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Abstract

The Non-Orthogonal Multiple Access (NOMA) is considered a key technology for

the next generation of cellular systems. NOMA is expected to meet the rapid

increase in the demand of high data rate, massive connectivity, and high reliabil-

ity for the fifth generation (5G) wireless networks. In downlink NOMA, super-

constellation scheme for the transmission is designed by the superposition of the

constellation schemes of each individual user. The super-constellation scheme at

transmitter end needs to be designed carefully, in order to ensure the complete

recovery of data intended for the corresponding receiver. The paper under con-

sideration [1] proposed the novel deep learning based approach that design the

optimized constellation scheme for the downlink NOMA. Auto-encoder network

is trained in this approach, where Enocder is trained to map data bits to sym-

bol, and Decoder is trained to map received symbol to data bits. The network is

trained with synthetic data, and then trained bit to symbol mapping is extracted

to get the optimized super-constellation scheme for downlink NOMA. The pur-

posed scheme can be integrated into current communication systems and readily

use for a practical purpose. Moreover, the scheme can be readily combined with

iterative error-correction devices such as turbo codes or LDPC. Simulation re-

sults with synthetic data have verified the effectiveness of this deep learning based

approach in designing the super-constellation scheme that allows transmission of

data to multiple users simultaneously.
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Chapter 1

Introduction

1.1 Non-Orthogonal Mutiple Access

Non-Orthogonal Multiple Access (NOMA) is one of the most promising radio

transmission technique that is expected to meet the rapidly increasing demand

for high data transmission rate, massive connectivity, and high reliability for the

fifth-generation (5G) wireless networks [2], [3], [4]. The key idea behind Non-

Orthogonal Multiple Access (NOMA) is to serve multiple users in the same re-

source block by exploiting the channel gain differences. In downlink NOMA, sig-

nals intended for different receivers are superposed at transmitter end before trans-

mission. Conventionally, the transmitter maps the data bits intended for a single

receiver onto the symbol with the help of a constellation scheme. Then this symbol

passed through the channel and received at the receiver end. After the reception

at the receiver end, the receiver converts this symbol back to the bits with the

help of the same constellation scheme. In the case of NOMA, data bits intended

for multiple users are mapped on a single symbol. Each receiver has to decode

the data bits intended for itself from this single symbol. The super-constellation

scheme that dictates the bits to symbol mapping must be carefully designed in

order to ensure the exact recovery of data from the single symbol. The distance

and channel corresponding to each receiver are not the same. That is why the op-

timal constellation scheme is crucial for the enhanced performance with NOMA.

Generally, Successive Interference Cancellation (SIC) is used at the receiver end.

The receiver with high SNR decodes the data after estimating and canceling the

signal of weak users, where weak SNR receiver treats the other user signals as

interference.
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1.2 Deep Learning

Deep Learning (DL) is the branch of Machine Learning that allows the machines to

improve with experience. Deep Learning has applied successfully in various fields

like autonomous vehicles, speech recognition, computer vision, and reinforcement

learning. An autoencoder (AE) is a neural network that consists of two parts

encoder and decoder. The encoder is trained to represent data into latent space,

and the decoder is trained to recover the same data from this latent space. Re-

cently, Deep Learning has started playing a role in the communication domain, as

well. There are many functional similarities between communication blocks and

autoencoders. The function of the transmitter is to map data over symbols where

encoder also learns to map input over some latent space. On the other hand,

the receiver’s function is to recover data from the transmitted symbol, where a

decoder, like a receiver, learns to recover data from the latent space mapping of

encoder input. Many publications have investigated the use of Auto-encoders in

the communication domain because of the analogy between Autoencoders and

communication systems. [5] demonstrates the ability of a neural network in de-

tecting symbols even when the channel is unknown and non-linear by proposing

the algorithm for signal detection for molecular communication. Deep Learning

based Orthogonal Frequency Division Multiplexing (OFDM) receiver is proposed

that directly recovers transmitted symbols without estimating the Channel State

Information (CSI) [6].

1.3 Traditional Approaches of Constellation De-

sign

The super-constellation scheme which is highly crucial for the performance of

NOMA is conventionally designed based on off-the-shelf constellation schemes.

Several recent publications have investigated these schemes. The superposition of

BPSK constellation scheme with equal power allocation factor (PAF) is investi-

gated in [7], and without equal power allocation factor (PAF) is investigated in [8].

Moreover, the superposition of QPSK with PAF policy is proposed in [9]. To ex-

ploit the spatial diversity, [10] investigated the angle of rotation of the off-the-shelf

constellation schemes. [11] provides the analytical expressions for Bit Error Rate

(BER) by optimizing over power allocation and phase rotations without exploiting

the labels and possible angle of rotations for BPSK and QPSK. A mutual infor-

mation based search over optimal PAF policy for two users constellation scheme

is proposed in [12], but this search is computationally prohibited. Moreover, Gray

Constellation Design With Deep Learning for Down Link Non-Orthogonal
Multiple Access
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mapping technique that proved to be highly efficient in case of traditional schemes,

also proved to be efficient with NOMA when receiver decode based on maximum

likelihood (ML) method [13].

1.4 Proposed Approach

The optimal constellation scheme for NOMA requires the search over individual

constellation schemes, power allocation factors, and angle of rotation. Most of

the publications, and approaches separately optimize over each requirement. This

paper purposed a novel approach that jointly optimizes these requirements for a

super constellation scheme using the power of Deep Learning, specifically Autoen-

coders. The strengths of the purposed approach are listed below. It does not

require to implement SIC at each receiver. The constellation scheme’s optimiza-

tion does not need the analytical expression of the mutual information and prior

to the constellation’s geometry. The proposed solution can be used in combination

with turbo codes or Low-density Parity-Check codes (LDPC) and is fully compat-

ible with already deployed wireless schemes.

The encoder part of an autoencoder learns to map data bits intended for all users

to symbols, where the decoder part of each user learns to recover data bits for the

corresponding user.

Constellation Design With Deep Learning for Down Link Non-Orthogonal
Multiple Access
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Chapter 2

Methodology

2.1 General Block Diagram

Figure 2.1: General Block Diagram

.

The Fig2.1 is a general block diagram for the two users. For the sake of simplicity,

we start with two users, but the approach can be easily extended to more number

of users. Let ’k1’ and ’k2’ are the numbers of bits per symbol for user 1 and

user 2, respectively. First, we concatenate data bits intended for both users, and

this vector of size k = k1 + k2 is the input vector of our encoder. The total

number of constellation points are 2k = 2k1 ∗ 2k2, because 2k1 is the number of
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possible bits sequence for user 1, and 2k2 is the number of possible bits sequence

for user 2. Then encoder maps this data vector onto the symbol (or constellation

point), where symbol belongs to the complex domain, have both real and imaginary

components. So the encoder’s output are two values: one corresponds to the real

part and the other corresponds to the imaginary part of the symbol. Then to

add the power constraint of the transmitter, we add a layer that normalizes the

energy in the symbol. To depict the transmission of data from the base station

to the user, we add Additive White Gaussian Layer (AWGN) channel layer that

randomly applies the noise over the symbol. The channel for each receiver is

different because two receivers are at different locations, so the path distance and

disturbances are different for each user. Then the decoder of each user recover bits

intended for them from the received noisy symbol. ’z1’ and ’z2’ are the decoded

bits by user1 and user 2, respectively.

2.2 Deep Learning Architecture

2.2.1 Encoder

The task of the encoder is to map each bit sequence to a unique symbol (or

constellation point), which can be carried out by the linear operation. So, the

paper proposed a single layer with a linear activation function, whose input is of

size ’k’ and output is of length ’2’. Then apply the normalization layer just to

include the power constraint of the base station.

2.2.2 Decoder

The paper under consideration [1] proposed three layer network for each receiver,

where first, second, and third layer have 128, 64, and 32 neurons, respectively.

Each layer has a relu activation. The output layer of each decoder depends on the

bits per symbol of the corresponding user and have a sigmoid activation function

just to limit output between 0 and 1.

2.2.3 Loss Function

An autoencoder is trained to minimize cross-entropy loss

L[x, z] = −
∑
j

xjlog2zj + (1 − xj)log2(1 − zj)

Where xjandzj are the transmitted and recovered bit respectively.

In this problem, we try to recover the exact bits that are transmitted. So, our

Constellation Design With Deep Learning for Down Link Non-Orthogonal
Multiple Access
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problem is reduces to binary classification problem, and cross-entropy loss is effi-

cient for this problem.

Figure 2.2: Deep Learning Architecture

.

2.3 Training

The stochastic gradient descent (SGD) is used with learning rate λ = 0.1 for

training. The batch size is 2k, which contains all possible input bit sequences

at the transmitter end. Then the neural network is trained for 50,000 epochs.

Usually, by training network for a large number of epochs brings the problem of

overfitting. However, this is not the case here because we already have complete

information about all possible inputs.

2.4 Extension To More Users

The network discussed above for two users can be easily extended to more users.

The encoder part remains the same, only the input of encoder becomes equal to

the sum of bits per symbol of each user as we have discussed that each receiver has

a separate decoder. So each additional user adds the additional parallel decoder.

Constellation Design With Deep Learning for Down Link Non-Orthogonal
Multiple Access
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This exponentially increases the complexity of the network as well as the opti-

mization time. The number of epochs requires to find the optimal constellation

scheme dramatically increases with each additional user.

Constellation Design With Deep Learning for Down Link Non-Orthogonal
Multiple Access
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Chapter 3

Simulation Results

Deep Learning based constellation design approach proposed in the paper under

consideration [1] is implemented in python notebook to replicate the results of the

paper. Synthetic data is generated using the NumPy library, and Keras is used

to build the autoencoder model, which is then trained for 20,000 epochs. The

constellation schemes learned by this model for users transmitting simultaneously

at the various bits per symbol are attached below.

3.1 User 1 = 1bps and User 2 = 1bps

Figure 3.1: Constellation diagram for user 1 = 1bps and user 2 = 1bps
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The Fig3.1 is the Constellation diagram learned by the model for two users. Both

User 1 and User 2 are transmitting at 1 bit per symbol (bps). Here k1 = 1, and

k2 = 1 so the total number of constellation points must be 2k1+k2 = 4 to uniquely

represent each possible bit sequence. The learnt sequence is very much like the

QPSK scheme, but model also optimize over angle of rotation. Because unlike

traditional approaches, model jointly optimize over constellation scheme as well

as spatial diversity.

3.2 User 1 = 2bps and User 2 = 1bps

Figure 3.2: Constellation diagram for user 1 = 2bps and user 2 = 1bps

The Fig3.2 is the Constellation diagram learned by the model for two users. Where

User 1 is transmitting at 2 bps, and User 2 is transmitting at 1 bps. Here k1 =

2, and k2 = 1 so the total number of constellation points must be 2k1+k2 = 8 to

uniquely represent each possible bit sequence. The learnt sequence is very much

like the superposition of BPSK and QPSK schemes, only it rotated around 45o.

This is the power of deep learning model rather than just selecting the optimized

constellation scheme, model also tries to optimize over power allocation policy,

and also exploit the spatial diversity in finding the super-constellation scheme for

transmission.

Constellation Design With Deep Learning for Down Link Non-Orthogonal
Multiple Access

9



Figure 3.3: Constellation diagram (user 1 = 2bps and user 2 = 2bps)

3.3 User 1 = 2bps and User 2 = 2bps

The Fig3.3 is the Constellation diagram learned by the model for two users. Where

User 1 is transmitting at 2 bps, and User 2 is transmitting at 2 bps. Here k1 =

2, and k2 = 2 so the total number of constellation points must be 2k1+k2 = 16 to

uniquely represent each possible bit sequence. The learnt sequence is very much

like the superposition of two QPSK schemes, only it is slightly rotated around

−30o. Like previous optimized constellation schemes by model, this constellation

scheme also exploit the spatial diversity in finding the super constellation scheme.

3.4 User 1 = 3bps and User 2 = 1bps

The Fig3.4 is the Constellation diagram learned by the model for two users. Where

User 1 is transmitting at 3 bps, and User 2 is transmitting at 1 bps. Here k1 =

3, and k2 = 1 so the total number of constellation points must be 2k1+k2 = 16 to

uniquely represent each possible bit sequence. The learnt sequence is very much

like the superposition of two QPSK schemes, only it is slightly rotated around 45o.

Constellation Design With Deep Learning for Down Link Non-Orthogonal
Multiple Access
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Figure 3.4: Constellation diagram (user 1 = 3bps and user 2 = 1bps)

3.5 User 1 = 3bps and User 2 = 2bps

Figure 3.5: Constellation diagram (user 1 = 3bps and user 2 = 2bps)

Constellation Design With Deep Learning for Down Link Non-Orthogonal
Multiple Access
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The Fig3.5 is the Constellation diagram learned by the model for two users. Where

User 1 is transmitting at 3 bps, and User 2 is transmitting at 2 bps. Here k1 =

3, and k2 = 2 so the total number of constellation points must be 2k1+k2 = 32 to

uniquely represent each possible bit sequence. The learnt sequence is very much

like the superposition of two QPSK schemes and a BPSK scheme. In optimiz-

ing constellation scheme, model exploited the spatial diversity and constellation

scheme, in this way that each block of four constellation points has different angle

of rotation.

Now, after viewing the super-constellation schemes generated by the proposed

auto-encoder model, you can notice that generated schemes are very much similar

to the off-the-shelf schemes that are used in practical communication systems. The

deep learning model generated all these similar schemes without any prior infor-

mation about the present scheme. Moreover, the model also exploits the spatial

diversity in the form of the angle of rotation, and distance from the zero.

3.6 Bit Error Rate Analysis

To check the validity of the optimized schemes through the proposed model, and

to compare our results with the paper under consideration [1], I have plotted the

Bit Error Rate (BER) vs SNR graph for each scheme.

Figure 3.6: BER Curve

Constellation Design With Deep Learning for Down Link Non-Orthogonal
Multiple Access
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The Fig3.6 is the BER vs. SNR plot. For this figure, I have randomly picked

20,000 test bit sequences and then passed through the encoder to get their symbol

representation, which is in accordance with the generated constellation diagram.

After that, to depict the transmission from the base station to the user, I apply

the AWGN channel separately for each user. In this testing, user 1 is considered a

high SNR user, and user 2 as a low SNR user. The difference between their SNRs

is 9dB. Some key observations from the graph are (1) BER curve for user 1 (high

SNR) is always less than the user 2 (low SNR). (2) BER curve shifted upwards by

increasing the number of bits per symbol for both users, which is also true in the

case of the practical systems. The BER exponentially decreases with the increase

in SNR and becomes almost negligible at around SNR of 23 dBs. However, this

depends on the hyperparameter, the channel SNR we use at the time of training,

and the number of epochs. However, the BER curve trend validates that the

approach proposed in this paper indeed provides promising results.

The generated constellation schemes and BER curves are very similar to those

provided in the paper [1] following for the project.

Constellation Design With Deep Learning for Down Link Non-Orthogonal
Multiple Access
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Chapter 4

Project Implementation

4.1 Conclusion

The validity of the proposed deep learning based constellation design for non-

orthogonal multiple access (NOMA) has established in this article. Auto-encoder

trains to jointly optimize over constellation schemes, spatial diversity, and power

allocation policy, rather than optimizing over them individually. There is no need

for analytical expressions for bit error rates, and computationally expensive search

to maximize mutual information. The scheme also encompasses all possible users

configuration, because it does not assume any information about the position of

users with in the cell. The generated super-constellation schemes can be readily

integrated in the practical communication systems. Moreover, scheme can also be

joined with the off-the-shelf error correction techniques such as turbo codes, and

LDPC.

4.2 Future Recommendation

Train encoder and decoder model of the network on real life data. This article

optimized their deep learning model using synthetic data. Implement Encoder

and Decoder on two separate machines and then set up a communication link

between them with the help of Software Define Radios (Radios) such as USRPs.

In this way, model trains over actual wireless channel, and able to observe real life

channel impairments. This application provides more robust and more generalized

encoder and decoder model than the proposed approach for the practical wireless

communication.

Optimization of an auto-encoder model by including path loss models and assum-

ing various channel fading such as Rayleigh, and Nakagami fading. The proposed

article works with the most basic AWGN channel. The practical channel is not

14



that simple, channel have some kind of delay spread, have some Doppler profile,

and shadow fading. To develop a model that works in real world, training must

incorporate these characteristics during optimization.

Application in the domain of data compression. In this article, we observe that the

encoder maps bits to symbol, where number of bits can be greater than 2, where

size of a symbol is 2. Decoder able to recover the mapped bits from the symbol

even after the addition of noise. This system can be easily used in the application

of data compression where encoder is trained to map bits into some latent space

whose vector size is less than the number of bits for the purpose of compression,

and decoder is trained to recover the data from the latent space. Same model

provided in this article does not able to fulfil this compression, but the simulation

results have shown some validity in this approach. Research have to be conducted

to find the efficient encoder and decoder structure, and optimal loss function.

Constellation Design With Deep Learning for Down Link Non-Orthogonal
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