parameter
is the number of modular square roots per invocation, and a single square root takes around 420 µs on a
c5.large. The minimum sequential work for a 4 MiB file is 214 Sloth invocations, which takes at least 6.8
seconds. This explains the convergence of the 1 and 5-second bounds. Indeed, in every heuristically-secure
experiment the measured SER remained between 8.0—the minimum for this construction—and 8.5.

8.3 DECODE Performance

In Section 5.1 we explain how to achieve rapid decoding through either parallelism or asymmetric-speed
PRPs. We now benchmark the performance of both of these techniques.

We benchmarked DECODE with various numbers of threads on a single 256 KiB file for both a naı̈ve
DRG using scrypt and a heuristic DRG using Sloth. To enable high parallelism, we ran this benchmark
on a c5.18xlarge Amazon EC2 instance, which provides 72 virtual CPU cores. We benchmarked
configurations requiring inherently-sequential encoding work of both 5 and 30 sec for each setup. The results
in Figure 7 show that parallelism is highly effective at improving DECODE performance when using scrypt.
When using Sloth, single-threaded decoding is fast enough that parallelism provides little benefit. With a
5-second security bound, increasing the thread count provides no noticeable benefit beyond 5 threads.

Finally, we benchmarked single-threaded DECODE performance with Sloth for a variety of file sizes.
Figure 8 shows that the performance depends primarily on the inherently sequential ENCODE time for
very small files, as a large number of Sloth decode operations is slower than the other fast operations. For
larger files, however, we tune Sloth to be faster on a single invocation, making overhead from larger graphs
noticeable, causing decoding times to scale linearly with graph size.

We modify Sloth’s difficulty by iterating its basic asymmetric-speed permutation. The performance
asymmetry on 512-bit blocks is over a factor of 200, resulting in the same gap between ENCODE and
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Figure 7: DECODE time for a 256 KiB file for both 5 and 30-sec security bounds run with multiple threads on an
Amazon EC2 c5.18xlarge. Solid lines use a provably-secure naı̈ve DRG and scrypt. Dotted lines use a heuristic
DRG and Sloth.
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Figure 8: DECODE time by file size for 1, 5, and 30-sec security bounds using a heuristically-secure DRG and the
Sloth PRP.

DECODE when Sloth dominates both run times. For example, on a 32 KiB file, Sloth with 576 iterations
required 241 sec for ENCODE, but only 1.1 sec for DECODE. With fewer iterations, the overhead of fast
symmetric-speed operations is relevant. With one iteration per block—Sloth’s fastest tuning—DECODE is
roughly 16× faster than ENCODE. Parallelism, though less beneficial than with scrypt, is still effective. With
Sloth set to 72 iterations, we decoded a 256 KiB file using 13 threads in 300 ms—800× faster than ENCODE.

9 Practical Lessons and Application

Rapid decoding appears critical for Content Distribution Network (CDN) style DSNs like those proposed by
Filecoin and needed to shard Ethereum data. Lengthy and computationally-intensive decoding would limit
use to little more that data backups. Section 8 indicates promising performance for Ethereum-like systems
that can restrict the data being stored. Unfortunately, the rapid decoding itself raises fundamental questions
about the cost more general systems like Filecoin, especially when compared to commercial storage providers
like Amazon S3.

Careful readers will note that Definition 1 for incompressibility is only secure under composition—
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parallel or sequential—if the files in one execution of EXPPIE
A,O are independent of other executions. Without

this guarantee composition completely breaks security.
Consider composing two runs of one file each. In the first run, F1 is an arbitrary file that correctly encodes

to G1 with randomness ρ1. In the second, we let F2 = G1 and G2 = ENCODE(G1 ; ρ2). Since A can decode
rapidly, it can then store only G2 and easily recover G1 on the fly. We stress that this lack of composition is
inherent to any PIE or proof of space with public randomness and efficient data extraction [41], it is not a
property of our PIE scheme in particular.

There are two clear ways to address this concern. The first is to only accept data trusted to be generated
independently of existing encodings. For example, blockchain state data is honest by assumption. Such a
setting can reap the benefits of both nearly optimal encoding times and highly efficient decoding, which we
believe would make our PIEs a highly practical primitive.

Ethereum, for example, averages roughly 225 MB of new state per day [27]. As the fastest configuration
of our Sloth-based PIE requires at least 14.5 sec/MB of CPU time on a c5.large Amazon EC2 instance,4

the single-time encoding cost for each replica would be roughly 1.7¢ per day using Amazon EC2 spot
instances.5 Reducing the replication by as little as a factor of 10 would thus be cost-efficient in one year
unless ongoing storage costs were below 0.064¢ per GB monthly—less than Amazon S3’s cheapest offering.6

The second way to avoid composition attacks requires storage providers to commit to their files before
selecting randomness, reducing security to a single execution of EXPPIE

A,O. This imposes little overhead when
files are static and encoded simultaneously (e.g., infrequent backups), but because additions or modifications
may be conditioned on existing encodings, we must re-encode all files for any change. With no other general
mechanism for showing generic files are independent, this appears to be an inherent limitation.

Limitations for DSNs. In settings such as Filecoin which both allow new data to enter the system and
account for adversarial files, the DSN must operate in epochs. Following the second approach above, data
remains static within an epoch, and providers commit to and re-encode all data at the beginning of a new
epoch. As discussed in Section 6, our construction provides a nearly optimal amount of computation for
a given security bound, allowing us to estimate the financial cost of such a mechanism. Using the same
parameters as above, an honest provider must pay 7.8¢/GB for each encoding. Note that this is the cost for
one replica; triplicate replication would impose 3× overhead. Using epochs of one day, for example, would
balloon the monthly cost to $2.34/GB for each replica, simply for re-encoding. Compared to commercial
services like Amazon S3—priced at 2.3¢/GB normally and less than 0.1¢/GB for “Glacier Deep Archive”
storage [6]—these costs are enormous. Moreover, this only accounts for computational overhead; it does not
consider data access costs, which may be substantial.

These prices not only raise serious concerns about the cost-effectiveness of such a scheme, they also
indicate a very high energy consumption. One claimed motivation for systems like Filecoin is to provide
a Sybil-resistant consensus mechanism that is less wasteful than Bitcoin-style Proof of Work. The need
for frequent computationally-intensive encodings threatens to eliminate much of that benefit, as the Sybil-
resistance provided by the PoS aspect of a PIE would require immense quantities of computation.

9.1 Ensuring Correct PIE Computation

Our main results focus entirely on ensuring that a correctly-encoded PIE cannot be compressed. As we
mentioned in Section 2, the public setting requires validation of the encoding itself. While anyone can check
that an encoding is correct—potentially efficiently if decoding is sufficiently fast—providing a compact proof
is nontrivial.

4As this uses the fastest Sloth setting, larger file chunks would increase the minimum sequential work, but not reduce the total
time per byte.

5Amazon EC2 c5.large spot instances currently cost 1.9¢ per hour [5].
6“Glacier Deep Archive,” which currently costs 0.099¢ per GB monthly [6].
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There are multiple ways to address this concern depending on the setting. These differences are why we
choose to separate the proof of correct encoding from the guarantees provided by a correctly-encoded PIE.
For example, in a permissioned or hybrid consensus system [39] with small committees presumed to contain
a quorum of honest nodes, such a quorum could verify encodings. In permissionless settings, we can rely on
the existing state of the art for proofs of space [25, 30, 44]: graph sampling.

Graph sampling is only able to guarantee with high probability that a fixed percentage of the vertices were
computed correctly with respect to their parents. Unfortunately, a small number of incorrect vertices may
escape detection, allowing correspondingly small compression. How to close this gap and provide overall
systems with tighter proofs of space remains an open question.

One potential approach utilizes the fact that the public setting allows anyone to generate a compact proof,
via Succinct Non-interactive ARguments of Knowledge (SNARKs) or refereed delegation of computation [9,
17, 52], that an encoding is, with overwhelming probability, incorrect. If the network financially rewards
whistleblowing and punishes dishonest storage servers, it may be able to remove incentives for storage servers
to compute any part of an encoding incorrectly. Analysis of such incentives would likely be nontrivial, but
such a mechanism would apply to other PoS schemes as well.

10 Related Work

Proofs of Storage. As noted above, PoRs [24, 34, 49] and PDPs [8], also called proofs of storage [35], prove
only file retention by a provider, not file replication. As PoRs involve erasure coding, they may be viewed as
proofs of replication in the trusted-encoder, private-reader setting, as may multi-replica PDPs, e.g., [20].

Proofs of space, by Dziembowski et al. [25], are a conceptually related alternative to blockchain proof of
work. They help ensure that a prover is consuming a certain amount of storage, but use specially constructed
files, not generic files as in a DSN.

Proofs of Replication. Several early-stage DSNs, such as Sia [55] and Storj [51], already perform proofs of
replication in the trusted-encoder, private-reader setting.

Van Dijk et al. [54] propose an encoding technique using RSA trapdoor one-way permutations not
intended for, but useable for, proving replication in the trusted-encoder, public-reader setting. Damgård,
Ganesh, and Orlandi [22] propose a similar construction, but with PoRs to support file extraction, rather than
just incompressibility, and an analysis focused on file replication.

Beyond the previous attempts to construct PIEs [10, 43, 54] noted above, Fisch et al. [31] first proposed
using DRGs to address the untrusted-encoder, public-reader file replication problem. In independent concur-
rent work, Fisch proposed a security notion for proof-of-replication with rational adversaries called ε-rational
replication, showing PIEs both necessary and sufficient [29]. He also constructs an alternative PIE from
bipartite expander graphs instead of superconcentrators [30].

Unlike our construction, which provides optimal compression resistance and near-optimal encoding
performance, Fisch’s can provide either, but not both, depending on its parameterization. Neither construction
strictly improves on the other, however, due to the size of graph-sampling proofs of correct encoding. When
parameterized for fast encoding and lower compression resistance, the Fisch’s proofs grow linearly with the
file size. For both our construction and the optimal-compression parameterization of the Fisch construction,
the proof size is O(n log n). Our chunking optimization in Section 5.3 may be able to reduce the overall
proof size for particularly large files in both constructions.

Finally, all work discussed above provides only constructions without implementations, performance
evaluations, or discussions of practical ramifications.

Depth-Robust Graphs. DRGs were studied decades ago for proving lower bounds on computational
complexity [26, 47, 48], and revived to enforce sequential work in publicly verifiable proofs of work [38] and
memory-hard hash functions [2–4, 13], prompting several new DRG constructions [2, 38].
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Publicly Verifiable Proofs of Sequential Work and Delay Functions. Publicly verifiable proofs of se-
quential work, e.g., Cohen and Pietrzak [19] and Mahmoody et al. [38], which uses DRGs, are public-coin
systems for a prover to show a certain amount of sequential work relating to a particular input. They enable
fast verification (polylog in the time of the prover), which our construction does not, but are for applications
without data recovery (e.g., timestamping, CPU benchmarks). Thus they do not support decoding, as needed
for proofs of replication.

Delay functions, introduced by Goldschlag and Stubblebine [33], are similar, but do enforce uniquely
computable outputs and can be decodable. Boneh et al. [12] show how to construct decodable verifiable
delay functions (VDFs) that are usable in principle for proofs of replication, with fast verification (again,
polylog in the prover’s time) using incremental application of SNARKs—something not possible in our DSaG
construction. Their constructions are theoretical, though, with no reported implementation. The proposed
VDFs involve chained operations on individual (e.g., 256-bit) field elements composing a file, so their SERs
are impractically high (e.g., SER ≈ 8,000 for a 128 KiB file).

11 Conclusion

We have presented the first practical, provably secure, and efficiently decodable public incompressible
encoding (PIE), a tool for proofs of replication in the public setting. PIEs enable detection of servers that fail
to use adequate storage, thus allowing DSNs to ensure correct storage through a combination of verification
and economic incentives. We have formally defined PIE security and show how to construct efficient, provably
secure PIEs using Dagwood Sandwich Graphs (DSaGs), an iterated interleaving of depth-robust graphs
(DRGs) and superconcentrators.

Several interesting challenges arise from our work, such as efficient verification of correct PIE computation
while retaining fast data extraction and avoiding heavyweight proof systems, and support for dynamic provable
replication, that is, files that change over time. The latter is trivially achievable by updating modified file
chunks, but impractical for sparsely distributed file changes, as shown by Pietrzak [41].

In summary, the PIE constructions we present here—allowing fast decoding and providing near-optimal
efficiency in terms of SER—provide powerful insights into where secure public-setting DSNs may or may
not be practical. They are a promising practical tool for applications such as robust blockchain data storage,
while raising questions about the cost-efficiency of others.
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A Multi-Query Security

To ensure no adversary can gain advantage by amortizing computation across multiple queries, we provide a
notion of incompressibility that queriesA on multiple data blocks. This definition of is similar to Definition 1,
but with multiple challenges. These challenges correspond to a real-world verifier querying a storage server
on multiple data blocks in sequence, We therefore allow A to modify its data storage between each query
so long as A never increases its total storage and can compute each piece of stored data from the previous
within the query’s time bound.

Definition 5 (Multi-Query Public Incompressible Encoding). We say a public encoding algorithm ENCODE

is multi-query d-oracle incompressible if for any compression factor ε < 1, any polynomial number of queries
s, and any PPT A = (A1,A2), there exists a negligible function negl such that for all sets of files {Fi}mi=1,

Pr
[
EXPMPIE

A,O (λ, {Fi}mi=1, ε, d, s) = 1
]
≤ (1− ε)s + negl(λ)

where

EXPMPIE
A,O (λ, {Fi}mi=1, ε, d, s)

1 : {ρi}mi=1←$ {0, 1}λ×m
2 : G′0←$AO1 ({(Fi, ρi)}mi=1)

3 : for i ∈ [1,m] : (Gi, κi)← ENCODEO(Fi ; ρi)

4 : G = G1 ‖ · · · ‖Gm
5 : for j ∈ [1, s] :

6 : kj ←$ [1, |G|]
7 : (blkj , G

′
j)←$AO

?
d

2 (kj , G
′
j−1, {(ρi, κi)}mi=1)

8 : endfor

9 : return

s∧
j=1

[( |G′j−1|
|G| ≤ 1− ε

)
∧ (blkj = G[kj ])

]
This security property is conveniently equivalent to the single-query notion provided in Definition 1.

Proposition 1. A public encoding algorithm ENCODE is d-oracle incompressible if and only if it is multi-
query d-oracle incompressible.

Proof. Multi-query incompressibility clearly implies single-query. We prove the other direction by induction
on s. If s = 1, this is exactly the single-query game.

We now assume that an encoding scheme is multi-query public incompressible with s queries whenever
it is single-query incompressible. We claim that the same holds for s + 1 queries. Let ENCODE be a
(single-query) d-oracle incompressible encoding, and assume for the sake of contradiction that A breaks
its multi-query security with s+ 1 queries. Since ENCODE is multi-query incompressible on s queries, we
know that the probability that blkj = G[kj ] for all j ∈ [1, s] is at most (1 − ε)s + negl(λ). However, by
assumption, there is some non-negligible ν such that the probability of success on all s+ 1 queries is greater
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than (1− ε)s+1 + ν(λ). Note that

Pr[blks+1 = G[ks+1]]

= Pr[all blocks correct | first s blocks correct]

=
Pr
[
EXPMPIE

A,O (λ,m, ε, d, s+ 1) = 1
]

Pr
[
EXPMPIE

A,O (λ,m, ε, d, s) = 1
]

>
(1− ε)s+1 + ν(λ)

(1− ε)s + negl(λ)
.

Since s is polynomial in λ, there is a negligible function negl ′ and a non-negligible function ν ′ such that

(1− ε)s + negl(λ) = (1− ε+ negl ′(λ))s

(1− ε)s+1 + ν(λ) = (1− ε+ negl ′(λ))s+1 + ν ′(λ)

Since (1 − ε + negl ′(λ))s < 1, this means Pr[blks+1 = G[ks+1]] > (1 − ε) + negl ′(λ) + ν ′(λ). Thus we
can construct some Â1 that, on input {(Fi, ρi)}mi=1 runs A1 and then correctly simulates the environment for
the first s queries and finally outputs the files and G′s. Â2 then calls A2 and discards G′s+1. Â thus breaks the
single-query incompressibility of the scheme, contradicting our assumption.

B Proof of Security

We now provide a proof of Theorem 1. We structure this proof as a parallel graph pebbling game. A parallel
pebbling game proceeds in rounds: in each round the adversary can place a pebble on each vertex whose
parents were all pebbled in the previous round. The adversary then attempts to pebble all outputs of the graph
in as few rounds as possible. Each pebble in this game represents data storage, and pebbling a new node
represents deriving a new data label. We model A storing intermediate data as A placing a bounded number
of pebbles in the initial configuration on the graph (i.e. before the first round). The pebbling rules capture
data-dependencies in the derivation of new data labels, e.g. enforced by the KDF.

A parallel pebbling game is (s, t, δ)-hard if no adversary starting with s pebbles on the graph can pebble
a δ fraction of the output nodes in fewer than t rounds. This intuitively suggests that no adversary can derive
more than a δ fraction of the output data labels in t rounds of calls to the KDF starting from an initial state
that stores only s data labels. However, formally proving that there is no adversarial attack that uses less than
sm storage (where m is the size of a label) is difficult. It is a long-standing problem to translate pebbling
hardness to lower bounds in the random oracle model (ROM), where KDF is a random oracle. Pietrzak [41]
recently made progress in this direction, proving that hardness of the parallel pebbling game implies lower
bounds in the ROM. However, the analysis is not perfectly tight, leaving open the possibility that the ROM
adversary could use a ε fraction less storage than the pebbling adversary, where ε ≈ log n/m on a graph with
n data outputs.

In our PIE construction based on n-encoder graphs we use edges to model data storage instead of vertices.
Since the pebbling game places pebbles on vertices, we will need to analyze the pebbling game on a modified
graph so that it accurately models the PIE computation. Based on Construction 1, the values along each
data edge are independent from the values on all other data edges, but the value along each key edge is
precisely the concatenation of the values of two data edges. This means the values that A must compute
separately are those along data edges. We thus analyze a graph based on the edge-graph on data edges.
For each key edge (u, v), we need each data output of u to compute each output of v. We therefore add
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corresponding key edges in this data-edge-graph. Specifically, if G = (V,E) with E = ED ∪ EK , we define
DataEdgeGraph(G) = (V ′, E′D ∪ E′K) where

V ′ = ED

E′D = {((u, v), (v, w)) | (u, v), (v, w) ∈ ED}
E′K = {((u,w), (v, s)) | (u, v) ∈ EK and (u,w), (v, s) ∈ ED}.

Proposition 2. If G is a DSaG with ` layers and 2n inputs, then G′ = DataEdgeGraph(G)’s data edges
form a sequence of ` − 1 independent butterfly 2n-superconcentrators, followed by a single layer of 2n
vertices. Additionally, key edges are confined to the first layer of each superconcentrator as well as the final
output layer, and each such layer forms an independent (α, β/2)-DRG of key edges.

Proof. By construction, each superconcentrator in G is a butterfly n-superconcentrator with two data edges
into each input vertex and two out from each output vertex. We see by inspection that the edge graph of this
construction is itself a butterfly 2n-superconcentrator. This demonstrates the vertex and data edge structure
claimed.

Now consider the key edges. In the definition of G′, key edges connect to vertices corresponding to the
data edges in G originating from the same vertex as the relevant key edge. As these data edges in G form the
input vertices to a superconcentrator in G′, we see that the key edges are placed as claimed.

To see the depth-robustness, note that for each vertex u in G, there are two data edges originating at u and
thus two vertices in G′ corresponding to those edges. Therefore, given any 2αn vertices in that layer of G′,
those vertices correspond to edges originating from at least αn distinct vertices in G. Additionally, for every
key edge (u, v) in G, there is an edge in G′ from each (u,w) to each (v, s). As the corresponding layer of G
was a (α, β)-DRG, there must be a path of key edges in G of length at least βn containing only those vertices.
Thus this must correspond to some path, also of length at least βn in that layer of G′. As the layer has 2n
vertices, it is thus (α, β/2)-depth-robust.

There is one further change to the standard pebbling analysis we must make. Because PRP operations
are explicitly invertible, we can place a pebble on a vertex v if either (i) every parent of v is pebbled—the
regular condition—or (ii) there is a pebble on the parent of every key edge and the child of ever data edge.
This extra condition restricts the types of graphs we can use, but thankfully does not significantly complicate
the analysis of a DSaG.

To demonstrate our construction’s security, we show that the parallel pebbling game on DataEdgeGraph(G)
is (δn, βn, δ)-hard for every δ < 1, where G is the n-encoder graph in our construction. This shows that
PIE is tightly incompressible against an adversary restricted to pebbling attacks. Unfortunately, as remarked
above, it does not imply d-oracle incompressibility given the current state of pebbling analysis theory, which
does not rule out the possibility that a ROM adversary could achieve a small constant compression factor.
Nonetheless, there is no known attack, and we will assume this as a conjecture:

Conjecture 1 (Formal). If G is an n-encoder graph and the parallel pebbling game on DataEdgeGraph(G)
is (δn, d, δ)-hard for every δ < 1 then ENCODEG (defined by Construction 1) is d-oracle incompressible.

Theorem 1. Assuming Conjecture 1, if G is a (α, β)-DRG with n = 2k vertices, then the encoding ENCODEĜ
defined by Construction 1 on the DSaG Ĝ defined by Construction 2 is βn-oracle incompressible in the
random oracle model.

Proof. We consider the modified parallel pebbling game described above on the graph Ĝ′ = DataEdgeGraph(Ĝ).
Let Di be the ith DRG layer—so data edges point toward higher layers—and Bi be the butterfly supercon-
centrator connecting Di to Di+1. We assume that for some ε > 0, A stores at most a 1− ε fraction of the
data, we begin the game by placing 2n(1− ε) initial pebbles on Ĝ′.
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Let Ui ⊆ Di be the set of unpebbled vertices v ∈ Di such that there is an unpebbled path along only data
edges from v to some unpebbled vertex in D`. Note that U` is thus simply the unpebbled vertices of D`. Let
pi be the number of pebbles initially placed on Di ∪Bi. Note that

∑`
i=1 pi ≤ 2n(1− ε) < 2n.

Claim 1.1. |Ui| ≥ 2n− pi for all i ∈ [1, `].

Proof. We prove this by induction on i, showing that if |Ui+1| ≥ 2n− pi, then the claim holds for Ui. As
our base case, we see that by definition U` is the set of unpebbled vertices of D`, so |U`| = 2n− p`.

We now assume i < ` and |Ui+1| ≥ 2n − pi+1. By assumption, 2n >
∑`

j=1 pj ≥ pi + pi+1. Using
our inductive hypothesis, this means |Ui+1| ≥ 2n − pi+1 > pi. In particular, this means there is some
U ′i+1 ⊆ Ui+1 with |U ′i+1| = pi + 1.

Let S = ∅ and let W ⊆ Di \ S such that |W | = pi + 1. Bi is a superconcentrator, so there exist pi + 1
vertex-disjoint paths connecting W to U ′i+1 using only data edges in Bi. As there are exactly pi pebbles in
this part of the graph and each can be on at most one such path, there is at least one u ∈W with an unpebbled
path to some vertex in U ′i+1. Update S ← S ∪ {u}. We can now repeat this procedure until |Di \ S| ≤ pi,
which will first occur when |S| = 2n− pi. Moreover, we note that every vertex in S has an unpebbled path
along data edges to some vertex in Ui+1, which each have unpebbled paths along data edges to at least one
output vertex of Ĝ′. Therefore S ⊆ Ui, meaning |Ui| ≥ |S| = 2n− pi, as desired.

Claim 1.2. Assuming ` ≥ 1/(1− α), there exists an unpebbled path P such that

1. Every vertex in P contains an unpebbled path of only data edges to D`, and

2. P has a sub-path of length at least βn containing only key edges.

Proof. Since 2n >
∑`

i=1 pi, by the mean value theorem there is some i ∈ [1, `] such that pi < 2n/` ≤
2n(1− α). Claim 1.1 shows that

|Ui| ≥ 2n− pi > 2n− 2n(1− α) = 2nα.

By Proposition 2, we know that Di is (α, β/2)-depth-robust, so there is a key-edge path of length at least
|Di|β2 = 2nβ2 = βn touching only vertices in Ui. By the definition of Ui, every vertex in Ui contains an
unpebbled path of only data edges to an unpebbled vertex in D`, proving the claim.

Claim 1.3. There exist at least 2nε output vertices of Ĝ′ that terminate unpebbled paths P such that:

1. Every vertex of P contains an unpebbled path of only data edges to D`, and

2. P has a sub-path of length at least βn containing only key edges.

Proof. We begin with a configuration with 2n(1− ε) initial pebbles placed anywhere on Ĝ′. Let O ⊆ D` with
|O| = 2n(1− ε) + 1. Now consider a modified configuration that places additional pebbles on all unpebbled
vertices of D` \ O. Since |D` \ O| = |D`| − |O| = 2n − (2n(1 − ε) + 1) = 2nε − 1, the total number
of pebbles in this modified configuration is no greater than 2n(1 − ε) + 2nε − 1 = 2n − 1 < 2n. Since
Construction 2 requires ` =

⌈
1

1−α

⌉
≥ 1

1−α , Claim 1.2 proves that there is a path P ′ satisfying Conditions 1

and 2. By Condition 1, the terminal vertex of P ′ has an unpebbled path of data edges to some unpebbled
u ∈ D`, so we can concatenate those paths to acquire P . Because all vertices in D` outside O are pebbled in
this configuration, u ∈ O.

Since we only added pebbles, it follows that u had this property in the original configuration as well.
Using the same technique we applied in the proof of Claim 1.1, we can record u in a set S and form the set
O′ by removing u and replacing it with a different vertex from D` that has not yet been considered. The same
argument applies and we can locate a new u′ ∈ O′ with the desired property. We can repeat this argument
until |D` \S| ≤ 2n(1− ε), which occurs when |S| ≥ 2nε. Each vertex in S has the desired property, proving
the claim.
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DRSample(n)

V := [1, n]

E := {(1, 2)}
for v ∈ [3, n] :

g′←$ [1, blog2(v)c+ 1]

g ← min(v, 2g
′
)

r←$ [max(g/2, 2), g]

E ← E ∪ {(v − 1, v), (v − r, v)}
endfor

return (V,E)

BucketSample(n,m)

(V ′, E′)←$DRSample(nm)

V := [1, n]

E := ∅
for (u′, v′) ∈ E′ :
u← du′/me
v ← dv′/me
if u 6= v then E ← E ∪ {(u, v)}

endfor

return (V,E)

Figure 9: The DRSample algoirthm for sampling degree-2 DRGs due to Alwen et al. [2], and the modification
into BucketSample due to Fisch et al. [32]. These algorithms produce very simple low-degree graphs that appear
depth-robust in practice.

Every vertex of each path described in Claim 1.3 has an unpebbled path along only data edges to some
unpebbled output of Ĝ′. Therefore it is impossible to pebble any of those vertices by first pebbling their
data-edge children, meaning we must pebble them in topological-sort order, as in a classic pebbling game.
Thus in order to pebble each such vertex, it requires at least βn rounds due entirely to key edges.

C DRG Construction Details

We now describe the exact construction details for both DRGs we describe in Section 7 and benchmark in
Section 8.

C.1 Naı̈ve DRG

Constructing a naı̈ve (α, α)-DRG with in-degree (1− α)n is straightforward. We index the vertices from
1 to n, and include edges from vertex i to i+ 1, . . . , i+ b(1− α)nc+ 1. This guarantees that, for any set
of k consecutive vertices i, . . . , i + k − 1 with k < (1 − α)n, vertex i − 1 will connect directly to vertex
i+ k. Thus any set of of vertices Ṽ with |Ṽ | ≥ αn will form a single connected path. The graph is therefore
(α, α)-depth-robust as desired, but it has in-degree (1− α)n.

C.2 Random Sampled Heuristic DRG

Alwen et al. [2] present an algorithm for randomly sampling degree-2 graphs that appear fairly depth-robust in
practice. Fisch et al. [32] modify this construction by combining multiple vertices of Alwen’s degree-2 graph
to produce graphs with any small constant and depth-robustness that grows with in-degree. The sampling
algorithms for both are shown in Figure 9. For sampled graphs with n vertices and maximum in-degree 21,
Fisch was unable to find an attack that reduces the depth below n/4 by removing fewer than 0.58n vertices.
We therefore heuristically assume that these graphs are (0.5, 0.25)-depth-robust.
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