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Linear Regression
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Data are the set of inputs and outputs, D = {(x;, yi)}1_;
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Linear Regression

In linear regression, the goal is to predict y from x using a linear
function

Jordan Boyd-Graber |  Boulder Regression |



Linear Regression

Examples of linear regression:
given a child's age and gender, what is his/her height?

given unemployment, inflation, number of wars, and economic
growth, what will the president’s approval rating be?

given a browsing history, how long will a user stay on a page?
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Linear Regression
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Multiple Covariates

Often, we have a vector of inputs where each represents a different
feature of the data

x=(x1,...,Xp)
The function fitted to the response is a linear combination of the
covariates

P
Fx) = Bo+ > B

j=1
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Multiple Covariates

Often, it is convenient to represent x as (1,x,...,Xp)

In this case x is a vector, and so is 3 (we'll represent them in bold
face)

This is the dot product between these two vectors

This then becomes a sum (this should be familiar!)

p
Bx=Bo+ Y _ Bix

j=1
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Hyperplanes: Linear Functions in Multiple Dimensions
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Covariates

Do not need to be raw value of x1, xo, ...
Can be any feature or function of the data:
Transformations like xo = log(x1) or x2 = cos(xy)
Basis expansions like x, = x12, X3 = x13, X4 = xf, etc
Indicators of events like xo = 11 1<, <1}
Interactions between variables like x3 = x3x7
Because of its simplicity and flexibility, it is one of the most widely
implemented regression techniques
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Plan

Fitting a Regression
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Fitting a Linear Regression

Idea: minimize the Euclidean distance between data and fitted line
1 n
RSS(B) = = > (vi — Bxi)?

24
i=1
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How to Find 3

Use calculus to find the value of 8 that minimizes the RSS
The optimal value is
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Prediction

After finding /3, we would like to predict an output value for a new
set of covariates
We just find the point on the line that corresponds to the new

input:
¥ = Bo+ Pix (1)
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Prediction

After finding B we would like to predict an output value for a new
set of covariates
We just find the point on the line that corresponds to the new

input:
y=1.0+0.5x (1)
A P ¢
O /O
OO0 0
Q”
y=1.0 + 0.5x ‘/o/ o
~” | ©

~ >
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Prediction

After finding B we would like to predict an output value for a new
set of covariates
We just find the point on the line that corresponds to the new

input:
y=10+05%5 (1)
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x=5.0
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Prediction

After finding B we would like to predict an output value for a new
set of covariates
We just find the point on the line that corresponds to the new

input:
y =35 (1)
A P
©° %

OO0 0
Q”

y=1.0 + 0.5x ‘/o/ o

g O
” >

x=5.0
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Probabilistic Interpretation

Our analysis so far has not included any probabilities

Linear regression does have a probabilisitc (probability
model-based) interpretation
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Probabilistic Interpretation

Linear regression assumes that response values have a Gaussian
distribution around the linear mean function,

Yi|xi, B ~ N(x;3,0°)

This is a discriminative model. where inputs x are not modeled
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Minimizing RSS is equivalent to maximizing conditional likelihood
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Example
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Example: Old Faithful
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Example: Old Faithful

We will predict the time that we will have to wait to see the next
eruption given the duration of the current eruption

90
I

Waiting Time (min)
70
L

50
I

15 20 25 3.0 35 4.0 45 5.0

Current Eruption Time (min)

Jordan Boyd-Graber Regression | 18 of 34



Example: Old Faithful

We can plot our data and make a function for new predictions

> # Plot a line on the data
> abline(fit.lm,col="red",lwd=3)
>
> # Make a function for prediction
> fit.lm$coefficients[1]
(Intercept)
33.4744

> fit.lm$coefficients[2]
eruptions

10.72964

> faithful.fit <- function(x) fit.lm$coefficients[1] +
fit.1lm$coefficients[2] *x

> x.pred <- c(2.0, 2.7, 3.8, 4.9)

> faithful.fit(x.pred)

[1] 54.93368 62.44443 74.24703 86.04964
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Example: Old Faithful

Waiting Time (min)
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Regularized Regression
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Multivariate Linear Regression

Example: p =1, have 2 points

-10 -05 00 05 10 -10 -05 00 05 10

Have p + 1 or fewer points, line hits all (or p with mean 0 data)
> p+1 (but still close to that number), line goes close to all points
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Noise, Bias, Variance Tradeoff

Noise: Lower bound on
performance

Total Error

Bias: Error as a result as
choosing the wrong model

Variance

Optimurm Model Complexity

Error

Variance: Variation due to
training sample and
randomization

Model Complexity
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Noise, Bias, Variance Tradeoff

Noise: Lower bound on
performance

Total Error

Bias: Error as a result as
choosing the wrong model

Variance

Optimurm Model Complexity

Error

Variance: Variation due to
training sample and
randomization

Model Complexity

No model is perfect

More complex models are more susceptible to errors due to variance
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Multivariate Linear Regression

Why linear regression:
has few parameters to estimate (p)
really restrictive model-low variance, higher bias

S
>

BIAS high
@D

low

V& S
S ow VARIANCE Tigh ~

should be good for data with few observations, large number of
covariates. ..
... but we can’t use it in this situation
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Multivariate Linear Regression

Idea: if we have a large number of covariates compared to
observations, say n < 2p, best to estimate most coefficients as 0!

not enough info to determine all coefficients
try to estimate ones with strong signal

set everything else to 0 (or close)

Coefficients of 0 may not be a bad assumption...

If we have 1,000s of coefficients, are they all equally important?
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Gene Expression

Example: microarray gene expression data

gene expression: want to measure the level at which information in
a gene is used in the synthesis of a functional gene product
(usually protein)

can use gene expression data to determine subtype of cancer (e.g.
which type of Lymphoma B?) or predict recurrence, survival time,
etc

problem: thousands of genes, hundreds of patients, p > n!

Intuition: only a handful of genes should affect outcomes
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Gene Expression

gene expression levels are continuous values

data: observation / is gene expression levels from patient 7,
attached to outcome for patient (survival time)

covariates: expression levels for p genes
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Gene Expression

collinearity: does it matter which gene is selected for prediction?
No!

overfitting: now fitting p’ non-0 coefficients to n observations with
p’ << n means less fitting of noise
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Regularized Linear Regression

Regularization:
still minimize the RSS

place a penalty on large values for (31, ..., Bp (why not p? can
always easily estimate mean)

add this penalty to the objective function

solve for f3!

New objective function:

n

. 1 P
B =arg mBin 5 Z (yi — x,ﬂ)2 + A Z penalty(5;)

i=1 j=1

A acts as a weight on penalty: low values mean few coefficients near
0, high values mean many coefficients near 0
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Regularized Linear Regression

Regularization: what is a good penalty function?
Same as penalties used to fit errors:
Ridge regression (squared penalty):

. 18 P
Ridge __ : L v.2)2 2
price —argmﬁlnEE (vi = xiB)> + XD B

i—1 j=1
Lasso regression (absolute value penalty):

n

~ 1 £
Lasso __ : v 3)2 :
¢ = argmin 5 g (vi =xiB)" + A E |51

i=1 j=1
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Comparing Ridge and Lasso

Ridge Lasso
Objective | 337, (vi —xiB) + AL o8} | 320, (v —xiB) + A7 18]
Estimator (XTX + )xl)i1 XTy not closed form
Coefficients most close to 0 most exactly 0
Stability robust to changes in X, y not robust to changes in X, y

Regularized linear regression is fantastic for low signal datasets or
those with p >> n

Ridge: good when many coefficients affect value but not large
(gene expression)

Lasso: good when you want an interpretable estimator
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Choosing \

Both Ridge and Lasso have a tunable parameter, A

use cross validation to find best A

n

o . 2
A= [ E (i_ iB—i )
argm}ln Vi — XiB_ix

i=1

try out many values

see how well it works on “development” data
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Wrapup
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Regression

Workhorse technique of data analysis
Fundamental tool that we saw before ( “Logistic Regression™)

Important to understand interpretation of regression parameters
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