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This document provides additional information for the submission: a reference for notation, the
Dirichlet process mixture models sampling (DPMM) with a Gaussian base distribution, and the
procedure for generating synthetic data (including examples of generated and reconstructed trees).

1 Review of Notation

n the number of observations
m the total number of coalescent events
ti the time when the ith coalescent event happens
ni the number of nodes at time ti
δi the time duration between ti and ti−1, and ti = ti−1 − δi
π a tree structure
λkn the rate at which k out of n nodes merge into a parent node
λn the total rate of any children set merging of n nodes
γ a fraction of nodes coalescing
Λ(dγ) a finite measure on [0, 1]
α the parameter of beta distribution
ρi a node
ρ~ci a set of children nodes of node ρi
|ρ~ci | the size of children set ρ~ci
x the data observations
yi the feature vector associated with node ρi
p0(yi) the initial distribution of node ρi with feature yi
κtitb(yi, yb) the transition kernel from node feature yi formed at ti to node feature yb formed at tb
µ the mutation rate
Mρi(yi) the message of node ρi with node feature yi
Zρi the local normalizer at node ρi
Z−∞ the normalizer at −∞
θi the subtree structure of all observations at time ti
s the particle index
wsi the weight of particle s at time ti
f the proposal distribution
Z0 the normalizer of local normalizers Zρi
Ωi a restricted set of children sets at time ti
ωij the jth children set of Ωi, also a subset of the ni−1 nodes that could coalesced at event i
β the concentration parameter of Dirichlet process
G0 the base distribution of Dirichlet process
G a distribution over mixtures drawn from a Dirichlet process: G ∼ DP(β,G0)

ui the ith mixture component of Dirichlet process mixture models
Λ the covariance matrix of Brownian Diffusion
I the identity matrix
I the indicator
N the Gaussian distribution
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2 DPMM with Gaussian Base Distribution

This section reviews how we select the restriction set Ωi by Dirichlet process mixture models (DPMM).

Given the Brownian diffusion kernel, a natural choice for the base distribution of the DP in the DPMM
is a Gaussian. We review Gibbs sampling for this model [1], which provides distributions over
partitions that become the restriction set.

We initialize partitions randomly and then repeatedly resample which partition each node is in. This
is possible through the exchangeablility of the Dirichlet process.

Let xn be the current node and x−n all other nodes, zn the current node’s cluster assignment, z−n all
other nodes’ cluster assignments, nk is the number of nodes assigned to cluster k, and N is the total
number of observations. As before, β is the Dirichlet process concentration parameter. We assume
that the base distribution G0 is a Gaussian distribution with mean µ0 and covariance Σ0 and that each
cluster has known covariance Σk, thus the conditional distribution is

p(zn = k|z−n,x, µ, β) =

{
nkN (xn;µ̂k,Σ̂k)

β+N−1 k is old
βN (xn;µ̂k,Σ̂k)

β+N−1 k is new,
(1)

where

µ̂k =
µ0Σ−1

0 +
∑
i 6=n I [zi = k]xi · Σ−1

k

Σ−1
0 +

∑
i 6=n I [zi = k] · Σ−1

k

, Σ̂k =
1 + Σ−1

0 Σk +
∑
i 6=n I [zi = k]

Σ−1
0 +

∑
i6=n I [zi = k] · Σ−1

k

This is also called the infinite Gaussian mixture model (IGMM) [2], which clusters nodes with similar
feature values, providing useful candidates for the coalescent to merge.

3 Generating Synthetic Data

To test how well the different methods capture hierarchical data, we generate synthetic hierarchical
data with a known structure and test whether our model can recover the hierarchy. According to
Berestycki [3], given ni−1 nodes at time ti−1 and ti = ti−1 − δi, the expected number of nodes that
merge at time ti is

1 + δi

(
ni−1∑
ki=2

(ki − 1)
(ni−1

ki

)
λkini−1

)
. (2)

Therefore we start with n0 nodes, sample a duration time δi, and compute the expected number of
nodes to be merged at time ti; we then merge that number of nodes and repeat until there is only one
node.

Next we generate the features for nodes from a Gaussian kernel. We start with the root node as a
multivariate Gaussian distribution N (µ0,Σ0), where the mean µ0 = (0, · · · , 0) and Σ0 = ρ0I (I
is the identity matrix). For each child, we sample the feature vector yc from the parent Gaussian
N (yp,Σp), and set Σc = 1

nρpI. In this experiment, we generate the data with parameter ρ0 = 10.
Labels are assigned based on the root’s children; each subtree rooted at a child of the root receives
the same label. This class label is used to calculate the metrics defined above.

4 Synthetic Trees

This section compares the constructed synthetic trees of Beta coalescent and Kingman’s coalescent
with the true synthetic trees. For all the following trees, the square nodes are the observed leaf nodes,
and the circle nodes are the detected hidden internal nodes.
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4.1 Tree1: n = 20

• True synthetic tree

n29

n27 n28

n23 n24 n25 n26

n10 n11 n12 n13 n14 n15 n16 n17 n18 n19 n20 n21 n22

n0 n1 n2 n3 n4 n5 n6 n7 n8 n9

• Constructed tree from Beta coalescent

n29

n20 n28

n17 n18 n19 n26 n27

n24 n25 n10 n11 n12 n13 n14 n23

n21 n22 n0 n1 n2 n3 n4 n5 n15 n16

n8 n9 n6 n7

• Constructed tree from Kingman’s coalescent

n38

n29 n37

n17 n21 n34 n36

n18 n19 n33 n30 n35 n28

n27 n23 n8 n9 n32 n31 n16 n15

n1 n25 n6 n7 n26 n11 n10 n13

n0 n24 n12 n14

n3 n22

n2 n20

n4 n5
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4.2 Tree2: n = 20

• True synthetic tree

n29

n27 n28

n19 n20 n21 n22 n23 n24 n25 n26

n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15 n16 n17 n18

• Constructed tree from Beta coalescent

n33

n31 n32

n20 n30 n25 n27

n6 n7 n26 n29 n4 n21 n0 n1 n2 n19

n10 n11 n12 n13 n22 n28 n3 n5

n8 n9 n23 n24

n14 n15 n16 n17 n18

• Constructed tree from Kingman’s coalescent

n38

n36 n37

n35 n23 n32 n31

n34 n29 n6 n7 n0 n30 n24 n4

n33 n26 n25 n11 n2 n28 n3 n5

n27 n21 n8 n9 n10 n22 n1 n19

n17 n18 n20 n14 n12 n13

n16 n15
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4.3 Tree3: n = 20

• True synthetic tree

n28

n25 n26 n27

n14 n15 n16 n17 n18 n19 n20 n21 n22 n23 n24

n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13

• Constructed tree from Beta coalescent

n31

n28 n30

n20 n26 n25 n29

n4 n5 n0 n1 n2 n3 n19 n22 n24 n21 n27

n16 n17 n18 n23 n12 n13 n6 n7 n8 n9 n10 n11

n14 n15

• Constructed tree from Kingman’s coalescent

n38

n35 n37

n33 n20 n34 n36

n19 n28 n4 n5 n30 n31 n32 n27

n21 n23 n16 n17 n18 n26 n25 n29 n12 n13

n0 n3 n1 n2 n14 n15 n8 n24 n10 n11

n22 n7

n9 n6
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4.4 Tree4: n = 40

• True synthetic tree

n50

n46
n47

n48

n49

n32

n33 n34 n35

n36 n37 n38 n39

n40
n41 n42

n43

n44

n45

n0 n1 n2 n3 n4 n5 n6 n7

n8 n9

n10 n11 n12 n13

n14

n15 n16 n17 n18 n19 n20 n21 n22 n23

n24 n25 n26 n27

n28 n29 n30 n31

• Constructed tree from Beta coalescent

n52

n48
n51

n8 n9 n10

n11 n12 n13

n14
n42

n44

n47 n50

n0

n1 n2 n3 n4 n5

n6 n7

n15 n16

n17 n18 n19 n20 n21

n22 n23

n40

n46

n45
n49n24

n25

n26 n27

n28 n29 n43

n32

n33 n34 n35 n38 n41

n30 n31

n36 n37 n39

• Constructed tree from Kingman’s coalescent

n78

n74 n77

n65 n70 n73 n76

n24 n57 n28 n63 n69 n71 n72 n75

n25 n53 n29 n47 n61 n62 n40 n59 n32 n68 n67 n38

n26 n27 n30 n31 n51 n60 n18 n58 n8 n9 n49 n10 n64 n34 n66 n39

n43 n5 n56 n6 n45 n55 n42 n46 n33 n35 n36 n37

n0 n2 n52 n4 n16 n15 n20 n54 n12 n14 n11 n13

n48 n3 n50 n21

n1 n7 n17 n44

n41 n22

n19 n23
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4.5 Tree5: n = 40

• True synthetic tree

n53

n51
n52

n40

n41

n42 n43 n44

n45

n46 n47

n48

n49

n50n0

n1 n2 n3 n4 n5

n6

n7

n8 n9 n10

n11

n12 n13 n14 n15 n16 n17 n18 n19 n20

n21 n22 n23 n24

n25 n26 n27 n28 n29 n30

n31 n32

n33 n34 n35 n36

n37 n38 n39

• Constructed tree from Beta coalescent

n57

n54 n56

n49 n50 n52
n55

n37 n45 n35 n48 n42

n46

n51

n53

n38 n39 n36 n44 n17 n18 n19 n20

n11 n12 n13

n0

n1

n2

n3 n4 n5 n6 n14 n15

n16

n31 n32
n40 n43

n41 n47

n33 n34

n25 n26 n27 n7 n8 n9 n10

n28

n29 n30

n21 n22

n23

n24

• Constructed tree from Kingman’s coalescent

n78

n76 n77

n70 n71 n73 n75

n65 n37 n66 n35 n60 n54 n72 n74

n38 n39 n64 n36 n28 n53 n50 n52 n56 n68 n69 n63

n33 n34 n29 n30 n21 n22 n24 n23 n8 n44 n67 n43 n49 n59 n58 n12

n40 n10 n57 n62 n32 n31 n48 n19 n27 n46 n11 n13

n9 n7 n3 n55 n61 n15 n42 n20 n25 n26

n51 n47 n16 n14 n17 n18

n1 n4 n5 n45

n41 n2

n0 n6
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