
ABSTRACT

Title of dissertation: EFFICIENT DATA-OBLIVIOUS
COMPUTATION

Kartik Nayak
Doctor of Philosophy, 2018

Dissertation directed by: Professor Jonathan Katz, Professor Elaine Shi
Department of Computer Science

The rapid increase in the amount of data stored by cloud servers has resulted

in growing privacy concerns for users. First, although keeping data encrypted at

all times is an attractive approach to privacy, encryption may preclude mining and

learning useful patterns from data. Second, companies are unable to distribute

proprietary programs to other parties without risking the loss of their private code

when those programs are reverse engineered. A challenge underlying both those

problems is that how data is accessed – even when that data is encrypted – can leak

secret information.

Oblivious RAM is a well studied cryptographic primitive that can be used to

solve the underlying challenge of hiding data-access patterns. In this dissertation,

we improve Oblivious RAMs and oblivious algorithms asymptotically. We then show

how to apply our novel oblivious algorithms to build systems that enable privacy-

preserving computation on encrypted data and program obfuscation.

Specifically, the first part of this dissertation shows two efficient Oblivious

RAM algorithms: 1) The first algorithm achieves sub-logarithmic bandwidth blowup

while only incurring an inexpensive XOR computation for performing Private Infor-

mation Retrieval operations, and 2) The second algorithm is the first perfectly-

secure Oblivious Parallel RAM with O(log3N) bandwidth blowup, O((logm +

log logN) logN) depth blowup, and O(1) space blowup when the PRAM has m

CPUs and stores N blocks of data. The second part of this dissertation describes

two systems – HOP and GraphSC – that address the problem of computing on

private data and the distribution of proprietary programs. HOP is a system that

achieves simulation-secure obfuscation of RAM programs assuming secure hard-

ware. It is the first prototype implementation of a provably secure virtual black-box

(VBB) obfuscation scheme in any model under any assumptions. GraphSC is a

system that allows cloud servers to run a class of data-mining and machine-learning

algorithms over users’ data without learning anything about that data. GraphSC

brings efficient, parallel secure computation to programmers by allowing them to

express computation tasks using the GraphLab abstraction. It is backed by the first

non-trivial parallel oblivious algorithms that outperform generic Oblivious RAMs.

EFFICIENT DATA-OBLIVIOUS COMPUTATION

by

Kartik Nayak

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2018

Advisory Committee:
Professor Jonathan Katz, Chair/Advisor
Professor Elaine Shi, Co-Chair/Co-Advisor
Professor Michael Hicks
Professor Charalampos Papamanthou
Professor Lawrence Washington

c© Copyright by
Kartik Nayak

2018

Acknowledgments

First, I would like to thank my advisors Jonathan Katz and Elaine Shi for
their constant guidance and support throughout my Ph.D. I started working with
Jon when it was perhaps the most difficult phase for me as a graduate student.
But he always showed faith in my ability and supported me throughout. Jon has
always been kind, fair, forgiving, and just an amazing person to interact with.
When discussing a research problem or a proposed solution with him, he would
pause for a few seconds and then bombard me with questions and alternatives that
seem entirely unrelated. Over time I realized that he would use those few seconds
to navigate through the giant web of research that has happened in the last few
decades to ensure that I do not reinvent the wheel as also incorporate those ideas
to improve results. His ability to present difficult topics lucidly during research
discussions and teaching is something that I am still trying to learn.

Elaine’s enthusiasm and passion has constantly encouraged me to do high-
quality research. I spent most of my time as a graduate student working together
with her. She taught me to relentlessly work on research problems and also to
present effectively at conferences, both of which I had no clue about when I started
my Ph.D. Over the years, she introduced me to an amazing set of collaborators,
which added a lot of perspective to the way I thought about research problems.
Her positive energy was instrumental during my entire job search process. I will
always remember discussing research problems with her in coffee shops (in College
Park, Ithaca, Boston, Bay area, and other places), many skype discussions turned
interesting results that started late in the night, and also some skype discussions
that went on for 3-4 hours trying to arrive at a result.

I am very grateful to Professor Rajiv Gandhi without whom I would not have
even considered doing a Ph.D. He believed in my ability to do a Ph.D. long before
I knew what research was about!

I spent four summers doing four different internships. My mentors – Stratis,
Nina, Udi, Vipul, Nishanth, Satya, Dahlia, Ittai, Manuel, Olya, and Felix, have all
been very generous with their advice. Working in an area of research complementary
to theirs helped me learn new ways and approaches to my work. I would like
to especially thank Dahlia and Ittai for introducing me to the area of distributed
computing and blockchains – their enthusiasm was contagious and helped me learn
a lot. I got the opportunity to work with Tudor to write my first research paper. I
am thankful for everything that I learnt from him during this period; his invaluable
advice about a lot of aspects throughout my Ph.D. has helped me. I am grateful to
Mike and Jeff for their support through difficult times in the last five years. I am
also grateful to Mike, Babis, and Larry for serving on my dissertation committee.

I am thankful to fellow student collaborators: Chris - specifically for his men-
torship in HOP, Ling - for showing how one should question every assumption and
explore every option, and Xiao - his ingenious way of connecting different results
and coming up with new ones never ceased to amaze me. I shared my office space
MC2 with a wonderful group of colleagues and friends!

ii

Endless discussions on arbitrary topics with my flatmates – Amit, Bhaskar,
Manish, Rama, and Anshul made living at home enjoyable. Chai-pe-charcha and
dinner-time discussions was something that I always looked forward to at home,
better known as 5002. My friends – Sudha, Manaswi, Soham, Pallabi, Meethu, and
many others made weekend outings and festivals a lot more memorable.

Finally, I would like to thank my parents, Ravidas and Ranjeetha, my sister,
Roopa, and my fiancée, Amritha, who have been an endless source of love and
understanding throughout this period. Words cannot express the gratitude I owe
them.

iii

Table of Contents

Acknowledgments ii

1 Introduction 1
1.1 Protecting Memory Access Patterns via an Oblivious RAM 3
1.2 A Short Literature Survey . 8
1.3 Outline of the Dissertation . 11

1.3.1 An Oblivious RAM with a Sub-logarithmic Bandwidth Blowup 11
1.3.2 A Perfectly Secure Oblivious Parallel RAM 12
1.3.3 Executing Obfuscated Programs using HOP 12
1.3.4 Parallel Secure Computation for Graph-parallel Algorithms . . 13

2 Definitions and Preliminaries 15
2.1 Parallel Random-Access Machines . 15
2.2 Oblivious Parallel Random-Access Machines 18
2.3 Private Information Retrieval Protocols 22

3 Asymptotically Tight Bounds for Composing ORAM with PIR 25
3.1 Tree-based ORAM . 30
3.2 Main Construction . 32
3.3 Analysis . 39

3.3.1 Overflow Analsysis . 39
3.3.2 Security Analysis . 42
3.3.3 Reducing Client Storage . 42
3.3.4 Bandwidth Analysis . 45

3.4 Extending the Goldreich-Ostrovsky Lower Bound 47
3.4.1 Original Lower Bound . 48
3.4.2 Augmented Lower Bound (after adding PIR) 50
3.4.3 Discussion . 52

3.5 Related Work . 54
3.6 Conclusion, Subsequent Work, and Open Problems 57

iv

4 Perfectly Secure Oblivious RAM 58
4.1 Technical Roadmap . 62

4.1.1 Simplified Perfectly Secure ORAM with Asymptotically Smaller
Space . 62

4.1.2 Building Blocks . 69
4.2 Parallel One-Time Oblivious Memory 72

4.2.1 Definition: One-Time Oblivious Memory 73
4.2.1.1 Formal Definition . 74

4.2.2 Construction . 77
4.2.2.1 Detailed Construction 78

4.3 OPRAM with O(log3N) Simulation Overhead 84
4.3.1 Position-Based OPRAM . 84

4.3.1.1 Data Structure . 85
4.3.1.2 Operations . 86

4.3.2 OPRAM Scheme from Position-Based OPRAM 92
4.3.2.1 Operations . 93

4.3.3 Analysis and Extensions . 97
4.3.3.1 Correctness and Obliviousness 98
4.3.3.2 Asymptotical Complexity 100

4.3.4 Extension: Results for Large Block Sizes 103
4.4 Related Work . 103
4.5 Conclusion and Future Work . 105

5 HOP: Hardware Makes Obfuscation Practical 107
5.1 Related Work . 113
5.2 Obfuscation from Trusted Hardware 117

5.2.1 Execution On-Chip . 118
5.2.2 Adding External Memory . 118
5.2.3 Adding Instruction Scheduling 120
5.2.4 Adding on-chip Scratchpad Memory 123
5.2.5 Adding context switching and stateless tokens 125

5.3 Formal Scheme . 128
5.3.1 Preliminaries . 128
5.3.2 FRAMobf : Modeling Obfuscation in UC 129
5.3.3 Scheme Description . 131
5.3.4 Proof of Security . 140

5.4 Implementation . 149
5.4.1 Modified RISC-V Processor and Scratchpad 149
5.4.2 ORAM Controller . 152
5.4.3 Encryption Units . 152

5.5 Evaluation . 154
5.5.1 Methodology . 154
5.5.2 Area Results . 155
5.5.3 Main Results . 155
5.5.4 Case Study: bzip2 . 158

v

5.5.5 Comparison with GhostRider [102] 158
5.5.6 Time for Context Switch . 159

5.6 Conclusion . 160

6 GraphSC: Parallel Secure Computation Made Easy 161
6.1 Related Work . 169
6.2 GraphSC . 172

6.2.1 Programming Abstraction . 173
6.2.2 Expressiveness . 175
6.2.3 Example: PageRank . 176
6.2.4 Parallelization and Challenges in Secure Implementation . . . 179

6.3 GraphSC Primitives as Efficient Parallel Oblivious Algorithms 180
6.3.1 Parallel Oblivious Algorithms: Definitions and Metrics 181
6.3.2 Single-Processor Oblivious Algorithm 182
6.3.3 Parallel Oblivious Algorithms for GraphSC 185
6.3.4 Practical Optimizations for Fixed Number of Processors . . . 191

6.4 From Parallel Oblivious Algorithms to Parallel Secure Computation . 193
6.5 Evaluation . 196

6.5.1 Application Scenarios . 196
6.5.2 Implementation . 198
6.5.3 Setup . 200
6.5.4 Evaluation Metrics . 200
6.5.5 Main Results . 204
6.5.6 Running at Scale . 208
6.5.7 Performance Profiling . 209
6.5.8 Amazon AWS Experiments 212
6.5.9 Summary of Main Results . 215

6.6 Conclusion . 216

7 Conclusion 217

Bibliography 218

vi

Chapter 1: Introduction

The rapid increase in the amount of data stored by cloud servers has resulted

in growing privacy concerns for users. Keeping data encrypted at all times is an

attractive approach to privacy; however, if this is done then cloud servers are unable

to derive the benefits of mining user data for large-scale trends. A complementary

problem is that of the distribution of proprietary programs. Presently, if a phar-

maceutical company outsources its proprietary genomic testing algorithm, it would

compromise its intellectual property. A challenge underlying both of these problems

is that how data is accessed – even when the data is encrypted – can have significant

privacy implications. For instance, even if we can operate on encrypted data, how

a program (say binary search) makes decisions based on this data, can reveal parts

of the input (the element searched for).

To allow mining on user data while still ensuring privacy from the cloud

provider, ideally, we would like to enable cloud servers to perform computations

on encrypted user data. While cryptographic primitives such as functional encryp-

tion [26] can achieve this in theory, such primitives are impractical. An alternative

is to leverage efficient multiparty computation [66,149] run by two servers who each

hold shares of user data such that they only learn an aggregate result and nothing

1

about individual user inputs. A key challenge here is to express the computation

efficiently such that the memory trace produced by the computation is input-data

independent.

In the first problem, the input to the program (i.e., user data) is hidden whereas

the program itself (e.g., a data-mining algorithm) is not. Protecting proprietary

software is the complementary problem where the program should remain hidden

but can be executed by a third party on inputs of its choice. This is generally

known as obfuscation. Although there has recently been theoretical progress on

software-only obfuscation, it is extremely inefficient in practice [98].

Finally, an issue that arises in both the above problems is that memory accesses

can leak information. For example, when a user accesses files stored in the cloud,

even when those files are encrypted, the memory locations accessed may reveal

information about when a particular file is being read. Similarly, when a program

accesses memory, the locations in memory being read can reveal information about

the internal workings of the program. Informally, data obliviousness means that the

physical memory locations accessed are independent of secret information (the total

number of accesses are still revealed).

Oblivious RAM (ORAM) introduced by Goldreich and Ostrovsky is a tech-

nique for making any RAM program data-oblivious [65,67]. In this dissertation, we

design efficient oblivious techniques and prototype systems to address the problems

of computing on encrypted data and protecting proprietary programs. Moreover,

we design novel Oblivious RAM algorithms that are efficient and secure.

In this chapter, we will first explain the problem addressed by an Oblivious

2

RAM and the high-level approach used in the seminal work of Goldreich and Ostro-

vsky (Section 1.1). We will present a survey of the relevant literature to explain the

different approaches used by subsequent works to strengthen the results by Goldreich

and Ostrovsky (Section 1.2). Finally, in Section 1.3, we will describe the high-level

results in this dissertation. Specifically: 1) our contributions on the design of ORAM

algorithms, and 2) our two prototype systems, HOP and GraphSC.

1.1 Protecting Memory Access Patterns via an Oblivious RAM

Oblivious RAM is a cryptographic primitive that hides a program’s access

patterns to sensitive data. The scenario envisioned by Goldreich and Ostrovsky

consisted of programs that are executed on a shielded CPU that is communicating

with untrusted memory. During this execution, an adversary observes the execution

and tries to learn about the program and its inputs. The shielded CPU has the

following characteristics: 1) it is assumed to have a small number of CPU registers

as trusted storage, 2) it is assumed to be tamper-proof, i.e., an adversary cannot

modify or observe the contents of the CPU registers, and 3) it stores a symmetric

secret key that is used to keep the program and data in the memory encrypted. The

contents of the memory itself are observable, although they are kept encrypted by

the CPU. Moreover, whenever a program is executed, in addition to the state of the

memory, the adversary can also observe the memory location that is being fetched

or written to.

Intuitively, given that the memory is always encrypted, the key information

3

available to the adversary is the memory locations that are accessed, whether the

access is a read or a write, the times at which these accesses are made, and potentially

some other side-channels such as heat dissipation, etc. Among these, an Oblivious

RAM answers the following question:

How can a CPU constrained to a few registers access memory without revealing

which memory location it wants to access?

1: if (secret)

2: read mem[x]

3: else

4: read mem[y]

5: . . .

Figure 1.1: Memory access pattern revealing secret variables

At first sight, one may ask – if an adversary is trying to learn information about

a program or its inputs, how does revealing the memory location help the adversary?

To understand this, let us consider a simple program shown in Figure 1.1. Suppose

the program itself is public and known to the adversary but input variable secret

should be hidden. Now, depending on the value of secret, the program accesses

either memory location x or memory location y. This clearly shows that access

patterns can reveal secrets from a program.

While the example in Figure 1.1 is simplistic, similar attacks have been used

in practice. Ohrimenko et al. [121] used network level access patterns during a

MapReduce job to infer sensitive data from an encrypted census dataset. Simplified

4

to the setting of a shielded CPU and an encrypted untrusted memory, their program

computed the frequency of a specific attribute, say, age of the population. This

attribute was stored on one array A: each entry of the array referred to a person in

the census database. The frequency of ages was computed on another array F : the

i-th entry in this array stored the number of people with age i. Initially, F stores

all 0s. To compute F , the program would scan through A and increment the data

stored at the appropriate index in F . While the scan through A is data-independent,

which index is accessed in F clearly reveals the age of a person. In effect, age is

analogous to the secret variable in our example from Figure 1.1, which is revealed

by the exact memory location accessed in F .

A generalization of the same idea from Figure 1.1 has also been used by Xu

et al. [148]. They use Intel Software Guard Extensions (Intel SGX) [45] as their

shielded CPU and could observe only page faults through an untrusted operating

system. One of the programs that they considered was used for JPEG decoding. In

the program, whenever a portion of the input image consisted of all zeroes (analo-

gous to the secret variable), the decoding algorithm would incur fewer page-faults

than otherwise (analogous to reading memory location x, vs. memory location y).

Thus, the number of page-faults effectively reveals a portion of the contents of the

encrypted image.

Although these attacks were discovered relatively recently, the theoretical

study of protecting access patterns started with the seminal work of Goldreich and

Ostrovsky and subsequently improved in a series of works over the last three decades.

Before explaining these results, we will make a short remark on the terminology used

5

in this and subsequent chapters. As explained earlier, a shielded CPU stores the

secret key and is trusted to observe the logical access pattern. The memory, on the

other hand, is always assumed to store encrypted data observable to the adversary.

Moreover, if the adversary has physical access to the data bus between the CPU and

memory, he/she can modify the data being passed to/from the memory. Thus, we

can also think of the memory as being stored by the adversary. Alternatively, one

can model the same idea in a cloud-outsourcing scenario where a client wishes to

outsource data blocks to an untrusted server (the cloud). Consequently, we will in-

terchangeably use the term ‘client’ to refer to the trusted CPU and the term ‘server’

to refer to an adversary storing the memory. Moreover, we also refer to the data

stored in a memory location as a memory block, or a data block, or simply, a block.

A näıve solution. As a näıve solution, a CPU that wants to read a memory

location addr could read all memory locations. It stores the contents of addr in one

of its registers and it ignores the contents of other memory locations. Writes to a

memory location are handled in a similar manner – read all memory locations and

rewrite the unmodified content back to each of the locations other than addr. For

memory location addr, write the content from the register. Recall that the adversary

only has access to the encrypted memory, but does not have the key to decrypt it.

So, assuming the encryption algorithm is secure, all that the adversary observes

is that all memory locations have been accessed. The different treatment of addr

happens within the processor and cannot be detected by the adversary. While this

solution works, the obvious downside to this approach is the number of memory

locations that are read for each memory location that needs to be accessed, a metric

6

that is also referred to as bandwidth blowup. In the näıve scheme, the bandwidth

blowup is O(N) when N memory locations are stored memory.

Algorithms like this näıve ORAM scheme, which on execution result in a

memory-access trace that is independent of input data, are called “data oblivious

algorithms.” An ORAM construction makes any RAM program data oblivious.

Intuitively, an ORAM construction is said to be secure if (i) for any two memory

access sequences ~y and ~z such that |~y| = |~z|, their access patterns A(~y) and A(~z)

are indistinguishable to anyone but the processor, and (ii) the ORAM construction

is correct in the sense that it returns on input ~y; output data that is consistent with

~y with all-but-negligible probability.

The seminal result. For any construction that does not scan the entire memory,

it turns out that the key ingredient to obliviousness is to shuffle memory locations

after one or more accesses. If the adversary does not know the permutation used for

shuffling, it will not be able correlate it to the input request sequence. Goldreich and

Ostrovsky used this idea in their ORAM construction. Their construction stores a

hierarchy of O(logN) levels that are geometrically increasing in size. Specifically,

level i is capable of storing 2i memory locations. One could think of this hierarchical

data structure as a hierarchy of caches where smaller levels act as stashes for larger

levels. Each level is individually permuted and a memory location can be looked

up using a pseudo-random function (PRF) whose secret key is only known to the

CPU but not the adversary. To access a memory location at logical address addr,

the CPU sequentially looks in every level of the hierarchy (from small to large)

for the logical address addr. Once the block has already been found in some level,

7

for all subsequent levels the CPU just looks for a dummy element, denoted by ⊥.

When a requested block has been found, it is marked as deleted in the corresponding

level where it is found. Every 2i memory requests, a rebuild operation is performed

to merge all levels smaller than i (including the memory location just fetched and

possibly updated if it was a write request) into level i — at this moment, level i

is considered to be rebuilt. Intuitively, this scheme is secure, because every block

is always accessed from a permuted list such that the adversary does not know the

permutation used. By laying out the memory in hierarchical layers, they improved

the bandwidth blowup of the näıve scheme from O(N) to an amortized blowup of

O(log3N).

We make multiple observations about this result and the model considered

by Goldreich and Ostrovsky. First, since they use a PRF, the access patterns are

indisinguishable to a computationally-bounded adversary. Second, their model as-

sumes the server to be a simple storage device that is capable of only read and write

operations. Third, they assumed the number of bits stored in a memory location to

always be Ω(logN) bits. Finally, they only consider a model where there is exactly

one server and exactly one client.

1.2 A Short Literature Survey

Over the last three decades, several works have improved on the seminal re-

sult. Some of these have been algorithmic improvements while many of the results

have modified the modeling assumptions used by Goldreich and Ostrovsky. We

8

next describe a short summary of the relevant results classified by the modeling

assumptions that they use.

1. Security guarantees: Computational vs. statistical vs. perfect. The

original construction had access patterns that were secure only against a

computationally-bounded adversary. Ajtai [11] showed the first ORAM con-

struction that is statistically-secure with a bandwidth blowup of O(log3N).

This was followed by the statistically-secure ORAM construction by Shi et

al. [134], who introduced the tree-based paradigm. ORAM constructions in

the tree-based paradigm have improved the bandwidth blowup from O(log3N)

to O(log2N) [43,61,134,140,143]. Most tree-based ORAMs achieved statisti-

cal access pattern security, and obtained the desired bandwidth blowup in the

worst-case instead of an amortized blowup.

Damg̊ard et al. were the first to study a perfectly secure ORAM and to show a

construction with O(log3N) bandwidth blowup and storing O(N logN) mem-

ory blocks on the server [47].

2. Non-uniform/large block sizes. Goldreich and Ostrovsky assumed that

the block size addressable by the ORAM is the same as the size of the memory

location. Their results hold for any block size Ω(logN) bits. However, if we

are allowed to assume non-uniform block sizes, i.e., the data blocks addressable

in the ORAM is larger than the word size supported by the underlying RAM,

then the metadata required by the ORAM algorithm to access a block is

asymptotically smaller than the cost to access a block. In such a scenario,

9

the effective bandwidth blowup can be computed as the ratio of the number

of bits transferred while making an ORAM access to the size of a data block.

Using this idea and assuming block sizes to be Ω(log2N) bits, certain tree

based ORAM constructions can be improved to achieve a bandwidth blowup

of ω(logN) [140,143].

3. Assuming server computation. Goldreich and Ostrovsky assume the server

to be a read/write store. However, one can reduce the number of data blocks

transferred by allowing the server to perform some computation on the data

blocks [12, 48, 51, 62, 110, 115, 126, 137, 138, 146, 147, 153]. The key results in

this category are the ones by Apon et al. [12], and Devadas et al. [51], which

use fully homomorphic encryption and additively homomorphic (or somewhat

homomorphic) encryption respectively to achieve an O(1) bandwidth blowup.

4. Assuming multiple non-colluding servers. ORAMs in this category as-

sume multiple non-colluding servers to improve bandwidth blowup [80, 97,

106, 144]. A representative construction is by Lu and Ostrovsky [106], which

achieved a bandwidth blowup of O(logN).

5. Oblivious Parallel RAM (OPRAM). An Oblivious Parallel RAM (OPRAM)

transforms a Parallel RAM (PRAM) program into a secure form such that the

resulting PRAM’s access patterns leak no information about secret inputs.

It was first proposed by Boyle, Chung, and Pass [28], and subsequently im-

proved in several followup works [35, 36, 38, 39, 117]. In addition to the band-

width blowup, another metric that is relevant for an OPRAM is the depth

10

blowup. Here, depth characterizes the parallel runtime of a program assuming

ample number of CPUs. State of the art OPRAM schemes are statistically

secure and achieve a bandwidth blowup of O(log2N) and a depth blowup of

O(logN log logN) [35].

1.3 Outline of the Dissertation

In this section, we will describe, at a high-level, the results presented in this

dissertation.

1.3.1 An Oblivious RAM with a Sub-logarithmic Bandwidth Blowup

In Chapter 3, we describe a tree-based Oblivious RAM scheme with a sub-

logarithmic bandwidth blowup of O(logdN) (where d is a free parameter) assuming

the servers are capable of handling non-uniform block sizes, there are multiple non-

colluding servers that are capable of performing inexpensive computation. We also

show a Ω(logcDN) lower bound on bandwidth blowup in the modified model in-

volving PIR operations. Here, c is the number of blocks stored by the client and

D is the number blocks on which PIR operations are performed. Our construc-

tion matches this lower bound implying that the lower bound is tight for certain

parameter ranges.

Chapter 3 is based on a paper I co-authored with Ittai Abraham, Christo-

pher W. Fletcher, Benny Pinkas, and Ling Ren and is published in Public Key

Cryptography (PKC), 2017 [8].

11

1.3.2 A Perfectly Secure Oblivious Parallel RAM

In Chapter 4, we show that PRAMs can be obliviously simulated with per-

fect security, incurring only O(logN(logm+ log logN)) blowup in parallel runtime,

O(log3N) blowup in total work, and O(1) blowup in space relative to the original

PRAM. Prior to our work, no perfectly secure Oblivious Parallel RAM (OPRAM)

construction was known; and we are the first in this respect. Even for the sequential

special case of our algorithm (i.e., perfectly secure ORAM), we not only achieve log-

arithmic improvement in terms of space consumption relative to the state-of-the-art,

but also significantly simplify perfectly secure ORAM constructions.

Chapter 4 is based on a paper co-authored with Elaine Shi and T-H. Hubert

Chan, and is currently in submission to a conference [37].

1.3.3 Executing Obfuscated Programs using HOP

Program obfuscation is a central primitive in cryptography, and has important

real-world applications in protecting software from IP theft. However, well known

results from the cryptographic literature have shown that software only virtual black

box (VBB) obfuscation of general programs is impossible. In Chapter 5 we propose

HOP, a system (with matching theoretical analysis) that achieves simulation-secure

obfuscation for RAM programs, using secure hardware to circumvent previous im-

possibility results. To the best of our knowledge, HOP is the first implementation

of a provably secure VBB obfuscation scheme in any model under any assumptions.

HOP trusts only a hardware single-chip processor. We present a theoretical

12

model for our hardware design and prove its security in the UC framework. Our

goal is both provable security and practicality. To this end, our theoretic analysis

accounts for the optimizations used in our practical design, including the use of a

hardware Oblivious RAM (ORAM), hardware scratchpad memories, and context

switching. We then detail a prototype hardware implementation of HOP. The pro-

totype design requires 72% of the area of a V7485t Field Programmable Gate Array

(FPGA) chip. Evaluated on a variety of benchmarks, HOP achieves an overhead of

8× ∼ 76× relative to an insecure system.

Chapter 5 is based on a paper co-authored with Christopher W. Fletcher,

Ling Ren, Nishanth Chandran, Satya Lokam, Elaine Shi, and Vipul Goyal, and is

published at Network and Distributed Systems Security (NDSS), 2017 [116].

1.3.4 Parallel Secure Computation for Graph-parallel Algorithms

In Chapter 6, we propose parallel oblivious algorithms to enable a secure ex-

ecution of “graph-parallel algorithms” on large datasets using secure computation.

We present GraphSC, a framework that (i) provides a programming paradigm that

allows non-cryptography experts to write secure code; (ii) brings parallelism to such

secure implementations; and (iii) meets the needs for obliviousness, thereby not leak-

ing any private information. Using GraphSC, developers can efficiently implement

an oblivious version of graph-based algorithms that execute in parallel with minimal

communication overhead. Specifically, for a graph with V vertices and E edges, and

N = |V|+ |E|, the primitives “Scatter” and “Gather” in GraphSC can be imple-

13

mented with O(N logN) total work and O(logN) depth. Thus, our secure version of

graph-based algorithms incurs only a small logarithmic overhead in comparison with

the non-secure parallel version. We build GraphSC and demonstrate, using several

algorithms as examples, that secure computation can be brought into the realm of

practicality for big data analysis. Our secure matrix factorization implementation

can process 1 million ratings in 13 hours, which is a multiple order-of-magnitude

improvement over the only other existing attempt, which requires 3 hours to process

16K ratings.

Chapter 6 is based on a paper co-authored with Xiao Shaun Wang, Stratis

Ioannidis, Udi Weinsberg, Nina Taft, and Elaine Shi and is published at IEEE

Security and Privacy (SP), 2015 [118].

14

Chapter 2: Definitions and Preliminaries

2.1 Parallel Random-Access Machines

We review the concepts of a parallel random-access machine (PRAM) and an

oblivious parallel random-access machine (OPRAM). Although the definitions are

only provided for the parallel case as required in Chapter 4, we point out that this

is without loss of generality, since a sequential RAM can be thought of as a special

case of PRAM with one CPU.

Parallel Random-Access Machine (PRAM).

A parallel random-access machine (PRAM) consists of a set of CPUs and a

shared memory denoted by mem indexed by the address space {0, 1, . . . , N − 1},

where N is a power of 2. We refer to each memory word also as a block, which is at

least B = Ω(logN) bits long.

We consider a PRAM where the number of CPUs is m and the i-th CPU is

denoted by cpustatei. Suppose the input to the PRAM program PRAM is denoted

by inp. In each step, each CPU executes a next instruction circuit Π(cpustatei, rdatai)

based on its internal state and the most recently fetched B bits of data denoted

rdatai. It updates its CPU state cpustatei; and further, CPUs interact with memory

through request instructions ~I(t) := (I
(t)
i : i ∈ [m]). Specifically, at time step t,

15

CPU i’s instruction is of the form I
(t)
i := (read, addr), or I

(t)
i := (write, addr,wdata)

where the operation is performed on the memory block with address addr and the

block content wdata.

If I
(t)
i = (read, addr) then CPU i should receive the contents of mem[addr] at

the beginning of time step t and is stored in rdatai. Else if I
(t)
i = (write, addr,wdata),

CPU i should still receive the contents of mem[addr] at the beginning of time step t;

further, at the end of step t, the contents of mem[addr] should be updated to wdata.

Write conflict resolution. By definition, multiple read operations can be exe-

cuted concurrently with other operations even if they visit the same address. How-

ever, if multiple concurrent write operations visit the same address, a conflict reso-

lution rule will be necessary for our PRAM to be well-defined. In this dissertation,

we assume the following:

• The original PRAM supports concurrent reads and concurrent writes (CRCW)

with an arbitary, parametrizable rule for write conflict resolution. In other

words, there exists some priority rule to determine which write operation

takes effect if there are multiple concurrent writes in some time step t.

• Our compiled, oblivious PRAM (defined below) is a “concurrent read, exclu-

sive write” PRAM (CREW). In other words, our OPRAM algorithm must

ensure that there are no concurrent writes at any time.

We note that a CRCW-PRAM with a parametrizable conflict resolution rule is

among the most powerful CRCW-PRAM model, whereas CREW is a much weaker

model. Our results are stronger if we allow the underlying PRAM to be more

16

powerful but our compiled OPRAM uses a weaker PRAM model. For a detailed

explanation on how stronger PRAM models can emulate weaker ones, we refer the

reader to the work by Hagerup [77].

Henceforth, we assume that each CPU can only store O(1) memory blocks.

Further, we assume that the runtime T of the PRAM is fixed and publicly

known. Thus, PRAM is a PRAM program that belongs to a family of programs

PRAM[Π, T,N, `in, `out, B,m]. For any program that is run on the PRAM, `in and

`out denote the input and output lengths respectively (in terms of number of words).

`in and `out are relevant in Chapter 5 when the adversary executes obfuscated

programs on inputs of his choice to obtain the corresponding output. Moreover,

in chapter 5, we only use the special case of m = 1, i.e., RAM programs. Finally,

in all of the chapters except Chapter 5, we consider PRAMs that are stateful and

can evaluate a sequence of inputs, carrying state between them. Without loss of

generality, we assume each input can be stored in a single memory block.

CPU-to-CPU communication. Some of the algorithms in our constructions in-

volve CPU-to-CPU communication. For our OPRAM algorithm to be oblivious,

the inter-CPU communication pattern must be oblivious too. We stress that such

inter-CPU communication can be emulated using shared memory reads and writes.

Therefore, when we express our performance metrics, we assume that all inter-CPU

communication is implemented with shared memory reads and writes. In this sense,

our performance metrics already account for any inter-CPU communication, and

there is no need to have separate metrics that characterize inter-CPU communi-

cation. In contrast, some earlier works [39] adopt separate metrics for inter-CPU

17

communication.

2.2 Oblivious Parallel Random-Access Machines

An OPRAM is a (randomized) PRAM with certain security properties, i.e.,

its access patterns leak no information about the inputs to the PRAM.

Randomized PRAM. A randomized PRAM is a special PRAM where the CPUs

are allowed to generate private random numbers.

Memory access patterns. Given a PRAM program denoted PRAM and a se-

quence inp of inputs, we define the notation Addresses[PRAM](inp) as follows:

• Let T be the total number of parallel steps that PRAM takes to evaluate inputs

inp.

• Let At := (addrt1, addrt2, . . . , addrtm) be the list of addresses such that the i-th

CPU accesses memory address addrti in time step t.

• We define Addresses[PRAM](inp) to be the random object [At]t∈[T].

Oblivious PRAM (OPRAM). We say that a PRAM is oblivious, iff for any two

input sequences inp0 and inp1 of equal length and for a negligible function ε(.), it

holds that

Addresses[PRAM](inp0)
ε(N)≡ Addresses[PRAM](inp1)

If a computationally-bounded adversary can distinguish the addresses pro-

duced on inp0 and inp1 with probability ≤ ε(N), we say that the OPRAM is com-

putationally secure. Similarly, if an unbounded adversary can distinguish between

18

the distribution of addresses with probability ≤ ε(N), we say that the OPRAM is

statistically secure. If the distribution of addresses are identically distributed, i.e.,

ε(N) = 0, for all inputs, the OPRAM is said to be perfectly secure.

In this dissertation, we always assume that the original PRAM has a fixed

number of CPUs (denoted m) in all steps of execution. For the compiled OPRAM,

we consider two models 1) when the OPRAM always consumes exactly m CPUs

in every step (i.e., the same number of CPUs as the original PRAM); and 2) when

the OPRAM can consume an unbounded number of CPUs in every step; in this

case, the actual number of CPUs consumed in each step may vary. However, for an

ORAM scheme, we always assume that the compiled ORAM uses a single CPU.

Oblivious parallel algorithms. If the PRAM program or the parallel algorithm

belongs to a class of algorithms ALG that is fixed and available to the adversary, we

can define the notion of an oblivious parallel algorithm. A parallel algorithm ALG

∈ ALG is said to be oblivious, iff for any two inputs inp0 and inp1 to the algorithm

such that |inp0| = |inp1| and the adversary knows ALG, and for a negligible function

ε(.), it holds that

Addresses[ALG](inp0)
ε(N)≡ Addresses[ALG](inp0)

If the addresses are indistinguishable only to a computationally-bounded ad-

versary, we say that the oblivious algorithm is computationally-secure. Statistical

and perfect security are analogously defined.

Oblivious simulation metrics. We adopt the following metrics to characterize

19

the overhead of (parallel) oblivious simulation of a PRAM.

• Simulation overhead (when the OPRAM consumes the same number of CPUs

as the PRAM). If a PRAM that consumes m CPUs and completes in T parallel

steps can be obliviously simulated by an OPRAM that completes in γ ·T steps

also with m CPUs (i.e., the same number of CPUs as the original PRAM),

then we say that the simulation overhead is γ. Note that this means that

every PRAM step is simulated by on average γ OPRAM steps.

• Bandwidth blowup (when the OPRAM consumes the same number of CPUs

as the PRAM). If a PRAM that consumes m CPUs and accesses B bits of

information can be obliviously simulated by an OPRAM that accesses γ · B

bits, also with m CPUs, then we say that the bandwidth blowup is γ.

• Total work blowup (when an unbounded number of CPUs maybe consumed).

A PRAM’s total work is the number of steps necessary to simulate the PRAM

under a single CPU, and is equal to the sum
∑

t∈[T] mt. If a PRAM of total

work W can be obliviously simulated by an OPRAM of total work γ ·W we

say that the total work blowup of the oblivious simulation is γ. Similarly,

for a PRAM algorithm of total work W can be obliviously simulated by an

oblivious parallel algorithm of total work γ ·W , we say that the total work

blowup of the oblivious simulation is γ.

• Depth blowup (when an unbounded number of CPUs maybe consumed). A

PRAM’s depth is defined to be its parallel runtime when there are an un-

bounded number of CPUs. If a PRAM of depth D can be obliviously simulated

20

by an OPRAM of depth γ · D we say that the depth blowup of the oblivious

simulation is γ. Similarly, for a PRAM algorithm of depth D can be oblivi-

ously simulated by an oblivious parallel algorithm of depth γ ·D, we say that

the depth blowup of the oblivious simulation is γ.

• Space blowup. Space blowup refers to the multiplicative blowup in space re-

quired on the server when comparing the OPRAM (or ORAM) and that of

the original PRAM (or RAM).

Note that the simulation overhead and bandwidth blowup are good standalone

metric if we assume that the OPRAM must consume the same number of CPUs as

the PRAM. If the OPRAM is allowed to consume more CPUs than the PRAM, we

typically use the metrics total work blowup and depth blowup in conjunction with

each other: total work blowup alone does not characterize how much the OPRAM

preserves parallelism; and depth blowup alone does not capture the extent to which

the OPRAM preserves total work.

Note that for ORAMs/OPRAMs with uniform block sizes, i.e., all blocks have

the same size, simulation overhead and bandwidth blowup are exactly the same.

For an ORAM, since we are only concerned with the scenario of using a single CPU,

bandwidth blowup and simulation overhead are the only relevant metrics.

Finally, the following simple fact is useful for understanding the complexity of

(oblivious) parallel algorithms.

Fact 1. Let C > 1. If an (oblivious) parallel algorithm Alg can complete in T steps

consuming m CPUs, then it can complete in CT steps consuming dm
C
e CPUs.

21

2.3 Private Information Retrieval Protocols

Private information retrieval (PIR) allows a user to download one item from

an unprocessed database known to a server, without revealing to the server which

item is downloaded [41]. More formally, the setting has a server which is holding

a list of records Y = (y1, y2, · · · , ym), and a user who wants to download record

yi without revealing i to the server. A PIR scheme must enable this operation

while requiring communication that is strictly smaller than the size of the database

(otherwise, a trivial solution could have the user hide i by simply downloading the

entire database.) This problem is similar to the problem addressed by an ORAM

except for the following differences: (i) In PIR, the database records are usually

public data records, or records which are owned by the server, and therefore the

user cannot encrypt or otherwise preprocess them, and (ii) Typically, only read

operations are performed on this database.

Two categories of PIR techniques exist – one operates in a setting with a

single server and the other requires the existence of two or more non-colluding

servers. Single-server PIR protocols, such as [30,64,94], have been adopted by Path-

PIR [110] and Onion ORAM [51] to improve bandwidth. A downside, however, is

that they require the server to perform operations on homomorphically encrypted

ciphertexts [101], making server computation the new bottleneck. PIR in the pres-

ence of two or more non-colluding servers is conceptually simpler and involves much

less computation — typically only simple XOR operations. It can also guarantee

security against an unbounded adversary.

22

The original investigation of two-server PIR assumed that each database record

is a single bit. The initial PIR paper described a two-server PIR protocol with

O(m1/3) communication [41] (and more efficient protocols with more than two

servers). This result was only recently improved to obtain a communication of

mO(
√

log logm/ logm) [53].

In the setting of ORAM, we are interested in a PIR of long records, where

the number of bits in each record |yj| is in the same order as the total number of

records m. In this case there is a simple PIR protocol that was adopted in [122]:

The database of records is replicated across the two servers, S1 and S2. Suppose

that the user is interested in retrieving record i. For the request, the user generates

a random bit string of length m, X = (x1, x2, · · · , xm). He then generates X ′ =

(x′1, x
′
2, · · · , x′m) by flipping the i-th bit in X, i.e., x′i = x̄i and x′j = xj for j 6= i. The

user then sends X to S1, and X ′ to S2. S1 computes and responds with
∑

j xj · yj

while S2 computes and responds with
∑

j x
′
j · yj. Here, the sums represent a bit-

wise XOR, and · represents a bit-wise AND. The user then sums up (XORs) the

two responses to obtain
∑

j(xj + x′j) · yj = yi. The above protocol is denoted as

TwoServerPIR(S1,S2, Y, i). The communication overhead is O(|yj|+m) = O(|yj|).

PIR-writes. Analogous to PIR, we can define PIR-write operations. A PIR-write

operation lets a user update one record among a list of records on a server without

revealing to the server which record is updated. Notice that now the records can no

longer be public data; they have to be encrypted. Otherwise, the server can trivially

figure out which record is updated by comparing their values before and after the

update.

23

Chapter 3: Asymptotically Tight Bounds for Composing ORAM with

PIR

The standard ORAM model assumes the server to be a simple storage device

that only supports read and write operations. In this model, numerous works have

improved the bandwidth blowup from O(log3N) to O(logN) where N is the number

of logical data blocks. But none could achieve sub-logarithmic bandwidth blowup so

far. In this sense, though not provably insurmountable [29], the Ω(logN) bandwidth

blowup barrier does seem hard to surpass.

To this end, a line of work deviates from the standard model and assumes

the existence of two non-colluding servers [106,122,136,144] with inexpensive server

computation (e.g., XOR) or no server computation. But these constructions have

been unable to surpass the Ω(logN) bandwidth blowup barrier.

Another line of work allows the server to perform some computation. The most

recent works involving server computation achieved O(1) bandwidth blowup [12,

51, 114, 115]. But this improvement in bandwidth comes with a huge cost in the

amount of server computation. In practice, in both schemes, the time for server

computation will far exceed the time for server-client communication and become

the new bottleneck.

24

Thus, the state of the art leaves the following natural question:

Can we construct a sub-logarithmic ORAM without expensive computation?

In this chapter, we answer this question positively with a concrete and se-

cure construction. Our construction relies on a d-ary ORAM tree and a private

information retrieval (PIR) protocol involving two non-colluding servers, where the

servers perform simple XOR computations. Our construction achieves O(logdN)

bandwidth blowup with c = O(1) blocks of client storage and PIR operations on

D = d · polylog(N) blocks. PIR is closely related to ORAM as they both hide ac-

cess patterns. In fact, PIR is frequently used in ORAM constructions to improve

bandwidth blowup [110,114,115,122,153]. This led us to ask the following question:

What is the asymptotically optimal bandwidth blowup one can achieve by using

PIR in an ORAM construction?

In order to answer this question, we build on the seminal work of Goldreich

and Ostrovsky [67] and derive a Ω(logcDN) bandwidth lower bound for ORAMs

that leverage only PIR and PIR-write on top of the traditional model. Here, c is

the number of blocks stored by the client and D is the number of blocks on which

PIR/PIR-write operations are performed.

Our ORAM construction, in fact, matches this Ω(logcDN) lower bound when

d = Ω(logN), implying that under certain parameter ranges our construction is

asymptotically optimal and the lower bound is asymptotically tight. Moreover,

existing constructions such as C-ORAM [115] and CHf-ORAM [114] violate this

lower bound, and thus cannot be secure.

25

We remark that there is a concurrent and independent work, MSKT-ORAM,

that achieves comparable bandwidth blowup using similar techniques [154].1 Our

construction has several advantages over this work and we make a more detailed

comparison in Section 3.5.

Our Contributions

Our contributions in this chapter can be summarized as follows:

1. ORAM with sub-logarithmic bandwidth blowup. We show a provably

secure ORAM construction that achieves a bandwidth blowup of O(logdN)

(where d is a parameter) using O(1) blocks of client storage. Our construction

uses a d-ary tree and a PIR protocol (Section 3.2).

2. Extending the Goldreich-Ostrovsky lower bound to allow PIR oper-

ation. For a client storing c blocks of data and performing a PIR on D blocks

at a time, we show that the ORAM bandwidth blowup is lower bounded by

Ω(logcDN) (Section 3.4). Our construction matches this lower bound imply-

ing that the lower bound is tight and that our construction is asymptotically

optimal for certain parameter ranges.

26

Table 3.1: Comparison with existing Oblivious RAM schemes. N denotes

the number of logical blocks stored by the ORAM. In [126,140], a stash of Ω(λ) blocks

ensures a failure probability of eΩ(−λ). For a negligible (in N) failure probability,

these works set λ = ω(logN). Our work requires two non-colluding servers while

others require a single server.

Construction
Bandwidth Client Block Server

Blowup Storage Size Computation

Path ORAM [140] 8 logN O(λ) Ω(log2N) -

Ring ORAM [126] 2.5 logN O(λ) Ω(log2N) XOR

Onion ORAM [51] O(1) O(1) Ω̃(log5N) Homomorphic enc.

This work 4 logdN
O(1)

Ω(dλ logN)
XOR

(with d = logN) 4 loglogN N Ω(λ log2N)

Overview of our Construction

In tree-based ORAMs, the memory is organized in the form of a binary tree,

where every tree node is a bucket. Buckets hold blocks, where each block is either

dummy or real. The main invariant of tree-based ORAMs is that every block is

assigned to the path from the root to a randomly chosen leaf node. Accessing a

1The title of that paper claims “constant bandwidth”, which would have been immediately

ruled out by our lower bound. On a closer look, the bandwidth blowup is actually O(logd N). This

calls for our lower bound to clear the confusion in this direction.

27

block in tree-based ORAMs has two phases. The first phase, called retrieval, fetches

and possibly updates the data block requested by the client. For security, the block is

also assigned a new random path. The second phase, called eviction, reshuffles some

data blocks on the server subject to the tree-ORAM invariant. Many recent ORAM

constructions [51, 126, 140, 143] are based on binary trees, in which the bandwidth

blowup on retrieval and eviction are both Θ(logN) due to the tree height.

Our construction uses a tree with larger fan-out d = ω(1), which decreases

the tree height to O(logdN) = O(logN
log d

). Based on a d-ary tree, we design a new

eviction algorithm whose bandwidth blowup is O(logdN). However, it increases the

bandwidth blowup by more than a factor of d on retrieval in the standard model.

We then use two-server private information retrieval (c.f. preliminaries Section 2.3)

to reduce the retrieval bandwidth to O(1) (assuming moderately large block size).

Our basic eviction algorithm also requires Ω(d logN) blocks of client storage. We

again rely on two-server PIR to reduce the client storage to O(1). Overall, we obtain

a two-server ORAM with O(1) client storage and O(logdN), i.e., sub-logarithmic

bandwidth blowup.

Although our bandwidth blowup decreases with the tree fan-out d, we cannot

keep increasing d for free due to block metadata. We discuss the trade-off regarding

d in Section 3.3.4.

28

1: function Access(addr, op, data)

2: l← PosMap[addr]

3: data← ReadBlock(l, addr)

4: l′ ← UniformRandom(0, dL − 1)

5: PosMap[addr]← l′

6: if op = read then

7: return data to client

8: else

9: data← data′

10: Write data to the root bucket

11: evict()

Figure 3.1: Tree-based ORAM data access algorithm. Here, PosMap is a map

from an address addr to a leaf l of the tree. ReadBlock(l, addr) retrieves a block of

data with address addr from a path of buckets along leaf l.

3.1 Tree-based ORAM

We first describe a generic tree-based ORAM construction. This will aid the

description of our final protocol. In a tree-based ORAM, server storage is organized

as a binary tree [134]. As mentioned in the introduction, instead of a binary tree,

in this work we use a d-ary tree. Hence this brief introduction presents the general

case and considers d as an independent parameter.

Server storage. We consider d-ary tree with L + 1 levels, from level 0 to level L.

29

Thus, level i has di nodes. Recall that N is the total number of logical blocks stored

by the client. Then L is roughly logdN . Each node in the tree is called a bucket

and each bucket contains Z slots for logical blocks. A slot can also be empty — in

this case, we say it contains a dummy block; otherwise, we say it contains a real

block. Each block stores B bits of information. Dummy blocks and real blocks are

both encrypted using randomized symmetric encryption.

Metadata. Aside from the B bits of block data, tree-based ORAMs also store some

metadata for each block. The metadata stores the block identifier and whether the

block is real or dummy. The client also maintains a position map PosMap that maps

each real block to a random leaf in the tree.

In this chapter, we first assume that the client stores all the metadata locally.

We then describe how this metadata can be offloaded to the server (Section 3.3.3)

to achieve O(1) client storage.

Invariant. Tree-based ORAM maintains the invariant that if a block is mapped to

a leaf l of the tree, the block must be in some bucket on the path from the root to

the leaf l. Since a leaf uniquely determines a path and vice versa, we use the two

terms interchangeably.

Access. The pseudo-code for an access algorithm in a tree-based ORAM is de-

scribed in Figure 3.1. To access a block with logical address addr, the client performs

the following operations:

1. Look up the local PosMap to figure out the path l it is mapped to (line 2).

2. Download and decrypt every block on path p, discarding every block that does

30

not have address addr. Due to the invariant, the client is guaranteed to find

block addr on path l. This is done by ReadBlock(l, addr) in Figure 3.1 line 3.

3. Remap block addr to a new random path l′ (i.e., update PosMap), i.e. logically

remove block addr from its old position (lines 4 and 5).

4. Re-encrypt block addr and append it to the root bucket (line 10, encryption

is not shown in the figure).

5. Invoke an eviction procedure to percolate blocks towards leaves (line 11).

The first four steps correspond to the retrieval phase, and are similar for

many tree-based ORAMs [51, 134, 140]. Tree-based ORAMs differ in their eviction

procedures (which also affect the bucket size Z). Existing tree-based ORAM schemes

when extended to use a d-ary tree do not achieve sub-logarithmic bandwidth blowup

due to inefficient eviction. Hence, a main contribution of this chapter is to construct

such an eviction scheme (Section 3.2).

3.2 Main Construction

Our construction follows the tree-based ORAM paradigm in the previous sec-

tion. In this section, we present the changes in server storage and the retrieval and

eviction strategies to obtain a sub-logarithmic bandwidth blowup. Figures 3.2 and

3.3 show the pseudocode of our construction. Figure 3.4 shows how servers store

blocks and an example eviction for our construction.

Server storage. Our construction uses two servers S1 and S2, both storing identical

31

1: Persistent variables cnt, G initialized to 0

2: cnt is the number of accesses performed so far since the previous eviction

3: G is the number of evictions performed so far, represented in base d

4: Let P(l) be the path from root to leaf l, and P(l, k) be the k-th bucket on

P(l).

5: function Access(addr, op, data′)

6: l← PosMap[addr]

7: data← ReadBlock(l, addr)

8: if op = read then

9: return data to client

10: else

11: data← data′

12: l′ ← UniformRandom(0, dL − 1)

13: PosMap[a]← l′

14: Write data to the cnt-th slot of the root bucket

15: cnt := cnt + 1 mod Z/2

16: if cnt = 0 then

17: le ← reverse(G)

18: EvictAlongPath(le)

19: G← G+ 1 mod dL

Figure 3.2: Access and eviction algorithm for our oblivious RAM construc-

tion.

32

1: function ReadBlock(l, addr)

2: (id1, id2, . . . , idZL)← Retrieve block identifiers on P(l)

3: Suppose idi = addr

4: return TwoServerPIR(S1,S2,P(l), i)

5: function EvictAlongPath(le)

6: for k ← 0 to L− 1 do

7: Let s be the (k + 1)-th digit of G // For each bucket, (k + 1)-th digit

accesses slices in a round-robin manner.

8: EvictToSlices(le, k, s)

9: // Additional processing for the leaf bucket P(le, L) to make it empty

10: Read all blocks in P(le, L) and its auxiliary bucket P(le, aux)

11: Move all real blocks from P(le, L) to P(le, aux)

12: function EvictToSlices(le, k, s)

13: // Evict from bucket P(le, k) to the s-th slice of each of its d children

14: Download all blocks in P(le, k)

15: for t← 1 to d

16: Let S be the s-th slice of the t-th child of P(le, k)

17: Let T be the set of real blocks in P(le, k) that can be evicted to S

18: Upload T to S and pad remaining slots in S with dummy blocks

Figure 3.3: Access and eviction algorithm for our oblivious RAM construc-

tion. (..contd)

33

Figure 3.4: Example eviction path for a three-level 4-ary tree at G =

2 i.e. G = (02)4. For evicting the root bucket into its children buckets, the

client downloads blue colored root bucket and writes to the blue colored slices of

its children. The figure shows load of the buckets just before eviction from the root

bucket.

information (hence, Figure 3.4 shows only one tree). Our d-ary tree has L+1 levels,

numbered from 0 (the root) to L (the leaves). Each node in the tree is called a

bucket. Each bucket consists of Z slots that can each store one block. Slots from

the non-root buckets are equally divided into d slices, each of size Z/d. Each leaf

bucket has an auxiliary bucket aux that can store Z blocks.

Metadata. Our construction requires metadata similar to the description in Sec-

tion 3.1, i.e., the position map PosMap and a block identifier for each slot. As

mentioned, we assume the client stores all metadata locally for the cloud storage

application, but can easily outsource them to the server without asymptotically

increasing bandwidth blowup (Section 3.3.3).

34

Initialization. Initially, the ORAM tree at both servers contain all dummy blocks.

The position map is initialized to contain independent and uniformly random num-

bers for each block. The client initializes each block using a logical write operation.

If the client issues a logical read operation to a block that has never been initialized,

the behavior of the ORAM is undefined.

Access. Each client request is represented as a tuple (addr, op, data′) where addr

is the address of the block, op ∈ {Read,Write} and data′ is the data to be written

(data′ = ⊥ if op = Read). The client maintains a counter cnt for the total number of

accesses made so far. For each access (addr, op, data′), the client does the following

(refer Figure 3.2 and 3.3):

1. The client looks up position map PosMap[addr] to obtain the leaf l associated

with block addr (Figure 3.2, line 6).

2. Let P(l) represent the path from root to leaf l, and P(l, k) represent the

k-th bucket on P(l) . The client retrieves the block identifiers on the path

(id1, id2 . . . , idZL) from its local storage. Due to the tree-based ORAM invari-

ant, one of the identifiers on the path will be addr. Without loss of generality,

assume idi = addr (Figure 3.3, lines 2 and 3).

3. The client invokes a two-server PIR protocol TwoServerPIR(S1,S2,P(l), i) to

retrieve the block with address addr (Figure 3.3, line 4).

4. The client updates the data field of the block addr to data′ if op = Write. It

sets a new leaf l′ for the block and updates PosMap. It updates the metadata

35

G = (02)4 G = (03)4 G = (10)4 G = (11)4

G = (12)4

2

0

3 0 1

2

0 1 1

1

G = (13)4

3

1

G = (20)4

0

2

G = (21)4

1

2

Figure 3.5: Buckets and slices accessed for 2d consecutive evictions. Here,

d = 4 and G = # evictions mod dL. (x)a denotes the number x represented in base

a. The dots in the slices represent real blocks at the end of the eviction operation.

Note that for each bucket, slices are accessed (written into) in a round-robin manner.

If an eviction path passes through a bucket at level i at t-th eviction then it passes

through it again at t+ di evictions.

to remove the block from the tree. It appends the block addr to the cnt-th slot

of the root bucket (Figure 3.2, lines 8-14).

5. The client increments cnt. If cnt = Z/2, the client resets cnt and performs the

eviction procedure described below (Figure 3.2, lines 15-19).

Eviction. The eviction procedure of our construction is a generalization of the

eviction procedure of Onion ORAM [51]. It differs from Onion ORAM in the fol-

lowing two ways. First, we apply the eviction scheme on a reverse lexicographical

ordering [61] over a d-ary tree instead of a binary tree. Second, when evicting from

36

each bucket along a path, we write to only one slice of each child bucket (instead of

writing to the entire child buckets). This is essential for our construction to achieve

sub-logarithmic bandwidth blowup.

As shown in Figure 3.3, we evict every Z/2 accesses along reverse lexicograph-

ical ordering of paths. Given that we have a d-ary tree instead of a binary tree,

we represent the paths as numbers with base d. We use a counter G to maintain

the next path le that should be evicted. Eviction is performed for each non-leaf

bucket on path P(le). For the k-th bucket from the root, denoted P(le, k), the client

first downloads the bucket P(le, k). It then uploads all real blocks to the s-th slice

(which will be empty before this operation) of each of its children where s is the

(k + 1)-th digit of G. (We show in Section 3.3.2 that there will be sufficient room

in these slices.) After this operation, the bucket P(le, k) will be empty. Due to the

reverse lexicographical order of eviction paths, P(le, k) will be a child bucket for the

next d − 1 evictions involving it (refer Figure 3.5 for an example), during each of

which the slice being written to will be empty. For the last level (level L), the client

downloads all blocks in the leaf bucket P(le, L) and its auxiliary bucket P(le, aux).

It moves all real blocks to the auxiliary bucket P(le, aux) and uploads both buckets

to the server.

Example. An example showing 2d consecutive evictions is in Figure 3.5 for d = 4.

In the example, we start with eviction number G = (02)4. Observe that the third

child of the root bucket is emptied at G = (02)4 as the reverse lexicographic eviction

path (20)4 passes through it. In the next d− 1 evictions, one slice of the bucket is

written to in a round-robin manner. Finally, at eviction number G = (12)4, when

37

the path (21)4 passes through it again, the last slice is written into after which the

entire bucket is emptied again. Similarly, it can be easily seen that for each bucket

at level i, a slice is written into every di−1 evictions and the bucket is emptied every

di evictions.

3.3 Analysis

3.3.1 Overflow Analsysis

We show that the buckets (and slices) in the tree overflow with negligible

probability. In our construction, the root bucket and the auxiliary buckets are

not partitioned into slices. Eviction is performed every Z/2 accesses, so the root

bucket never overflows. Below, Lemma 1 analyzes auxiliary buckets while Lemma 2

analyzes slices in non-root non-auxiliary buckets.

Lemma 1. If the size of auxiliary buckets Zaux satisfies N ≤ dL ·Zaux/2, the proba-

bility that an auxiliary bucket overflows is bounded by e−
Zaux
6 .

Proof. For an auxiliary bucket b, define Y (b) to be the number of real blocks in b.

Each of the N blocks in the ORAM has a probability of d−L to be mapped to b

independently. Thus, E[Y (b)] ≤ N · d−L ≤ Zaux/2, and a simple Chernoff bound

completes the proof.

The following lemma generalizes Onion ORAM [51] Lemma 1 to the scenario

of a d-ary tree.

38

Lemma 2. The probability that a slice of a non-root and non-auxiliary bucket over-

flows after an eviction operation is bounded by e−
Z
6d .

Proof. Consider a bucket b, and its i-th slice bi. Define Y (b) to be the number of real

blocks in b, and Y (bi) to be the number of blocks in bi after an eviction operation.

We will first assume that all slices have infinite capacity and show thatE[Y (bi)] ≤

Z/2d, i.e., the expected number of blocks in a non-root slice after an eviction oper-

ation is no more than Z/2d at any time. Then, we bound the overflow probability

given a finite capacity.

For a non-root and non-auxiliary bucket b, we define variables m and mi, 1 ≤

i ≤ d: the last EvictAlongPath operation where b is on the eviction path is the m-

th EvictAlongPath operation, and the EvictAlongPath operation where b is a sibling

bucket with eviction happening to slice i is the mi-th EvictAlongPath operation.

Clearly, during eviction to one of the d slices, the bucket b is on the eviction path.

Thus, one of mi is equal to m. We also time-stamp the blocks as follows. When a

block is accessed and remapped, it gets a time stamp m∗, if the next EvictAlongPath

would be the m∗-th EvictAlongPath operation.

Now consider bi and Y (bi) . There exist the following cases:

1. If m ≥ mi, then Y (bi) = 0, because the entire bucket b becomes empty when

it is a parent bucket during the m-th EvictAlongPath operation, and the next

eviction that evicts blocks to slice bi has not occurred.

2. If m < mi, we must have mi−1 < mi. Otherwise, mi is the smallest among

m1, . . . ,md and it must be that m ≥ mi. We consider blocks with what time

39

stamp range can end up in bi.

• Blocks with time stamp m∗ ≤ m will not be in bi as these blocks would

have been evicted out of b in the m-th EvictAlongPath operation.

• Blocks with time stamp m < m∗ ≤ mi−1 or m∗ > mi will not be in bi as

these blocks are evicted to either slices ≤ i− 1 or slices > i respectively.

• Blocks with time stamp mi−1 < m∗ ≤ mi can be evicted to bi.

There are at most (mi −mi−1)Z/2 blocks with time stamp mi−1 < m∗ ≤ mi.

Each of these blocks go to bucket b independently with probability d−j, where

j is the level of b. Due to the deterministic reverse lexicographic ordering of

eviction paths, it is easy to see that mi −mi−1 = dj−1. Therefore, E[Y (bi)] ≤

dj−1 · Z/2 · d−j = Z/2d.

In either case, we have µ = E[Y (bi)] ≤ Z/2d. Now that we have independence

and the expected number of blocks in a bucket, using a Chernoff bound with δ = 1,

a slice bi overflows with probability

Pr[Y (bi) > (1 + δ)u] ≤ e−
δ2µ
3 = e−

Z
6d .

Combining the two lemmas, we can set Z = Ω(dλ) and Zaux = Ω(λ). The

probability that any slice or any bucket overflows is e−Ω(λ). Following prior work [51,

126,140], it suffices to set λ = ω(logN) for N−ω(1) failure probability, i.e., negligible

in N .

40

Server Storage The amount of server storage in our construction is

Zaux · dL + Z · ΣL
i=0d

i = Θ(N).

3.3.2 Security Analysis

Lemma 3. The above ORAM construction satisfies obliviousness and is statistically-

secure as per the definition in Section 2.2.

Proof. Similar to all tree based ORAMs, for each access, the client performs the

retrieval phase on a random path. The use of PIR hides the location of the requested

block on that random path. Moreover, the instance of the two-server PIR scheme we

use does not use any computational assumptions. Eviction is performed on a publicly

known reverse lexicographical ordering of paths. Along the eviction path, each

bucket and a predetermined slice in each child buckets are downloaded/uploaded.

Thus, all client operations observed by the servers are independent of the logical

client access patterns.

3.3.3 Reducing Client Storage

In the construction described so far, the client stores the Θ(N logN)-bit posi-

tion map, Θ(N logN)-bit metadata for all block and uses Θ(dλ) blocks of temporary

storage during the eviction operation. In this section, we optimize our scheme to

reduce the client storage to O(1) blocks.

A. Position map. The position map for the main ORAM has a Θ(logN)-bit entry

for each of the N blocks, amounting to Θ(N logN) bits of storage.

41

Position map can be stored recursively in smaller ORAMs as discussed by Shi

et al. [134]. As discussed in [139], when the data block size is Ω(log2N) (which is the

case for our scheme), using a small block size for recursive position map ORAMs, the

asymptotic cost of recursion would be insignificant compared to the main ORAM

tree. Hence, recursion does not increase to the bandwidth blowup asymptotically.

B. Metadata for each block in the tree. For each block of the tree, we store

whether the block is real or dummy. If it is real, the identifying address is stored.

This amounts to another Θ(N logN) bits of storage.

We can store the metadata of each block along with the block data on the

server. However, this would require downloading metadata from the server during

retrieval before performing each PIR operation. For Z = O(dλ), L < logdN and a

size of O(logN) bits for storing the identifier and whether the block is dummy, the

total amount of metadata downloaded for an access is O(dλ logN logdN). Thus, for

a block size of Ω(dλ logN logdN) bits, the asymptotic bandwidth for downloading

this metadata is absorbed.

C. Temporary storage for an eviction operation. During an eviction opera-

tion, the client downloads a bucket and a slice from each of its d children. This is

equivalent to downloading two buckets. Thus, for each step of the eviction operation

the client needs to store Z = O(dλ) blocks.

We now show how this client storage can be reduced to O(1). At a high level,

the client needs to perform the eviction from a bucket to its children buckets without

downloading the entire buckets. If the client can only store one block, it needs to

download one block at a time from the parent bucket and upload it to one of its

42

children buckets. And the client needs to do so obliviously. We achieve this by

hiding which block from the parent bucket is downloaded, again using PIR, and

letting the client upload to the children buckets in a deterministic order. The new

EvictToSlices algorithm for evicting a parent bucket to its children slices is shown in

Figure 3.6.

1: function EvictToSlices(le, k, s)

2: // Evict from bucket P(le, k) to the s-th slice of each of its d children

3: Download metadata for bucket P(le, k) from S1

4: for t← 1 to d

5: Let S be the s-th slice of the t-th child of P(le, k) and Si be its i-th slot

// S is empty

6: for each Si ∈ S

7: if ∃j such that the j-th block in P(le, k) can be evicted to S then

8: block = TwoServerPIR(S1,S2,P(le, k), j)

9: Locally update the metadata for the j-th block in P(le, k) to be

dummy

10: Upload block along with its metadata to Si on both servers

11: else // no such j exists, do a dummy PIR and a dummy upload

12: Run TwoServerPIR(S1,S2,P(le, k), 1) and discard its output

13: Upload a dummy block with a dummy identifier to Si on both servers

14: Upload the updated metadata of P(le, k) to S1

Figure 3.6: Evicting to children slices using O(1) blocks of client storage.

43

To perform the eviction from a bucket P(le, k) to a slice S of its t-th child, the

client first downloads the metadata corresponding to P(le, k) (line 3). The client

uploads to each slot i in S (denoted Si) sequentially, one slot at a time (line 6).

Before this eviction, each slot Si will be empty due to Lemma 2. There are two

cases:

1. If there exists a real block in P(le, k) that can be evicted to S, the client

downloads that block from P(le, k) using PIR (thus hiding its location in

P(le, k)), and uploads it (re-encrypted) to Si (lines 7-10).

2. If no real block in P(le, k) can be evicted to S, the client performs a dummy

PIR to download an arbitrary block from P(le, k), discards the PIR output,

and uploads an encrypted dummy block to Si (lines 11-13).

Thus, for each Si ∈ S in order, the client downloads a block from the parent bucket

using PIR (without revealing its position or whether its a dummy PIR) and uploads

a block to Si. This eviction process requires O(1) blocks of storage.

3.3.4 Bandwidth Analysis

Lemma 4. Our ORAM construction requires a bandwidth blowup of O(logdN) for

block sizes B = Ω(dλ logN).

Proof. Let us first analyze the bandwidth blowup of our construction by ignoring

the number of bits accessed for metadata. We only read two blocks of data for PIR;

thus, the bandwidth blowup for retrieving a block using PIR is O(1). On evictions,

for each bucket on the path, the client downloads the parent bucket and uploads

44

to one slice from each of the d child buckets, which is equivalent to two buckets of

bandwidth. Thus, an eviction costs 2ZL blocks of bandwidth and it is performed

every Z/2 accesses, giving an amortized bandwidth blowup of 4L < 4 logdN . Thus,

ignoring metadata, the bandwidth blowup of our scheme is O(logdN).

Although our bandwidth blowup decreases with d, we cannot keep increasing d

for free. The reason is that the client needs to download a Θ(logN)-bit metadata for

all dλ logdN blocks on a path, on each access and eviction. Recursion contributes

another O(log3N) bits, but that is no greater than the blowup due to the metadata.

So the raw bandwidth (in bits) per access is O(B logdN + dλ logdN logN). While

we usually focus on the multiplicative blowup term, when d becomes too large, the

additive term will dominate. Thus, due to the metadata in the PIR operation, the

aforementioned bandwidth blowup only holds if the block size is B = Ω(dλ logN).

As a consequence, the optimal d should be determined as a function of the

block size B and the number of blocks N . For instance, for an application using

moderately large block size B = Ω(λ log2N), we can set d = Θ(logN) and the

bandwidth blowup is O(logN/ log logN). If some application uses very large blocks

such as B = Ω(
√
Nλ logN), then we can set d = Θ(

√
N) and achieve a bandwidth

blowup of O(1).

Bandwidth vs. server computation in practice. Our scheme achieves a sublog-

arithmic bandwidth blowup of O(logdN) but also incurs XOR computation on poly-

logarithmic number of blocks (specifically, O(dλ logdN) blocks). When implemented

45

in a cloud-server scenario, the computation will require the CPUs to read these poly-

logarithmic data blocks from disk to perform XOR computations. Thus, the gain

in bandwidth will improve performance only when the server computation (and the

time to read disks is small). In practice, this will be useful when the available

bandwidth is very small compared to the time required for server computation.

3.4 Extending the Goldreich-Ostrovsky Lower Bound

Goldreich and Ostrovsky [67] gave an Ω(logcN) lower bound on the bandwidth

blowup assuming perfect correctness, perfect security and assuming the client to be

restricted to the following operations: reading from a memory location and writing

to a memory location. Here, N represents the number of logical blocks stored on

the server and c is the number of logical blocks stored by the client.

In this section, we first review (a slight variant of) the original Goldreich-

Ostrovsky lower bound and its proof from [67]. We then extend the model to include

PIR and PIR-write as possible client operations, and analyze how this changes the

bound.

Following Goldreich-Ostrovsky and Boyle-Naor [29, 67] (both papers consid-

ered the client as a CPU) we will use client and CPU interchangeably, and refer to

client storage as c registers.

46

3.4.1 Original Lower Bound

We present a slight variant of the CPU used in the original lower bound

work [67]:

Definition 1. A CPU is modeled as a probabilistic random-access-machine (RAM)

which has c registers and is restricted to the following operations:

• READi reads a block from memory into a CPU register: For an addr ∈ [N],

set Reg[i]← val, where val is the content of the memory at location addr.

• WRITEi moves a block from a CPU register to memory: For some i ∈ [c] and

addr ∈ [N], write the data in Reg[i] to location addr in the memory.

Our RAM model has slightly different operations than the original analysis

in [67] to simplify the exposition. This will cause only constant factor differences in

the bound. Given this model, the original lower bound can be stated as:

Theorem 2. Every statistically oblivious simulation of a probabilistic RAM (Defi-

nition 1), which can access N blocks of data and hold c blocks in the CPU, on input

y makes at least max{|y|,Ω(t · logcN)} accesses to simulate t = poly(N) steps.

Proof. As described by Goldreich and Ostrovsky [67], the task of simulating an

ORAM can be modeled as a game in between three players

1. The CPU, which can hold at most c blocks and has access to a random function

f

2. the program request sequence of length t

47

3. the observer

The CPU knows the program request sequence ahead of time. Suppose the

request access sequence is represented as r1, . . . , rt. The game takes place on a

memory consisting of N cells, each capable of storing a single block.

The game proceeds for t rounds. In each round i, the CPU loads ri in one of

its registers in such a way that the observer does not learn ri. The CPU does so by

making a sequence of operations as described in Definition 1. At any time during

the game, the CPU can store at most c blocks in memory. Round i ends when the

CPU holds block ri.

For a t sized request sequence, the CPU’s response can be represented by

two q sized sequences. The first sequence consists of an externally visible access

pattern. Each entry in this sequence is a single address (each of which is sufficient

to implement either READi or WRITEi). The second sequence consists of hidden

operations performed by the CPU. Let us consider the possible number of hidden

actions that can be taken by the CPU, for a fixed visible access pattern. For each

visible read address, the block that is read can be stored in one of the c registers

in the CPU. Likewise, for each visible write address, the block written back could

have been removed from any one of the c registers in the CPU. Thus, hidden from

the observer, the system can evolve in c ways on a READ and c ways on a WRITE.

Given that the CPU stores c blocks, a q length sequence can satisfy at most

cq program access sequences. Therefore, each visible access sequence can satisfy

at most (2c)qcq program request sequences. For perfect security, the visible access

48

sequence should be able to satisfy all N t possible request sequences, i.e.,

N t ≤ (2c)qcq

or q ≥ t logN
log c+log(2c)

= Ω (t logcN).

The above is a bound on the number of operations. Since each operation incurs

at least 1 block of bandwidth, we also obtain an amortized bandwidth blowup lower

bound of Ω(logcN).2

3.4.2 Augmented Lower Bound (after adding PIR)

We now extend the above result to allow the CPU to perform PIR and PIR-

write.

Definition 2. A PIR-augmented CPU is modeled as a probabilistic random-access-

machine PIR-RAM which has c registers and is restricted to the following operations:

• READi as described in Definition 1.

• WRITEi as described in Definition 1.

• PIR-READi reads a block from memory into a CPU register using PIR: For a

set of at most D addresses, set Reg[i] ← val, where val can be the content of

the memory at any of the locations in the set.

2If we assume that the memory is initially permuted by the CPU unknown to the server, then

the total number of program request sequences is at most MM (2c)qcq where M = poly(N) is the

physical memory size. Hence, we have q = Ω((t−M) logc N).

49

• PIR-WRITEi moves a block from a CPU register into memory privately using

a PIR-WRITE operation: For a set of at most D addresses, write the data in

Reg[i] to a location among one of the D addresses.

Theorem 3. Every statistically oblivious simulation of a probabilistic PIR-RAM

(Definition 2), which can access N blocks of data and hold c blocks in the CPU and

perform PIR on a maximum of D blocks, on input y makes at least max{|y|,Ω(t ·

logcDN)} accesses to simulate t = poly(N) steps.

Proof. The proof follows the same framework as the original lower bound. The

number of operations in the visible and hidden sequences due to READi or WRITEi

operations is unchanged. Now, the visible sequence additionally reveals the set of D

addresses accessed on a PIR request for PIR-READi/PIR-WRITEi. In each of these

operations, the client can select one out of D possible memory blocks to read/write

in the visible memory. Furthermore, for each of the above D outcomes, the client

can add the read block to (or remove the written block from) any one of the c local

registers. Thus, the system can evolve in cD possible ways for each of the PIR-READ

and PIR-WRITE operations.

Extending the original argument, each visible access sequence can satisfy (2c+

2cD)qcq program request sequences. For perfect security, the visible access sequence

should be able to satisfy all N t possible request sequences, i.e.,

N t ≤ (2c+ 2cD)qcq

or q ≥ t logN
log c+log(2c+2cD)

= Ω
(
t logN
log(cD)

)
.

50

Again, the bound is on the number of operations. Since each of the four

operations incurs at least 1 block of bandwidth, a bound on the number of operations

translates to a bound on amortized bandwidth blowup.

3.4.3 Discussion

Accounting for failure probability. The above lower bound assumes perfect

security, i.e., each visible physical access sequence should be able to satisfy all pos-

sible program request sequences. However, using an argument similar to Wang et

al. [143], the same lower bound can be extended to work for up to O(1) failure

probability (and hence, negligible failure probability).

PIR as a black box. Our lower bound is independent of the implementation details

of the PIR and PIR-write operations. The bound is applicable to any statistically

secure PIR construction that meets the interface in Definition 2, regardless of the

number of servers it uses. We also note that although the lower bound considers

PIR-WRITE as a possible operation, our construction does not use this primitive.

Our construction and the lower bound. Our construction matches this lower

bound for certain parameter ranges. We use c = O(1) registers and perform a PIR

operation on D = O(d·poly(logN)) blocks. Thus, our lower bound is asymptotically

tight for d = Ω(logN) when the data block size B = Ω(dλ logN).

C-ORAM, CHf-ORAM and the lower bound. C-ORAM and CHf-ORAM

introduced three new operations on top of the standard ORAM model: download a

block from a path of poly-logarithmic blocks using PIR-READ, upload a block to one

51

hidden location in a bucket using PIR-WRITE, and an oblivious merge operation.

In an oblivious merge operation, the server applies plaintext permutations (chosen

by the client) to buckets before merging them. This operation creates only one

possible outcome to the system state, since no action is hidden from the server.

Thus oblivious merge does not affect the lower bound in Section 3.4.

CHf-ORAM achieves statistical security with negligible failure probability and

is thus subject to the lower bound in Theorem 3. The number of operations required

for t logical accesses is Ω(t logN
log(cD)

) where c = O(1) and D = polylog(N). Thus, its

bandwidth blowup is lower bounded by Ω(logN
log logN

). Instead, CHf-ORAM claims to

have achieved O(1) bandwidth, implying a flaw in its construction.

C-ORAM achieves computational security due to the use of single-server PIR-READ/

PIR-WRITE, and thus does not directly violate the lower bound. However, unless

carefully shown otherwise, it is extremely unlikely that any security flaw of CHf-

ORAM can be fixed by merely replacing information theoretically secure PIR with

computationally secure PIR.

Circumventing the lower bound. The lower bound on bandwidth only applies to

black-box usage of PIR. Onion ORAM [51] circumvents the lower bound and achieves

O(1) bandwidth blowup. The reason is that the homomorphic select operation

in Onion ORAM (a non-black-box usage of PIR) does not consume one unit of

bandwidth. Therefore, while the number of operations in Onion ORAM is still

subject to the bound, the bound does not translate to a bound on bandwidth blowup.

It is also possible to circumvent the lower bound by adding other operations (e.g.,

FHE [12]).

52

3.5 Related Work

Before ending this chapter, we mention works that are closely related to the

techniques used in this chapter. The idea of using a d-ary tree was first used by

Kushilevitz et al. [95] who achieveed O(log2N/ log logN) bandwidth blowup using

Θ(logN) buffers for every large level. Gentry et al. [61] uses a Θ(logN)-ary tree and

a push-to-leaf procedure along a deterministic path to achieve O(log2N/ log logN)

blowup. A concurrent work [154] uses a Θ(logN)-ary tree, which we compare to in

detail later. In all cases, the idea is to balance the (sometimes implicit) bandwidth

mismatch between the retrieval phase and the eviction phase.

Many works deviated from the traditional ORAM model defined by Goldreich

and Ostrovsky by introducing multiple non-colluding servers and/or server-side com-

putation. Some of these papers refer to their work as oblivious outsourced storage,

but we still refer to them as ORAMs. We review these works below.

ORAMs using multiple non-colluding servers. Constructions in this cate-

gory so far have not been able to surpass the Ω(logN) bandwidth barrier (except

CHf-ORAM [114] which we discuss later in this section) [106,122,136]. Lu and Os-

trovsky [106] achieved a bandwidth blowup of O(logN). In their scheme, each non-

colluding server performs permutations that are hidden to the other server due to

which the Goldreich-Ostrovsky lower bound does not apply. Stefanov and Shi [136]

implemented a practical system using two servers and O(
√
N) client storage. Their

client storage can be reduced to O(1) using the standard recursion technique [134].

Their construction required O(1) client-to-server bandwidth blowup and O(logN)

53

server-to-server bandwidth blowup.

ORAMs with server computation. There exist many ORAM schemes that al-

low the server to do computation on data blocks [12, 48, 51, 62, 110, 115, 126, 137,

138, 146, 147, 153]. Most of these works still require Ω(logN) bandwidth blowup,

except the following ones. Apon et al. [12] use fully homomorphic encryption to

achieve an O(1) bandwidth blowup. However, the large overhead of FHE makes

the scheme impractical. Onion ORAM [51] improves upon Apon et al. to achieve

an O(1) bandwidth blowup by using only additively homomorphic encryption or

somewhat homomorphic encryption. The amount of server computation is signif-

icantly reduced (compared to FHE) but is still quite large. In addition, the O(1)

bandwidth blowup of Onion ORAM can only be achieved for very large block sizes

of Ω(log5N). Both these schemes circumvent the Goldreich-Ostrovsky lower bound

by using homomorphic operations on the server side that require little client inter-

vention.

Independent and concurrent work. MSKT-ORAM [154] is an independent and

concurrent work that achieves comparable bandwidth blowup using similar tech-

niques, i.e., a d-ary tree and two-server PIR applied to a poly-logarithmic number

of blocks. Our construction has several advantages stemming from the following

major differences: While we extended the most recent tree-based ORAM, Onion

ORAM [51], to a d-ary tree, MSKT-ORAM builds on top of the very first tree-

based ORAM by Shi et al. [134] and extends it to a d-ary tree. Thus, MSKT-ORAM

does not take advantage of the new techniques invented afterwards, such as small

block recursion [139], reverse lexicographical order [61], higher bucket load [126],

54

reduced eviction frequency [126], and an empty bucket invariant [51]. As a result,

MSKT-ORAM requires a block size as large as Ω(N ε) for some constant ε, while

we only require blocks of size polylog(N) bits; MSKT-ORAM has a ω(logN) server

storage blowup, while our construction has a constant size server storage blowup

(Section 3.3); MSKT-ORAM needs a PIR, a physical read and a physical write op-

eration to evict each block, while we can eliminate the need for the physical read due

to the empty bucket/slice invariant (cf. Lemma 2 and Section 3.3.3); MSKT-ORAM

also spends at least 2× more bandwidth for both blocks and metadata during evic-

tion, since Shi et al. [134] requires two evictions after every access.

Oblivious RAM lower bound. As mentioned earlier, Goldreich and Ostrovsky

presented a lower bound of Ω(logcN) where c is the amount of client storage in

blocks. Their lower bound modeled the server as a simple storage device capable of

reading and writing blocks. Boyle and Naor revisit the ORAM lower bound to relate

it to the size of circuits for sorting [29]. In our work, we extend the lower bound

suggested by Goldreich and Ostrovsky to encompass private information retrieval

(PIR) as a possible operation performed by the client and obtain a lower bound of

Ω(logcD(N)) in Section 3.4. Here, c is the number of blocks stored by the client

and D is the number of blocks that a PIR is performed on. C-ORAM [115] and

CHf-ORAM [114] violate the lower bound and must have security flaws. Boyle and

Naor showed that an ORAM lower bound is difficult to obtain in a general model,

i.e., if the client is not restricted to a small set of operations.

Private information retrieval. A Private information retrieval (PIR) protocol

allows a user to retrieve some data block from a server without revealing the block

55

that was retrieved. It was first introduced by Chor et al. [41]. In our work, we use a

simple two server O(N) scheme from [41] to reduce the bandwidth cost of accessing

a block.

3.6 Conclusion, Subsequent Work, and Open Problems

In this work, we design an Oblivious RAM with sub-logarithmic bandwidth

blowup where the servers only perform XOR operations. We achieve this by using

a novel eviction scheme over a d-ary tree to obtain a blowup of O(logdN) and using

two-server PIR to reduce the cost to retrieve a block. We show a lower bound of

Ω(logcDN) for bandwidth blowup for a client storing c blocks of data and performing

a PIR on D blocks of data at a time. Our construction matches our lower bound

under certain parameter ranges. C-ORAM [115] and CHf-ORAM [114] violate the

lower bound and thus have security flaws.

Subsequent to our work, Kushilevitz et al. [97] have shown a construction that

achieves a sub-logarithmic bandwidth blowup for a smaller block size of Ω(d logN)

bits (instead of Ω(dλ logN) bits). However, their scheme is secure only against a

computationally-bounded adversary.

It is still an open question whether a sub-logarithmic bandwidth blowup can be

obtained in the original model defined by Goldreich and Ostrovsky. Also, all known

ORAM schemes that achieve O(logN) bandwidth blowup require a block size of

Ω(log2N). Whether this bound (or a sub-logarithmic bound) can be obtained for

smaller block sizes remains open.

56

Chapter 4: Perfectly Secure Oblivious RAM

In this chapter, we present a perfectly-secure OPRAM and a perfectly-secure

ORAM scheme. As mentioned in Chapter 2, we consider ORAMs to be a special

case of OPRAMs, i.e., when both the original PRAM and the OPRAM have only

one CPU. Thus, our final scheme description only describes an OPRAM.

The original ORAM schemes, proposed by Goldreich and Ostrovsky [65, 67],

achieved poly-logarithmic overheads but required the usage of pseudo-random func-

tions (PRFs); thus they defend only against computationally bounded adversaries.

Various subsequent works [11, 38, 43, 47, 134, 140, 143], starting from Ajtai [11] and

Damg̊ard et al. [47] investigated information-theoretically secure ORAM/OPRAM

schemes, i.e., schemes that do not rely on computational assumptions and defend

against even unbounded adversaries. As earlier works point out [11, 47], the exis-

tence of efficient ORAM schemes without computational assumptions is not only

theoretically intriguing, but also has various applications in cryptography. For

example, information-theoretically secure ORAM schemes can be applied to the

construction of efficient RAM-model, information-theoretically secure multi-party

computation (MPC) protocols [17]. Among known information-theoretically secure

ORAM/OPRAM schemes [11, 28, 38, 39, 43, 47, 134, 140, 143], almost all of them

57

achieve only statistical security [11,28,38,39,43,134,140,143], i.e., there is still some

non-zero failure probability — either correctness or security failure — but the fail-

ure probability can be made negligibly small in N where N is the RAM/PRAM’s

memory size. To the best of our knowledge, the only known perfectly secure ORAM

construction is the elegant work by Damg̊ard et al. [47] — they achieve 0 failure

probability against computationally unbounded adversaries. Although recent works

have constructed statistically secure OPRAMs [28, 38, 39], there is no known (non-

trivial) perfectly secure OPRAM scheme to date.

Motivation for perfect security. Perfectly secure ORAMs/OPRAMs are theo-

retically intriguing for various reasons:

1. First, to achieve 2−κ failure probability (either in security or in correctness),

the best known statistically secure OPRAM scheme [35,38] incurs a O(κ logN)

total work blowup and O(log κ logN) depth blowup where N is the PRAM’s

memory size. Although for negligibly small inN failure probability the blowups

are only poly-logarithmic in N , they can be as large as N c for some constant

c < 1 if one desires (sub-)exponentially small failure probability in N .

2. Second, perfectly secure ORAM schemes have been used as a buildling block

in recent results in searchable encryption schemes [50]. Typically these al-

gorithmic constructions rely on divide-and-conquer to break down a problem

into smaller sizes and then apply ORAM to a small instance — since the

instance size N is small (e.g., logarithmic in the security parameter), negli-

gible in N failure probability is not sufficient and thus these works demand

58

perfectly secure ORAMs/OPRAMs and existing statistically secure schemes

result in asymptotically poorer performance.

3. Third, understanding the boundary of perfect and statistical security has

been an important theoretical question in cryptography. For example, a long-

standing open problem in cryptography is to separate the classes of languages

that admit perfect ZK and statistical ZK proofs. For ORAMs/OPRAMs too,

it remains open whether there are any separations between statistical and

perfect security (and we believe that this is an exciting future direction).

Our Results and Contributions

In this chapter, we prove the following result which significantly advances

our theoretical understanding of perfectly secure ORAMs and OPRAMs in multiple

respects. We present the informal theorem statement below and then discuss its

theoretical significance.

Theorem 4 (Informal statement of main theorem). Any PRAM with m CPUs

that consumes N memory blocks each of which is at least logN-bits long1 can be

simulated by a perfectly oblivious PRAM, incurring O(log3N) total work blowup,

O(logN(logm+ log logN)) depth blowup, and O(1) space blowup.

The above theorem improves the theoretical state of the art on perfectly secure

ORAMs/OPRAMs in multiple dimensions:

1All existing ORAM and OPRAM works [65,67,70,96,134] make this assumption.

59

1. First, our work gives rise to the first perfectly secure (non-trivial) OPRAM

construction. No such construction was known before and it is not clear how to

directly parallelize the perfectly secure ORAM scheme by Damg̊ard et al. [47].

2. Second, even for the sequential special case, we improve Damg̊ard et al. [47]

asymptotically by reducing a logN factor in the ORAM’s space consumption.

3. Finally, when (sub-)exponentially small (in N) failure probabilities are re-

quired, our perfectly secure OPRAM scheme asymptotically outperforms all

known statistically secure constructions in terms of total work blowup! For

example, suppose that we require 2−κ failure probability and N = poly(κ) —

then all known statistically secure OPRAM constructions [28, 38, 39] would

incur at least N c total work blowup and Ω(log2N) depth blowup and thus our

new perfectly secure OPRAM construction is asymptotically better for this

scenario.

The above Theorem 4 applies to general block sizes. We additionally show that

for sufficiently large block sizes, there exists a perfectly secure OPRAM construction

with O(log2N) total work blowup and O(logN(logm + log logN)) depth blowup

where m denotes the number of CPUs of the original PRAM. Finally, we point out

that this work focuses mostly on the theoretical understanding of perfect security

in ORAMs/OPRAMs, and we leave it as a future research direction to investigate

their practical performance (see also Section 4.5).

60

4.1 Technical Roadmap

In this section, we present an informal roadmap of our technical approach to

aid understanding.

4.1.1 Simplified Perfectly Secure ORAM with Asymptotically Smaller

Space

First, we propose a new perfectly secure ORAM scheme that is conceptually

simpler than that of Damg̊ard et al. [47] and asymptotically gains a logarithmic

factor in space. Our construction is inspired by the hierarchical ORAM paradigm

originally proposed by Goldreich and Ostrovsky [65, 67] — however, most exist-

ing hierarchical ORAMs achieve only computational security since they rely on a

pseudorandom function (PRF) for looking up hash tables in the hierarchical data

structure. Thus our focus is how to get rid of this PRF and achieve perfect security.

Background: hierarchical ORAM. The recent work by Chan et al. [36] gave a

clean and modular exposition of the hierarchical paradigm. A hierarchical ORAM

consists of O(logN) levels that are geometrically increasing in size. Specifically,

level i is capable of storing 2i memory blocks. One could think of this hierarchical

data structure as a hierarchy of stashes where smaller levels act as stashes for larger

levels. In existing schemes with computational security, each level is an oblivious

hash-table [36]. To access a block at logical address addr, the CPU sequentially

looks up every level of the hierarchy (from small to large) for the logical address

61

addr. The physical location of a logical address addr within the oblivious hash-table

is determined using a PRF whose secret key is known only to the CPU but not to the

adversary. Once the block has already been found in some level, for all subsequent

levels the CPU would just look for a dummy element, denoted by ⊥. When a

requested block has been found, it is marked as deleted in the corresponding level

where it is found. Every 2i memory requests, we perform a rebuild operation and

merge all levels smaller than i (including the block just fetched and possibly updated

if this is a write request) into level i — at this moment, the oblivious hash-table in

level i is rebuilt, where every block’s location in the hash table is determined using

a PRF.

As Chan et al. [36] point out, the hierarchical ORAM paradigm effectively

reduces the problem of constructing ORAM to constructing an oblivious hash-table

supporting two operations: 1) rebuild takes in a set of blocks each tagged with its

logical address, and constructs a hash-table data structure that facilitates lookups

later; and 2) lookup takes a request that is either a logical address addr or dummy

(denoted ⊥), and returns the corresponding block requested. Obliviousness (defined

w.r.t. the joint access patterns of the rebuild and lookup phases) is guaranteed

as long as during the life-time of the oblivious hash-table, the sequence of lookup

requests never ask for the same real element twice — and this invariant is guaranteed

by the specific way the hierarchical ORAM framework uses the oblivious hash-table

as a building block (more specifically, the fact that once a block is found, it is moved

to a smaller level and a dummy block is requested from all subsequent levels).

Removing the PRF. As mentioned, an oblivious hash-table relies on a PRF to

62

determine each block’s location within a hash-table instance; and both the rebuilding

phase and the lookup phase use the same PRF for placing and fetching blocks

respectively. Since we wish to achieve perfect security, we would like to remove the

PRF. One simple idea is to randomly permute all blocks within a level — this way,

each lookup of a real block would visit a random location and we could hope to

retain security as long as every real block is requested at most once for every level

(in between rebuilds)2. Using techniques from earlier works [35,38], it is possible to

obliviously perform such a random permutation without disclosing the permutation;

however, the difficulty arises when one wishes to perform a look up — if blocks are

randomly permuted within a level during rebuild, lookup must know where each

block resides to proceed successfully. Thus if the CPU could hold a position map for

free to remember where each block is in the hierarchical data structure, the problem

would have been resolved: during every lookup, the CPU could first look up the

physical location of the logical address requested, and then proceed accordingly.

Actually storing such a position map, however, would consume too much CPU

space. To avoid storing this position map, we are inspired by the recursion technique

that is commonly adopted by tree-based ORAM schemes [134] — however, as we

point out soon, making the recursion idea work for the hierarchical ORAM paradigm

is more difficult. The high-level idea is to recursively store the position map in a

smaller ORAM rather than storing it on the CPU side; we could then recurse and

store the position map of the position map in an even smaller ORAM, and so on

2As we point out later, randomly permuting real blocks is in fact not sufficient; we also need to

allow dummy lookups by introducing an oblivious dummy linked list.

63

— until the ORAM’s size becomes O(1) at which point we would have the CPU

store the entire ORAM. Henceforth, we use the notation ORAMD to denote the

ORAM that stores the actual data blocks where D = O(logN); and we use ORAMd

to denote the ORAM at depth d of this recursion where d ∈ [0..D − 1]. Thus, the

larger d is, the larger the ORAM.

Although this recursion idea was very simple in the tree-based ORAM paradigm,

it is not immediately clear how to make the same recursion idea work in the hier-

archical ORAM paradigm. One trickiness arises since in a hierarchical ORAM,

every 2i requests, the ORAM would reshuffle and merge all levels smaller than i

into level i — this is called a rebuild of level i. When a level-i rebuild happens,

the position labels in the position-map ORAM must be updated as well to re-

flect the blocks’ new locations. In a similar fashion, the position labels in all of

ORAM0,ORAM1, . . . ,ORAMD−1 must be updated. We make the following crucial

observation that will enable a coordinated rebuild technique which we will shortly

explain:

(Invariant necessary for coordinated rebuild:) If a data block resides at level i

of ORAMD, then its position labels in all recursion depths must reside in level

i or smaller3.

This invariant enables a coordinated rebuild technique: when the data ORAM

(i.e., ORAMD) merges all levels smaller than i into level i, all smaller recursion

3A similar observation was adopted by Goodrich et al. [71] in their statistically secure ORAM

construction.

64

depths would do the same (unless the recursion depth is too small and does not have

level i, in which case the entire ORAM would be rebuilt). During this coordinated

rebuild, ORAMD would first perform its rebuild, and propagate the position labels

of all blocks involved in the rebuild to recursion depth D−1; then ORAMD−1 would

perform its rebuild based on the position labels learned from ORAMD, and propagate

the new position labels involved to recursion depth D − 2, and so on. As we shall

discuss in the technical sections, rebuilding a level (in any recursion depth) can

be accomplished through the help of O(1) oblivious sorts and an oblivious random

permutation.

Handling dummy blocks with oblivious linked lists. The above idea almost

works, but not quite so. There is an additional technical subtlety regarding how

to handle and use dummy blocks. Recall that during a memory access, if a block

requested actually resides in a hierarchical level, we would read the memory location

that contains the block (and this memory location could be retrieved through a

special recursive position map technique). If a block does not reside in a level (or

has been found in a smaller level), we still need to read a dummy location within

the level to hide the fact that the block does not reside within the current level.

Recall that the i-th level must support up to 2i lookups before the level is

rebuilt. Thus, one idea is to introduce 2i dummy blocks, and obliviously and ran-

domly permute all blocks, real and dummy alike, during the rebuild. All dummy

blocks may be indexed by a dummy counter, and every time one needs to look up

a dummy block in a level, we will visit a new dummy block. In this way, we can

retain obliviousness by making sure that every real block and every dummy block

65

is visited at most once before the level is rebuilt again.

To make this idea fully work, there must be a mechanism for finding out where

the next dummy block is every time a dummy lookup must be performed. One näıve

idea would be to use the same recursion technique to store position maps for dummy

blocks too — however, since each memory request might involve reading O(logN)

dummy blocks, one per level, doing so would incur extra blowup in runtime and

space. Instead, we use an oblivious dummy linked list to resolve this problem —

this oblivious dummy linked list is inspired by technical ideas in the Damg̊ard et

al. construction [47]. In essence, each dummy block stores the pointer to the next

dummy block, and the head pointer of the linked list is stored at a designated

memory location and updated upon each read of the linked list. In the subsequent

technical sections, we will describe how to rely on oblivious sorting to rebuild such

an oblivious dummy linked list to support dummy lookups.

Putting it altogether. Putting all the above ideas together, the formal presen-

tation of our perfectly secure ORAM scheme adopts a modular approach4. First,

we define and construct an abstraction called an “oblivious one-time memory”. An

oblivious one-time memory allows one to obliviously create a data structure given

a list of input blocks. Once created, one can look up real or dummy blocks in the

data structure, and to look up a real block one must provide a correct position label

indicating where the block resides (imagine for now that the position label comes

from an “oracle” but in the full ORAM scheme the position label comes from the

4In fact, later in this chapter, we omit the sequential version and directly present the parallel

version of all algorithms.

66

recursion). An oblivious one-time memory retains obliviousness as long as every real

block is looked up at most once and moreover, dummy blocks are looked up at most

n times where n is a predetermined parameter (that the scheme is parametrized

with).

Once we have this “oblivious one-time memory” abstraction, we show how

to use it to construct an intermediate abstraction referred to as a “position-based

ORAM”. A position-based ORAM contains a hierarchy of oblivious one-time mem-

ory instances, of geometrically growing sizes. A position-based ORAM is almost a

fully functional ORAM except that we assume that upon every memory request, an

“oracle” will somehow provide a correct position label indicating where the requested

block resides in the hierarchy.

Finally, we go from such a “position-based ORAM” to a fully functional

ORAM using the special recursive position-map technique as explained.

At this point, we have constructed a perfectly secure ORAM scheme with

O(log3N) simulation overhead. Specifically, one logN factor arises from the logN

depths of recursion, the remaining log2N factor arises from the cost of the ORAM at

each recursion depth. Intuitively, our perfectly secure ORAM is a logarithmic factor

more expensive than existing computationally-secure counterparts in the hierarchi-

cal framework [36,70,96] since the computationally-secure schemes [36,70,96] avoid

the recursion by adopting a PRF to compute the pseudorandom position labels of

blocks.

Making our ORAM scheme parallel. Our next goal is to make our ORAM

scheme parallel. Instead of compiling a sequential RAM program to a sequential

67

ORAM, we are now interested in compiling a PRAM program to an OPRAM.

Suppose that the original program is a PRAM that completes in T parallel steps

consuming m CPUs. First, using standard techniques, it would not be too difficult

to parallelize our earlier ORAM scheme and construct an OPRAM that completes

in T ·O(log3N) parallel steps consuming also exactly m CPUs. We stress that the

simplicity of our sequential ORAM construction makes it easy to parallelize — in

comparison, we are not aware how to parallelize Damg̊ard et al. [47]’s construction.

The main technique needed for this parallelization is oblivious routing: when the m

CPUs at recursion depth d have fetched the position labels for the next recursion

depth, the m CPUs at depth d must now obliviously route the position labels to the

correct fetch CPU at the next recursion depth. As shown in earlier works [28,35,38],

such oblivious routing can be accomplished with m CPUs in O(logm) parallel steps.

4.1.2 Building Blocks

We now introduce several useful oblivious algorithms building blocks. With the

exception of oblivious random permutation, we assume that all remaining building

blocks are deterministic: for a deterministic algorithm, obliviousness means that the

algorithm’s memory access pattern is independent of its input.

Oblivious sort. Ajtai, Komlós, and Szemerédi [10] show how to construct a circuit

with n log n comparators that can correctly sort any input sequence containing n

comparable elements. This immediately gives rise to a parallel oblivious sorting

algorithm with O(n log n) total work and O(log n) depth.

68

Oblivious routing. Oblivious routing solves the following problem. Suppose n

source CPUs each holds a data block with a distinct key (or a dummy block).

Further, n destination CPUs each holds a key and requests a data block identified

by its key — multiple destination CPUs can possibly request the same key. An

oblivious routing algorithm routes the requested data block to the destination CPU

in an oblivious manner. We may assume that the destination CPUs are represented

by an ordered array X. Initially the payload of each entry of X is left empty. After

the routing, each entry of X receives a data block (the received data block is dummy

if no source CPUs hold the same key as requested). The ordering of elements in X

is preserved between the input and output.

Boyle et al. [28] showed that through a combination of oblivious sorts and

oblivious aggregation, oblivious routing can be achieved in O(log n) parallel runtime

with O(n) CPUs.

Obliviously computing the routing permutation. Suppose that we are given a

source array src of length n where each entry holds a distinct key, and a destination

array dst also of length n where each entry holds a distinct key. Further, it is

guaranteed that the set of keys in src is the same as the set of keys in dst. We

would like to write down a permutation π (henceforth referred to as the routing

permutation) such that applying π to src would result in the same order of keys as

dst. The recent work by Chan and Shi [38] showed how to implement the above

task obliviously using O(1) number of oblivious sorts. Thus, with O(n) CPUs the

routing permutation can be computed in O(log n) parallel runtime.

Oblivious select. Consider the following problem: given a set of n elements among

69

which at most one element is distinguishing, output the distinguishing element (and

if no element is distinguishing, output ⊥). It is not difficult to see that by building

an aggregation tree over the n elements, one can accomplish oblivious select with n

CPUs in log n parallel steps.

Oblivious prefix sum. Given an array X of length n, every i ∈ [n] wants to

compute the sum of the prefix X[1..i]. There exists a parallel oblivious algorithm

to achieve this in O(log n) steps consuming n CPUs [78].

Oblivious random permutation. Let ORP be an algorithm that upon receiving

an input array X, outputs a permutation of X. Let Fperm denote an ideal functional-

ity that upon receiving the input array X, outputs a perfectly random permutation

of X.

We say that ORP is a perfectly oblivious random permutation, iff there exists

a simulator Sim such that the joint distribution (Fperm(X), Sim(|X|)) is identically

distributed as the joint distribution of the output and the addresses incurred by

running ORP on X. Note that the simulator Sim is given only the input length |X|

but not the contents of X.

Chan, Chung, and Shi [35] recently describe a perfectly oblivious random

permutation algorithm, which, except with negligible in λ probability, completes

in O(log n + α(λ)) parallel steps consuming n CPUs assuming that the each block

is large enough to store log λ bits (where α is a suitable super-constant function).

We summarize their construction in the following theorem where we choose α(λ) :=

log log λ that will suffice for the purpose of this chapter.

70

Theorem 5 (Perfectly oblivious random permutation [35]). Assume that each mem-

ory block is large enough to store at least log λ bits and that n ≤ λ ≤ 2O(n2). Then,

there exists a perfectly oblivious random permutation algorithm that consumes n

CPUs.

Except with λ probability, the algorithm completes in O(log n+log log λ) parallel

steps and O(n log n) work.

We note that the failure is in terms of the algorithm’s runtime — there is a

negligibly small probability that the algorithm will run for longer, but the algorithm

guarantees perfect security regardless.

4.2 Parallel One-Time Oblivious Memory

We define and construct an abstract datatype to process non-recurrent memory

lookup requests. Although the abstraction is similar to the oblivious hashing scheme

in Chan et al. [36], our one-time memory scheme needs to be perfectly secure and

does not use a hashing scheme. Furthermore, we assume that every real lookup

request is tagged with a correct position label that indicates where the requested

block is — in this section, we simply assume that the correct position labels are

simply provided during lookup; but later in our full OPRAM scheme, we will use a

recursive ORAM/OPRAM technique reminiscent of those used in binary-tree-based

ORAM/OPRAM schemes [38,43,134,140,143] such that we can obtain the position

label of a block first before fetching the block.

71

4.2.1 Definition: One-Time Oblivious Memory

We describe the intuition using the sequential special case but our formal

presentation later will directly describe the parallel version. An oblivious one-time

memory supports three operations: 1) Build, 2) Lookup, and 3) Getall. Build is

called once upfront to create the data structure: it takes in a set of real blocks

(each tagged with its logical address) and creates a data structure that facilitates

lookup. After this data structure is created, a sequence of lookup operations can

be performed: each lookup can request a real block identified by its logical address

or a dummy block denoted ⊥ — if the requested block is a real block, we assume

that the correct position label is supplied to indicate where in the data structure the

requested block is. Finally, when the data structure is no longer needed, one may

call a Getall operation to obtain a list of blocks (tagged with their logical addresses)

that have not been looked up yet — in our OPRAM scheme later, this is the set of

blocks that need to be preserved during rebuilding.

We require that our oblivious one-time memory data structure retain obliv-

iousness as long as 1) the sequence of real blocks looked up all exist in the data

structure (i.e., it appeared as part of the input to Build), and moreover, each logical

address is looked up at most once; and 2) at most ñ number of dummy lookups may

be made where ñ is a predetermined parameter (that the scheme is parametrized

with).

72

4.2.1.1 Formal Definition

Our formal presentation will directly describe the parallel case. In the parallel

version, lookup requests come in batches of size m > 1.

A (parallel) one-time memory scheme denoted OTM[n,m,t] is parametrized by

three parameters: n denotes the upper bound on the number of real elements; m

is the batch size for lookups; t is the upper bound on the number of batch lookups

supported.

The (parallel) one-time memory scheme OTM[n,m,t] is comprised of the follow-

ing possibly randomized, stateful algorithms to be executed on a Concurrent-Read,

Exclusive-Write PRAM — note that since the algorithms are stateful, every invo-

cation will update an implicit data structure in memory. Henceforth we use the

terminology key and value in the formal description but in our OPRAM scheme

later, a real key will be a logical memory address and its value is the block’s con-

tent.

• U ← Build({(ki, vi) : i ∈ [n]}): given a set of n key-value pairs (ki, vi), where

each pair is either real or of the form (⊥,⊥), the Build algorithm creates an

implicit data structure to facilitate subsequent lookup requests, and moreover

outputs a list U of exactly n key-position pairs where each pair is of the form

(k, pos). Further, every real key input to Build will appear exactly once in the

list U ; and the list U is padded with ⊥ to a length n. Note that U does not

include the values vi’s. Later in our scheme, this key-position list U will be

73

propagated back to the parent recursion depth during a coordinated rebuild5.

• (vi : i ∈ [m])← Lookup({(ki, posi) : i ∈ [m]}): there are m concurrent Lookup

operations in a single batch, where we allow each key ki requested to be either

real or ⊥. Moreover, in each batch, at most n/t of the keys are real.

• R ← Getall: the Getall algorithm returns an array R of length n where each

entry is either ⊥ or real and of the form (k, pos). The array R should contain

all real entries that have been inserted during Build but have not been looked

up yet, padded with ⊥ to a length of n.

Valid request sequence. Our oblivious one-time memory ensures obliviousness

only if lookups are non-recurrent (i.e., never look for the same real key twice); and

moreover the number of lookups requests must be upper bounded by a predeter-

mined parameter. More formally, a sequence of operations is valid, iff the following

holds:

• The sequence begins with a single call to Build upfront; followed by a sequence

of at most t batch Lookup calls, each of which supplies a batch of m keys and

the corresponding position labels; and finally the sequence ends with a single

call to Getall.

5Note that we do not explicitly denote the implicit data structure in the output of Build, since

the implicit data structure is needed only internally by the current oblivious one-time memory

instance. In comparison, U is explicitly output since U will later on be (externally) needed by the

parent recursion depth in our OPRAM construction.

74

• The Build call is supplied with an input array S := {(ki, vi)}i∈[n], such that

any two real entries in S must have distinct keys.

• For every Lookup({(ki, posi) : i ∈ [m]}) query in the sequence, if each ki is a

real key, then ki must be contained in S that was input to Build earlier. In

other words, Lookup requests are not supposed to ask for real keys that do not

exist in the data structure6; moreover, each (ki, posi) pair supplied to Lookup

must exist in the U array returned by the earlier invocation of Build, i.e., posi

must be a correct position label for ki; and

• Finally, in all Lookup requests in the sequence, no two keys requested (either

in the same or different batches) are the same.

Correctness. Correctness requires that

1. for any valid request sequence, with probability 1, for every Lookup({(ki, posi) :

i ∈ [m]}) request, the i-th answer returned must be ⊥ if ki = ⊥; else if ki 6= ⊥,

Lookup must return the correct value vi associated with ki that was input to

the earlier invocation of Build.

2. for any valid request sequence, with probability 1, Getall must return an array

R containing every (k, v) pair that was supplied to Build but has not been

looked up; moreover the remaining entries in R must all be ⊥.

6We emphasize this is a major difference between this one-time memory scheme and the obliv-

ious hashing abstraction of Chan et al. [36]); Chan et al.’s abstraction [36] allows lookup queries

to ask for keys that do not exist in the data structure.

75

Perfect obliviousness. We say that two valid request sequences are length-

equivalent, if the input sets to Build have equal size, and the number of Lookup

requests (where each request asks for a batch of m keys) in the two sequences are

the same.

We say that a (parallel) one-time memory scheme is perfectly oblivious, iff

for any two length-equivalent request sequences that are valid, the distribution of

access patterns resulting from the algorithms are identically distributed.

4.2.2 Construction

We first explain the intuition for the sequential case, i.e., m = 1. The intu-

ition is simply to permute all elements received as input during Build. However,

since subsequent lookup requests may be dummy (also denoted ⊥), we also need

to pad the array with sufficiently many dummies to support these lookup requests.

The important invariant is that each real element as well as each dummy will be

accessed at most once during lookup requests. For reals, this is guaranteed since the

definition of a valid request sequence requires that each real key be requested no

more than once, and that each real key requested must exist in the data structure.

For dummies, every time a ⊥-request is received, we always look for an unvisited

dummy. To implement this idea, one tricky detail is that unlike real lookup requests,

dummy requests do not carry the position label of the next dummy to be read —

thus our data structure itself must maintain an oblivious linked list of dummies such

that we can easily find out where the next dummy is. Since all real and dummies are

76

randomly permuted during Build, and due to the aforementioned invariant, every

lookup visits a completely random location of the data structure thus maintaining

perfect obliviousness.

It is not too difficult to make the above algorithm parallel (i.e., for the case

m > 1). To achieve this, one necessary modification is that instead of maintaining

a single dummy linked list, we now must maintain m dummy linked lists. These m

dummy linked lists are created during Build and consumed during Lookup.

4.2.2.1 Detailed Construction

At the end of Build, our algorithm creates an in-memory data structure con-

sisting of the following:

1. An array A of length n + ñ, where ñ := tm denotes the number of dummies

and n denotes the number of real elements. Each entry of the array A (real

or dummy alike) has four fields (key, val, next, pos) where

• key is a key that is either real or dummy; and val is a value that is either

real or dummy.

• the field next ∈ [0..n+ ñ) matters only for dummy entries, and at the end

of the Build algorithm, the next field stores the position of the next entry

in the dummy linked list (recall that all dummy entries form m linked

lists); and

• the field pos ∈ [0..n+ ñ) denotes where in the array an entry finally wants

to be — at the end of the Build algorithm it must be that A[i].pos = i.

77

However, during the algorithm, entries of A will be permuted transiently;

but as soon as each element i has decided where it wants to be (i.e.,

A[i].pos), it will always carry its desired position around during the re-

mainder of the algorithm.

2. An array that stores the head pointers of allm dummy linked lists. Specifically,

we denote them head pointers as {dposi : i ∈ [m]} where each dposi ∈ [0..n+ñ)

is the head pointer of one dummy linked list.

These in-memory data structures, including A and the dummy pointers will

then be updated during Lookup.

Build. Our oblivious Build({(ki, vi)}i∈[n]) algorithm proceeds as follows.

1. Initialize. Construct an array A of length n+ ñ whose entries are of the form

described above. Specifically, the keys and values for the first n entries of A

are copied from the input. Recall that the input may contain dummies too,

and we use ⊥ to denote a dummy key from the input.

The last ñ entries of A contain special dummy keys that are numbered. Specif-

ically, for each i ∈ [1..ñ], we denote An[i] := A[n− 1 + i], and the entry stored

at An[i] has key ⊥i and value ⊥.

2. Every element decides at random its desired final position. Specifically, per-

form a perfectly oblivious random permutation on the entries of A — this

random permutation decides where each element finally wants to be.

Now, for each i ∈ [0..n+ñ), let A[i].pos := i. At this moment, A[i].pos denotes

78

where the element A[i] finally wants to be. Henceforth in the algorithm, the

entries of A will be moved around but each element always carries around its

desired final position.

3. Construct the key-position map U . Perform oblivious sorting on A using the

field key. We assume that real keys have the highest priority followed by

⊥ < ⊥1 < · · · < ⊥ñ (where smaller keys come earlier).

At this moment, we can construct the key-position map U from the first n

entries of A — recall that each entry of U is of the form (k, pos).

4. Construct m dummy linked lists. Observe that the last ñ entries of A contain

special dummy keys, on which we perform the following to build m disjoint

singly-linked lists (each of which has length t). For each i ∈ [1..ñ], if i mod t 6=

0 we update the entry An[i].next := An[i + 1].pos, i.e., each dummy entry

(except the last entry of each linked list) records its next pointer.

We next record the positions of the heads of the m lists. For each i ∈ [m], we

set dposi := An[t(i− 1)].pos.

5. Move entries to their desired positions. Perform an oblivious sort on A, using

the fourth field pos. (This restores the ordering according to the previous

random permutation.)

At this moment, the data structure (A, {dposi : i ∈ [m]}) is stored in memory.

The key-position map U is explicitly output and later in our OPRAM scheme it will

be passed to the parent recursion depth during coordinated rebuild.

79

Fact 6. Consuming O(ñ + n) CPUs and setting (ñ + n)2 ≤ λ ≤ 2ñ+n, the Build

algorithm completes in O(log(ñ+n)+log log λ) parallel steps, except with probability

negligible in λ.

Proof. Observe that the algorithm’s cost is dominated by O(1) number of oblivious

sorts which can be realized with the AKS sorting network [10].

Moreover, the algorithm incurs one application of oblivious random permuta-

tion, whose performance is stated in Theorem 5.

Lookup. We implement a batch ofm concurrent lookup operations {Lookup({(ki, posi) :

i ∈ [m]}) as follows. For each i ∈ [m], we perform the following in parallel.

1. Decide position to fetch from. If ki 6= ⊥ is real, set pos := posi, i.e., we want to

use the position label supplied from the input. Else if ki = ⊥, set pos := dposi,

i.e., the position to fetch from is the next dummy in the i-th dummy linked

lists. (To ensure obliviousness, the algorithm can always pretend to execute

both branches of the if-statement.)

At this moment, pos is the position to fetch from (for the i-th request out of

m concurrent requests).

2. Read and remove. Read the value from A[pos] and mark A[pos] := ⊥.

3. Update dummy head pointer if necessary. If pos = dposi, update the dummy

head pointer dposi := next. (To ensure obliviousness, the algorithm can pre-

tend to modify dposi in any case.)

4. Return. Return the value read in the above Step 2.

80

The following fact is straightforward from the description of the algorithm.

Fact 7. The Lookup algorithm completes in O(1) parallel steps with O(m) CPUs.

Getall. Getall is implemented by the following simple procedure: obliviously sort A

by the key such that all real entries are packed in front. Return the first n entries of

the resulting array (and removing the metadata entries next and pos in the result).

Fact 8. The Getall algorithm completes in log(ñ+n) parallel steps consuming O(ñ+

n) CPUs.

Proof. Straighforward by observing that the algorithm’s cost is dominated by O(1)

number of oblivious sorts which can be realized with the AKS sorting network [10].

Lemma 5 (Perfect obliviousness of the one-time memory scheme). The above (par-

allel) one-time memory scheme satisfies perfect obliviousness.

Proof. It suffices to prove that for any valid request sequence, the memory access

patterns are identically distributed as those output by the following simulator that

knows only n,m and the number of Lookup requests in the sequence.

First, almost all parts of Build are deterministic and data oblivious and thus

the algorithm’s access patterns can be simulated in the most straightforward fashion.

The only randomized part of access patterns for Build is due to the oblivious ran-

dom permutation. To simulate this part, the simulator calls the oblivious random

permutation’s simulator algorithm.

Second, to simulate the access patterns of Lookup, the simulator would read

the memory location storing dposi for every i ∈ [m]. Then, it reads a random unread

81

index of the array A and writes to it once too. Finally, it writes to dposi for every

i ∈ [m].

Third, simulating the access patterns of Getall is done in the most natural

manner since Getall is deterministic.

It is not difficult to see that the real-world access patterns are identically dis-

tributed as the simulated ones due to the definition of oblivious random permutation

(see Section 4.1.2) Particularly, observe that the above way of simulating the access

patterns of Build is the same in nature as if we randomly permuted the data struc-

ture A upfront by a random permutation, (that is chosen independently from the

simulated access patterns), then every real element and ⊥i will be in a random loca-

tion. Note also that as long as no two real keys requested collide and every real key

requested exists in the data structure A, then the real-world algorithm accesses each

real or ⊥i element at most once, and thus every real-world access visits a random

position of the array A (besides reading and writing {dposi : i ∈ [m]}).

Summarizing the above, we conclude with the following theorem.

Theorem 9 (One-time oblivious memory). Let λ ∈ N be a parameter related to

the probability that the algorithm’s runtime exceeds a desired bound. Assume that

each memory block can store at least log n + log λ bits. There exists a perfectly

oblivious one-time scheme such that Build takes O(log n + log log λ) parallel steps

(except with negligible in λ probability) consuming n CPUs, Lookup for a batch of

m requests takes O(1) parallel steps consuming m CPUs, and Getall takes O(log n)

parallel steps consuming n CPUs.

82

4.3 OPRAM with O(log3N) Simulation Overhead

We briefly explain the technical roadmap of this section:

• In Section 4.3.1, we will first describe a position-based OPRAM that supports

two operations: Lookup and Shuffle. A position-based OPRAM is an almost

fully functional OPRAM scheme except that every real lookup request must

supply a correct position label. In our OPRAM construction, these position

labels will have been fetched from small recursion depths and therefore will be

ready when looking up the position-based OPRAM.

Our position-based OPRAM relies on the hierarcial structure proposed by

Goldreich and Ostrovsky [65,67], as well as techniques by Chan et al. [36] that

showed how to parallelize such a hierarchical framework.

• In Section 4.3.2, we explain how to leverage “coordinated rebuild” and re-

cursion techniques to build a recursive OPRAM scheme that composes log-

arithmically many instances of our position-based OPRAM, of geometrically

decreasing sizes.

4.3.1 Position-Based OPRAM

Our OPRAM scheme (Section 4.3.2) will consist of logarithmically many position-

based OPRAMs of geometrically increasing sizes, henceforth denoted OPRAM0,

OPRAM1, OPRAM2, . . ., OPRAMD whereD := log2N−log2m. Specifically, OPRAMd

stores Θ(2d ·m) blocks where d ∈ {0, 1, . . . , D}. The last one OPRAMD stores the

83

actual data blocks whereas every other OPRAMd where d < D recursively stores the

position labels for the next depth d+ 1.

4.3.1.1 Data Structure

As we shall see, the case OPRAM0 is trivial and is treated specially at the

end of this section (Section 4.3.1.1). Below we focus on describing OPRAMd for

some 1 ≤ d ≤ D = logN − logm. For d 6= 0, each OPRAMd consists of d + 1

levels geometrically growing in size, where each level is a one-time oblivious memory

scheme as defined and described in Section 4.2. We specify this data structure more

formally below.

Hierarchical levels. The position-based OPRAMd consists of d+1 levels henceforth

denoted as (OTMj : j = 0, . . . , d) where level j is a one-time oblivious memory

scheme,

OTMj := OTM[2j ·m,m,2j]

with at most n = 2j ·m real blocks and m concurrent lookups in each batch (which

can all be real). This means that for every OPRAMd, the smallest level is capable

of storing up to m real blocks. Every subsequent level can store twice as many real

blocks as the previous level. For the largest OPRAMD, its largest level is capable

of storing N real blocks given that D = logN − logm — this means that the total

space consumed is O(N).

Every level j is marked as either empty (when the corresponding OTMj has

not been rebuilt) or full (when OTMj is ready and in operation). Initially, all levels

84

are marked as empty, i.e., the OPRAM initially is empty.

Position label. Henceforth we assume that a position label of a block specifies

1) which level the block resides in; and 2) the position within the level the block

resides at.

Additional assumption. We assume that each block is of the form (logical ad-

dress, payload), i.e., each block carries its own logical address.

4.3.1.2 Operations

Each position-based OPRAM supports two operations, Lookup and Shuffle.

For every OPRAMd consisting of d+ 1 levels, we rely on the following algorithms for

Lookup and Shuffle.

Lookup. Every batch lookup operation, denoted Lookup({(addri, posi) : i ∈ [m]})

receives as input the logical addresses of m blocks as well as a correct position label

for each requested block. To complete the batch lookup request, we perform the

following.

1. For each level j = 0, . . . , d in parallel, perform the following:

• For each i ∈ [m] in parallel, first check the supplied position label posi

to see if the requested block resides in the current level j: if so, let

addr′i := addri and let pos′i := posi (and specifically the part of the position

label denoting the offset within level j); else, set addr′i := ⊥ and pos′i := ⊥

to indicate that this should be a dummy request.

• (vij : i ∈ [m])← OTMj.Lookup({addr′i, pos′i : i ∈ [m]}).

85

2. At this point, each of the m CPUs has d answers from the d levels respectively,

and only one of them is the valid answer. Now each of the m CPUs chooses

the correct answer as follows.

For each i ∈ [m] in parallel: set vali to be the only non-dummy element in

(vij : j = 0, . . . , d), if it exists; otherwise set vali := ⊥. This step can be

accomplished using an oblivious select operation (see Section 4.1.2) in log d

parallel steps consuming d CPUs.

3. Return (vali : i ∈ [m]).

We remark that in Goldreich and Ostrovsky’s original hierarchical ORAM [65,

67], the hierarchical levels must be visited sequentially — for obliviousness, if the

block is found in some smaller level, all subsequent levels must perform a dummy

lookup. Here we can visit all levels in parallel since the position label already tells

us which level it is in. Now the following fact is straightforward to observe:

Fact 10. For OPRAMd, Lookup consumes O(log d) parallel steps consuming m · d

CPUs where m is the batch size.

Shuffle. Similar to earlier hierarchical ORAMs [65,67] and OPRAMs [36], a shuffle

operation merges consecutively full levels into the next empty level (or the largest

level). However, in our Shuffle abstraction, there is an input U that contains some

logical addresses together with new values to be updated. Moreover, the shuffle

operation is associated with an update function that determines how the new values

in U should be incorporated into the OTM during the rebuild.

86

In our full OPRAM scheme later, the update array U will be passed from

the immediate next depth OPRAMd+1, and contains the new position labels that

OPRAMd+1 has chosen for recently accessed logical addresses. These position labels

must then be recorded by OPRAMd appropriately.

More formally, each position-based OPRAMd supports a shuffle operation, de-

noted Shuffle(U, `; update), where the parameters are explained as follows:

1. An update array U in which each (non-dummy) entry contains a logical address

that needs to be updated, and a new value for this block. (Strictly speaking,

we allow a block to be partially updated.)

We will define additional constraints on U subsequently.

2. The level ` to be rebuilt during this shuffle.

3. An update function that specifies how the information in U is used to compute

the new value of a block in the OTM.

The reason we make this rule explicit in the notation is that a block whose

address that appears in U may only be partially modified; hence, we later

need to specify this update function carefully. However, to avoid cumbersome

notation, we may omit the parameter update, and just write Shuffle(U, `), when

the context is clear.

For each OPRAMd, when Shuffle(U, `; update) is called, it must be guaranteed

that ` ≤ d; and moreover, either level ` must either be empty or ` = d (i.e., this is

the largest level in OPRAMd). Moreover, there is an extra OTM′0; jumping ahead,

87

we shall see that OTM′0 contains the blocks that are freshly fetched.

The Shuffle algorithm then combines levels 0, 1, . . . , ` (of OPRAMd), together

with the extra OTM′0, into level `, updating some blocks’ contents as instructed

by the update array U and the update function update. At the end of the shuffle

operation, all levels 0, 1, . . . , `−1 are now marked as empty and level ` is now marked

as full.

We now explain the assumptions we make on the update array U and how we

want the update procedure to happen:

• We require that each logical address appears at most once in U .

• Let A be all logical addresses remaining in levels 0 to ` in OPRAMd: it must

hold that the set of logical addresses in U is a subset of those in A. In other

words, a subset of the logical addresses in A will be updated before rebuilding

level `.

• If some logical address addr exists only in A but not in U , after rebuilding level

`, the block’s value from the current OPRAMd should be preserved. If some

logical address addr exists in both A and in U , we use the update function to

modify its value: update takes a pair of blocks (addr, data) and (addr, data′)

with the same address but possibly different contents (the first of which coming

from the current OPRAMd and the second coming from U), and computes the

new block content data∗ appropriately.

We remark that the new value data∗ might depend on both data and data′.

Later, we will describe how the update rule is implemented.

88

Upon receiving Shuffle(U, `; update), proceed with the following steps:

1. Let A := ∪`i=0OTMi.Getall ∪ OTM′0.Getall, where the operator ∪ denotes con-

catenation. Moreover, for an entry in A that comes from OTMi, then it also

carries a label i.

At this moment, the old OTM0, . . . ,OTM` instances may be destroyed.

2. We obliviously sort A∪U in increasing order of logical addresses, and moreover,

placing all dummy entries at the end. If two blocks have the same logical

address, place the entry coming from A in front of the one coming from U .

At this moment, in one linear scan, we can operate on every adjacent pair of

entries using the aforementioned update operation, such that if they share the

same logical address, the first entry is preserved and updated to a new value,

and the second entry is set to dummy.

At this moment, we obliviously sort the resulting array moving all dummies

to the end. We truncate the resulting array preserving only the first 2` · m

elements and let A′ denote the outcome (note that only dummies and no real

blocks will truncated in the above step).

3. Next, we call U ′ ← Build(A′) that builds a new OTM′ and U ′ contains the

positions of blocks in OTM′.

4. OTM′ is now the new level ` and henceforth it will be denoted OTM`. Mark

level ` as full and levels 0, 1, . . . , ` − 1 as empty. Finally, output U ′ (in our

full OPRAM construction later, U ′ will be passed to the next (i.e., immedi-

89

ately smaller) position-based OPRAM as the update array for performing its

shuffle).

If we realize the oblivious sort with the AKS network [10] that sorts n items

in O(log n) parallel steps consuming n CPUs, we easily obtain the following fact —

note that there is a negligible in N probability that the algorithm runs longer than

the stated asymptotic time due to the oblivious random permutation building block

(see Section 4.1.2).

Fact 11. Suppose that the update function can be evaluated by a single CPU in

O(1) steps. For OPRAMd, let ` ≤ d, then except with negligible in N probability,

Shuffle(U, `) takes O(log(m · 2`) + log logN) parallel steps consuming m · 2` CPUs.

Observe that in the above fact, the randomness comes from the oblivious

random permutation subroutine used in building the one-time oblivious memory

data structure.

Trivial case: OPRAM0. In this case, OPRAM0 simply stores its entries in an array

A[0..m) of size m and we assume that the entries are indexed by a (log2m)-bit

string. Moreover, each address is also a (log2m)-bit string, whose block is stored at

the corresponding entry in A.

• Lookup. Upon receiving a batch of m depth-m truncated addresses where all

the real addresses are distinct, use oblivious routing to route A[0..m) to the

requested addresses. This can be accomplished in O(m logm) total work and

O(logm) depth. Note that OPRAM0’s lookup does not receive any position

labels.

90

• Shuffle. Since there is only one array A (at level 0), Shuffle(U, 0) can be

implemented by oblivious sorting.

4.3.2 OPRAM Scheme from Position-Based OPRAM

Recursive OPRAMs. The OPRAM scheme consists of D + 1 position-based

OPRAMs henceforth denoted as OPRAM0,OPRAM1,OPRAM2, . . . ,OPRAMD. OPRAMD

stores the actual data blocks, whereas every other OPRAMd where d 6= D recursively

stores the position labels for the next data structure OPRAMd+1. Our construction

is in essence recursive although in presentation we shall spell out the recursion for

clarity. Henceforth we often say that OPRAMd is at recursion depth d or simply

depth d.

Although we are inspired by the recursion technique for tree-based ORAMs [134],

using this recursion technique in the context of hierarchical ORAMs/OPRAMs raises

new challenges. In particular, we cannot use the recursion in a blackbox fashion like

in tree-based constructions since all of our (position-based, hierarchical) OPRAMs

must reshuffle in sync with each other in a non-blackbox fashion as will become clear

later.

Format of depth-d block and address. Suppose that a block’s logical address is

a log2N -bit string denoted addr〈D〉 := addr[1..(log2N)] (expressed in binary format),

where addr[1] is the most significant bit. In general, at depth d, an address addr〈d〉

is the length-(log2m + d) prefix of the full address addr〈D〉. Henceforth, we refer to

addr〈d〉 as a depth-d address (or the depth-d truncation of addr).

91

When we look up a data block, we would look up the full address addr〈D〉 in

recursion depth D; we look up addr〈D−1〉 at depth D− 1, addr〈D−2〉 at depth D− 2,

and so on. Finally at depth 0, the log2m-bit address uniquely determines one of the

m blocks stored at OPRAM0. Since each batch consists of m concurrent lookups,

one of them will be responsible for this block in OPRAM0.

A block with the address addr〈d〉 in OPRAMd stores the position labels for two

blocks in OPRAMd+1, at addresses addr〈d〉||0 and addr〈d〉||1 respectively. Henceforth,

we say that the two addresses addr〈d〉||0 and addr〈d〉||1 are siblings to each other;

addr〈d〉||0 is called the left sibling and addr〈d〉||1 is called the right sibling. We say

that addr〈d〉||0 is the left child of addr〈d〉 and addr〈d〉||1 is the right child of addr〈d〉.

4.3.2.1 Operations

Each batch contains m requests denoted as ((opi, addri, datai) : i ∈ [m]), where

for opi = read, there is no datai. We perform the following steps.

1. Conflict resolution. For every depth d ∈ {0, 1, . . . , D} in parallel, perform

oblivious conflict resolution on the depth-d truncation of all m addresses re-

quested.

For d = D, we suppress duplicate addresses. If multiple requests collide on

addresses, we would prefer a write request over a read request (since write

requests also fetch the old memory value back before overwriting it with a new

value). In the case of concurrent write operations to the same address, we use

the properties of the underlying PRAM to determine which write operation

92

prevails.

For 0 ≤ d < D, we perform the following:

(a) Consider the depth-(d+1) truncated address: A〈d+1〉 := (addr
〈d+1〉
1 , . . . , addr〈d+1〉

m),

and use oblivious sorting to suppress duplicates of depth-(d+1) addresses,

i.e., each repeated depth-(d + 1) address is replaced by a dummy. Let

Â〈d+1〉 be the resulting array (of size m) sorted by the (unique) depth-

(d+ 1) addresses.

(b) For each i ∈ [1..m], we produce an entry (addri, flagsi) according to the

following rules:

i. If addr
〈d+1〉
i is a dummy, then addri := ⊥ is also dummy.

ii. If addr
〈d+1〉
i does not share its length-d prefix with addr

〈d+1〉
i−1 or addr

〈d+1〉
i+1 ,

then addri is set to be the length-d prefix of addr
〈d+1〉
i . Moreover, if

addr
〈d+1〉
i ends with 0, then flagsi := 10; otherwise, flagsi := 01.

iii. If addr
〈d+1〉
i and addr

〈d+1〉
i−1 share the same length-d prefix, then addri :=

⊥; otherwise, if addr
〈d+1〉
i and addr

〈d+1〉
i+1 share the same length-d prefix,

then addri is set to the shared length-d prefix of the address, and

flagsi := 11.

(c) Then, the batch access for OPRAMd is ((addri, flagsi) : i ∈ [m]) where

each non-dummy depth-d truncated address addr
〈d〉
i is distinct and has

a two-bit flagsi that indicates whether each of two addresses (addr
〈d〉
i ||0)

and (addr
〈d〉
i ||1) is requested in OPRAMd+1.

93

2. Fetch. For d = 0 to D sequentially, perform the following:

• For each i ∈ [m] in parallel: let addr
〈d〉
i be the depth-d truncation of

addr
〈D〉
i .

• Call OPRAMd.Lookup to look up the depth-d addresses addr
〈d〉
i for all i ∈

[m]; observe that position labels for the lookups of non-dummy addresses

will be available from the lookup of the previous OPRAMd−1 for d ≥ 1,

which is described in the next step. Recall that for OPRAM0, no position

labels are needed.

• If d < D, each lookup from a non-dummy (addr
〈d〉
i , flagsi) will return two

positions for the addresses addr
〈d〉
i ||0 and addr

〈d〉
i ||1 in OPRAMd+1. The

two bits in flagsi will determine whether each of these two position labels

are needed in the lookup of OPRAMd+1.

We can imagine that there are m CPUs at recursion depth d+ 1 waiting

for the position labels corresponding to {addr
〈d+1〉
i : i ∈ [m]}. Now, using

oblivious routing (see Section 4.1.2), the position labels can be delivered

to the CPUs at recursion depth d+ 1.

• If d = D, the outcome of Lookup will contain the data blocks fetched.

Recall that conflict resolution was used to suppress duplicate addresses.

Hence, oblivious routing can be used to deliver each data block to the

corresponding CPUs that request it.

• In any case, the freshly fetched blocks are updated if needed in the case

of d = D, and are placed in OTM′0 in each OPRAMd.

94

3. Maintain. We first consider depth D. Set depth-D’s update array U 〈D〉 := ∅.

Suppose that `〈D〉 is the smallest empty level in OPRAMD.

We have the invariant that for all 0 ≤ d < D, if `〈D〉 < d, then `〈D〉 is also the

smallest empty level in OPRAMd.

For d := D downto 0, do the following:

• If d < `〈D〉, set ` := d; otherwise, set ` := `〈D〉.

• Call U ← OPRAMd.Shuffle(U 〈d〉, `; update) where update is the following

natural function: recall that in U 〈d〉 and OPRAMd−1, each depth-(d− 1)

logical address stores the position labels for both children addresses. For

each of the child addresses, if U 〈d〉 contains a new position label, choose

the new one; otherwise, choose the old label previously in OPRAMd−1.

• If d ≥ 1, we need to send the updated positions involved in U to depth

d− 1.

Now, set U 〈d−1〉 ← Convert(U, d), which will be used in the next iteration

for recursion depth d− 1 to perform its shuffle.

The Convert subroutine takes an array that stores the position labels

within OPRAMd for depth-d addresses, and converts the array to one

that contains depth-(d − 1) addresses where each entry may pack up to

two position labels for its child addresses at depth-d.

The subroutine Convert(U, d) proceeds as follows. First, perform oblivious

sort on the depth-d addresses to produce an array denoted as {(addr
〈d〉
i , posi) :

i ∈ [|U |]}.

95

Next, for i ∈ [|U |] in parallel, look to the left and look to the right and

do the following:

– If addr
〈d〉
i = addr||0 and addr

〈d〉
i+1 = addr||1 for some addr, i.e., if my

right neighbor is my sibling, then write down u′i = (addr, (posi, posi+1)),

i.e., both siblings’ positions need to be updated.

– If addr
〈d〉
i−1 = addr||0 and addr

〈d〉
i = addr||1 for some addr, i.e., if my

left neighbor is my sibling, then write down u′i = ⊥.

– Else if i does not have a neighboring sibling, parse addr
〈d〉
i = addr||b

for some b ∈ {0, 1}, then write down u′i = (addr, (posi, ∗)) if b = 0

or write down u′i = (addr, (∗, posi)) if b = 1. In these cases, only the

position of one of the siblings needs to be updated in OPRAMd−1.

– Let U 〈d−1〉 := {u′i : i ∈ [|U |]}. Note here that each entry of U 〈d−1〉

contains a depth-(d − 1) address of the form addr, as well as the

update instructions for two position labels of the depth-d addresses

addr||0 and addr||1 respectively.

We emphasize that when ∗ appears, this means that the position of

the corresponding depth-d address does not need to be updated in

OPRAMd−1.

– Output U 〈d−1〉.

4.3.3 Analysis and Extensions

We now give detailed analysis and proofs for our OPRAM scheme.

96

4.3.3.1 Correctness and Obliviousness

Fact 12. The above construction maintains correctness. More specifically, at every

recursion depth d, the correct position labels will be input to the Lookup operations

of OPRAMd; and every batch of requests will return the correct answers.

Proof. Straightforward by construction.

In our OPRAM construction, for every OPRAMd at recursion depth d, the

following invariants are respected by construction as stated in the following facts.

Fact 13. For every OPRAMd, every OTMi instance at level i ≤ d that is created

needs to answer at most 2i batches of m requests before OTMi instance is destroyed.

Proof. For every OPRAMd, the following is true: imagine that there is a (d+ 1)-bit

binary counter initialized to 0 that increments whenever a batch of m requests come

in. Now, for 0 ≤ ` < d, whenever the `-th bit flips from 1 to 0, the `-th level

of OPRAMd is destroyed; whenever the `-th bit flips from 0 to 1, the `-th level of

OPRAMd is reconstructed. For the largest level d of OPRAMd, whenever the d-th

(most significant) bit of this binary counter flips from 0 to 1 or from 1 to 0, the

(d+1)-th level is destroyed and reconstructed. The fact follows in a straightforward

manner by observing this binary-counter argument.

Fact 14. For every OPRAMd and every OTM` instance at level ` ≤ d, during the

lifetime of the OTM` instance: (a) no two real requests will ask for the same depth-d

97

address; and (b) for every request that asks for a real depth-d address, the address

must exist in OTMi.

Proof. We first prove claim (a). Observe that for any OPRAMd, if some depth-d

address addr〈d〉 is fetched from some level ` ≤ d, at this moment, addr〈d〉 will either

enter a smaller level `′ < `; or some level `′′ ≥ ` will be rebuilt and addr〈d〉 will go

into level `′′ — in the latter case, level ` will be destroyed prior to the rebuilding

of level `′′. In either of the above cases, due to correctness of the construction, if

addr〈d〉 is needed again from OPRAMd, a correct position label will be provided for

addr〈d〉 such that the request will not go to level ` (until the level is reconstructed).

Moreover, two real requests will not appear in the same request due to the conflict

resolution procedure. Finally, claim (b) follows from correctness of the position

labels.

Given the above facts, our construction maintains perfect obliviousness.

Lemma 6 (Obliviousness). The above OPRAM construction satisfies perfect obliv-

iousness.

Proof. For every parallel one-time memory instance constructed during the lifetime

of the OPRAM, Facts 13 and 14 are satisfied, and thus every one-time memory

instance receives a valid request sequence. The lemma then follows in a straightfor-

ward fashion by the perfect obliviousness of the parallel one-time memory scheme,

and by observing that all other access patterns of the OPRAM construction are

deterministic and independent of the input requests.

98

4.3.3.2 Asymptotical Complexity

We now analyze the asymptotical efficiency of our OPRAM construction.

First, observe that the asymptotical performance of the fetch phase as stated in

the following fact.

Fact 15. The fetch phase can be completed in O(m log2N) total work, and in

O((logm + log logN) · logN) depth (assuming an unbounded number of CPUs).

Proof. For total work, it is not difficult to see that one logN factor arises from the

recursion depths, and within each recursion depth it takes O(m logN + m logm)

work to perform the fetch. where m logm is the total work incurred by the oblivious

routing in between recursion depths and m logN is the work incurred within a single

position-based OPRAM.

For depth, one logN factor comes from the logN recursion depths, the other

(logm + log logN) factor is due to the depth incurred by each recursion depth as

well as due to the routing in between depths: 1) Within each recursion depth, it

takes O(1) depth to look up each of the up to O(logN) hierarchical levels, and then

select the correct result in another O(log logN) depth; and 2) the routing between

adjacent depths can be implemented with the AKS sorting network [10] that takes

O(logm) depth.

We now proceed to analyze the efficiency of the maintain phase.

Fact 16. Averaging over a sequence of batch accesses, the maintain phase costs

99

O(m log3N) amortized total work (except with negligible in N probability). Further,

for each batch of accesses, the maintain phase can always be completed in O(log2N)

depth assuming an unbounded number of CPUs.

Proof. For each OPRAMd, every level ` ≤ d+1 must be rebuilt after every 2` batch of

m requests. Due to Fact 11, each rebuilding operation will take O(2` ·m log(2` ·m))

total work, and has depth O(log(2` · m)), which is at most O(logN). After the

rebuilding, the Convert algorithm also has the same asymptotic performance. Thus,

for each recursion depth, the amortized total work is O(m log2N). Counting all

O(logN) recursion depths, we have the desired result for total work.

For depth, observe that for each recursion depth, the depth incurred by the

rebuilding is dominated by the depth of the AKS sorting network which is O(logN).

We then have the depth result by observing that the maintain phase is performed

sequentially over O(logN) recursion depths.

Lemma 7. In the above OPRAM construction, the total work blowup is O(log3N),

and the depth blowup is O((logm+ log logN) logN).

Proof. Straightforward from Facts 15 and 16.

Lemma 8. The above OPRAM construction has an O(1) space blowup.

Proof. Our position-based OPRAMd consists of d+ 1 levels – (OTMj : j = 0, . . . , d)

where OTMj is a one-time oblivious memory of size O(m ·2j). Thus, the total space

consumed by OPRAMd is given by
∑d

j=0(m · 2j) = m · 2d+1 blocks.

Our OPRAM construction consists of D + 1 OPRAMs – (OPRAMd : d =

100

0, . . . , logN − logm). Thus, the total space consumed our OPRAM scheme is given

by
∑logN−logm

d=0 (m · 2d+1) = m · 2logN−logm+2 = O(N) blocks.

Corollary 17. The above OPRAM construction incurs O(log3N) simulation over-

head when consuming the same number of CPUs as the original PRAM.

Proof. This corollary is implied directly by Lemma 7. The difference is that Lemma 7

would require more than m CPUs such that the depth of the algorithm may be

smaller than the total work blowup, but if we are constrained to exactly m CPUs,

the amortized parallel runtime per batch of accesses would be exactly O(log3N).

Theorem 18. The above construction is a perfectly secure OPRAM scheme satis-

fying the following performance overhead:

• When consuming the same number of CPUs as the original PRAM, the scheme

incurs O(log3N) simulation overhead;

• When the OPRAM is allowed to consume an unbounded number of CPUs, the

scheme incurs O(log3N) total work blowup and O((logm + log logN) logN)

depth blowup.

In either case, the space blowup is O(1).

Proof. Straightforward from Lemmas 7, 8, and Corollary 17.

Note that at this moment, even for the sequential special case, we already

achieve asymptotic savings over Damg̊ard et al. [47] in terms of space consumption.

Furthermore, Damg̊ard et al. [47]’s construction is sequential in nature and does not

immediately give rise to an OPRAM scheme.

101

4.3.4 Extension: Results for Large Block Sizes

Observe that if the block size is large, then each block in OPRAMd can store

more position identifiers for blocks in OPRAMd+1. Hence, the number D of recursive

OPRAMs can be reduced. This can lead to the following improvement.

Corollary 19 (Large Block Size). Suppose the block size is Θ(N ε) bits. Then, the

above OPRAM construction can be modified to have O(1
ε

log2N) total work blowup

and simulation overhead, and O(1
ε
(logm+ log logN)) depth blowup.

Proof. When the block size is B := Θ(N ε) bits, the number of depths of recursive

OPRAM’s becomes D := logN

log B
logN

= O(1
ε
).

Hence, in every performance metric stated in Lemma 7 and Corollary 17, one

factor of logN is replaced with O(1
ε
).

4.4 Related Work

Before we conclude this chapter, we describe the work that is closely related to

the result presented. Goldreich and Ostrovsky first showed a computationally secure

ORAM scheme with poly-logarithmic simulation overhead. Therefore, one interest-

ing question is whether ORAMs can be constructed without relying on computa-

tional assumptions. Ajtai [11] answered this question and showed that statistically

secure ORAMs with poly-logarithmic simulation overhead exist. Although Ajtai re-

moved computational assumptions from ORAMs, his construction has a (negligibly

small) statistical failure probability, i.e., with some negligibly small probability, the

102

ORAM construction can leak information. Subsequently, Shi et al. [134] proposed

the tree-based paradigm for constructing statistically-secure ORAMs. Tree-based

constructions were later improved further in several works [38, 43, 61, 140, 143], and

this line of works improve the practical performance of ORAM by several orders

of magnitude in comparison with earlier constructions. It was also later under-

stood that the tree-based paradigm can be used to construct computationally se-

cure ORAMs saving yet another log log factor in cost in comparison with statistical

security [38,56].

Perfectly secure ORAM [47] was first studied by Damg̊ard et al. Perfect secu-

rity requires that the (oblivious) program’s memory access patterns be identically

distributed regardless of the inputs to the program; and thus with probability 1,

no information can be leaked about the secret inputs to the program. To date,

Damg̊ard et al.’s construction [47] remains the only known non-trivial, perfectly

secure ORAM scheme. Their scheme achieves O(log3N) simulation overhead and

O(logN) space blowup relative to the original RAM program. As mentioned, even

for the sequential special case, our work asymptotically improves Damg̊ard et al.’s

result [47] by avoiding the O(logN) blowup in space; and moreover, our ORAM

construction is conceptually simpler than that of Damg̊ard et al.’s.

Oblivious Parallel ORAM (OPRAM) was first proposed in an elegant work

by Boyle, Chung, and Pass [28], and subsequently improved in several followup

works [35, 36, 38, 39, 117]. All known results on OPRAM focus on the statistically

secure or the computationally secure setting. To the best of our knowledge, until

this work, we know of no efficient OPRAM scheme that is perfectly secure. Chen,

103

Lin and Tessaro [39] introduced a generic method to transform any ORAM into an

OPRAM at the cost of a logN blowup — their techniques achieve only statistical

security too since security (or correctness) is only guaranteed with high probability

(specifically, when some queue does not become overloaded in their scheme).

4.5 Conclusion and Future Work

In this chapter, we showed a construction for a perfectly secure OPRAM

scheme withO(log3N) total work blowup, O(logN(logm+log logN)) depth blowup,

and O(1) space blowup. To the best of our knowledge our scheme is the first per-

fectly secure (non-trivial) OPRAM scheme, and even for the sequential special case

we asymptotically improve the space overhead relative to Damg̊ard et al. [47]. Prior

to our work, the only known perfectly secure ORAM scheme is that by Damg̊ard

et al. [47], where they achieve O(log3N) simulation overhead and O(logN) space

blowup. No (non-trivial) OPRAM scheme was known prior to our work, and in

particular the scheme by Damg̊ard et al. [47] does not appear amenable to paral-

lelization. Finally, in comparison with known statistically secure OPRAMs [38,143],

our work removes the dependence (in performance) on the security parameter; thus

we in fact asymptotically outperform known statistically secure ORAMs [143] and

OPRAMs [38] when (sub-)exponentially small failure probabilities are required.

Exciting questions remain open for future research:

• Can we construct perfectly secure ORAMs/OPRAMs whose total work blowup

matches the best known statistically secure ORAMs/OPRAMs assuming neg-

104

ligible security failures?

• Can we construct perfectly secure ORAM/OPRAM schemes whose concrete

performance lends to deployment in real-world systems?

105

Chapter 5: HOP: Hardware Makes Obfuscation Practical

Program obfuscation [14, 76] is a powerful cryptographic primitive, enabling

numerous applications that rely on intellectually-protected programs and the safe

distribution of such programs. For example, program obfuscation enables a software

company to release software patches without disclosing the vulnerability to an at-

tacker. It could also enable a pharmaceutical company to outsource its proprietary

genomic testing algorithms, to an untrusted cloud provider, without compromising

its intellectual properties. Here, the pharmaceutical company is referred to as the

“sender” whereas the cloud provider is referred to as the “receiver” of the program.

Recently, the cryptography community has had new breakthrough results in

understanding and constructing program obfuscation using multilinear maps [58].

However, cryptographic approaches towards program obfuscation have limitations.

First, it is well-understood that strong (simulation secure) notions of program ob-

fuscation cannot be realized in general [14] — although they are desired in many

applications such as the aforementioned ones. Second, existing cryptographic con-

structions of obfuscation (that achieve imperfect notions of security, such as in-

distinguishability obfuscation [59]) incur prohibitive practical overheads, and are

infeasible for most interesting application scenarios. For example, it takes ∼ 3.3

106

hours to obfuscate even a very simple program such as an 80-bit point function (a

function that is 0 everywhere except at one point) and ∼ 3 minutes to evaluate

it [98]. Moreover, these cryptographic constructions of program obfuscation rely

on new cryptographic assumptions whose security is still being investigated by the

community through a build-and-break iterative cycle [40]. Thus, to realize a prac-

tical scheme capable of running general programs, it seems necessary to introduce

additional assumptions.

In this direction, there has been work by both the cryptography and archi-

tecture communities in assuming trusted hardware storing a secret key. However,

proposals from the cryptography community to realize obfuscation (and a closely re-

lated primitive called functional encryption) have been largely theoretical, focusing

on what minimal trusted hardware allows one to circumvent theoretical impossibil-

ity and realize simulation-secure obfuscation [42, 52, 74]. Consequently these works

have not focused on practical efficiency, and they often require running the program

as circuits (instead of as RAM programs) and also utilize expensive cryptographic

primitives such as fully homomorphic encryption (FHE) and non-interactive zero

knowledge proofs (NIZKs). On the other hand, proposals from the architecture

community such as Intel SGX [111], AEGIS [141], XOM [99], Bastion [34], As-

cend [55] and GhostRider [102] are more practical, but their designs do not achieve

cryptographic definition of obfuscation. In this work, we close this gap by design-

ing and implementing a practical construction of program obfuscation for RAM

programs using trusted hardware.

Problem statement. The problem of obfuscation can be described as follows. A

107

obfuscate

obfuscated
prog

input output

Sender: Receiver:

program execute

send
Sender can obfuscate different programs

Receiver can execute a program on
with same key

multiple inputs
to receiver

runs obfuscate runs execute
(on multiple inputs)

(from sender)

Figure 5.1: Obfuscation Scenario. The sender obfuscates programs using the

obfuscate procedure. It sends (possibly multiple) obfuscated program(s) to the

receiver. The receiver can execute any obfuscated program with any input of its

choice.

sender, who owns a program, uses an obfuscate procedure to create an obfuscated

program. It then sends this obfuscated program to a receiver who can execute the

program on inputs of her choice. The obfuscated program should be functionally

identical to the original program. For any given input, the obfuscated program runs

for time T (fixed for the program) and returns an output.1 The receiver only has a

black box-like access to the program, i.e., it learns only the program’s input/output

behavior and the bound on the runtime T . In obfuscation, the inputs/outputs are

public (not encrypted).

To make use of a trusted secure processor (which we call a HOP processor),

our obfuscation model is modified as follows (cf. Figure 5.1). HOP processors are

manufactured with a hardwired secret key. The HOP processor (which is trusted) is

given to the receiver, and the secret key is given to the sender. Using the secret key,

the sender can create multiple obfuscated programs using the obfuscate procedure

and send them to the receiver. The receiver then runs the execute procedure (possi-

1T is analogous to a bound on circuit size in the cryptographic literature.

108

bly multiple times) to execute the program with (cleartext) inputs of her choice. As

mentioned, the receiver (adversary) learns only the final outputs and nothing else.

In other words, we offer virtual blackbox simulation security, where the receiver

learns only as much information as if she were interacting with an oracle that com-

putes the obfuscated program. In particular, the receiver should not learn anything

from the HOP processor’s intermediate behavior such as timing or memory access

patterns, or the program’s total runtime (since each program always runs for a fixed

amount of time set by the sender).

Key distribution with public/private keys. We assume symmetric keys for sim-

plicity. HOP may also use a private/public key distribution scheme common in to-

day’s trusted execution technology. The obfuscate and execute operations can be de-

coupled from the exact setup and key distribution system used to get public/private

keys into the HOP processor. A standard setup for key distribution [75, 111] is as

follows: First, a trusted manufacturer (e.g., Intel) creates a HOP processor with a

unique secret key. Its public key is endorsed/signed by the manufacturer. Second,

the HOP processors are distributed to receivers and the certified public keys are

distributed to senders (software developers). Note that the key goal of obfuscation

is to secure the sender’s program and this relies on the secrecy of the private key

stored in the processor. Thus, it is imperative that the sender and the manufacturer

are either the same entity or the sender trusts the manufacturer to not reveal the

secret key to another party.

Non-goals. We do not defend against analog side channels such as measuring

power analysis or heat dissipation, we also do not defend against hardware fault

109

injection [9,25,89]. We assume that the program to be obfuscated is trustworthy and

will not leak sensitive information on its own, including through possible software

vulnerabilities such as buffer overflows [22]. There exist techniques to mitigate these

attacks, and we consider them to be complementary to our work.

Challenges. It may seem that relying on secure hardware as described above

easily ‘solves’ the program obfuscation problem. This is not the case: even with

secure hardware, it is still not easy to develop a secure and practical obfusca-

tion scheme. The crux of the problem is that many performance optimizations

in real systems (and related work in secure processors [55, 102, 124]) hinge on ex-

ploiting program-dependent behavior. Yet, obfuscation calls for completely hiding

all program-dependent behavior. Indeed, we started this project with a strawman

processor that gives off the impression of executing any (or every) instruction during

each time step – so as to hide the actual instructions being executed. Not surpris-

ingly, this incurs huge (∼ 10, 000×; c.f. Section 5.2.2) overheads over an insecure

scheme, even after employing a state-of-the-art Oblivious RAM [56, 67] to improve

the efficiency of accessing main memory. Moreover, in an obfuscation setting, the

receiver can run the same program multiple times for different inputs and outputs.

Introducing practical features such as context switching — where the receiver can

obtain intermediate program state — enables this level of flexibility but also enables

new attacks such as rewinding and mix-and-match execution. Oblivious RAMs, in

particular, are not secure against rewinding and mix-and-match attacks and an im-

portant challenge in this work is to protect them against said attacks in the context

of the HOP system.

110

Our Contributions

Given the above challenges, a primary goal of this work is to develop and imple-

ment an optimized architecture that is still provably secure by the VBB obfuscation

definition. In more detail, we make the following contributions:

1. Theoretical contributions: We provide the first theoretic framework to effi-

ciently obfuscate RAM programs directly on secure hardware. One goal here is to

avoid implicitly transforming the obfuscated program to its circuit representation

(e.g., [52]), as the RAM to circuit transformation can incur a polynomial blowup in

runtime [63]. We also wish for our analysis to capture important performance opti-

mizations that matter in an implementation; such as the use of an Oblivious RAM,

on-chip memory, instruction scheduling, and context switching. As a byproduct,

part of our analysis achieves a new theoretical result (extending [74]): namely, how

to provide program obfuscation for RAM programs directly assuming only ‘state-

less’ secure hardware.2 We also show interesting technical subtleties that arise in

constructing efficient RAM-model program obfuscation from stateless hardware. In

particular, we highlight the different techniques used to overcome all possible forms

of rewinding and mix-and-match attacks (which may be of independent interest).

Putting it all together, we provide a formal proof of security under the universally

composable (UC) simulation framework [31].

2Roughly speaking, a HOP processor which allows the host to arbitrary context switch programs

on/off the hardware is equivalent to ‘stateless’ hardware in the language of prior work [42,74]. This

is explained further in Section 5.2.

111

2. Implementation with trusted hardware: We design and implement a hard-

ware prototype system (called HOP) that attains the definition of program obfus-

cation and corresponds to our theoretic analysis. To the best of our knowledge,

this effort represents the first prototype implementation of a provably secure VBB

obfuscation scheme in any model under any assumptions. For performance, our

HOP prototype uses a hardware-optimized Oblivious RAM, on-chip memory and

instruction scheduling (our implementation does not support context switching).

As mentioned earlier, our key differentiator from prior secure processor work is that

our performance optimizations maintain program privacy and exhibit no program-

dependent behavior. With these optimizations, HOP performs 5× ∼ 238× better

than the baseline HOP design across simple to sophisticated programs while the

overhead over an insecure system is 8× ∼ 76×. The program code size overhead

for HOP is only an additive constant. Our final design will require 72% area when

synthesized on a commodity FPGA device. Of independent interest, we prove that

our optimized scheme always achieves to within 2× the performance of a scheme

that does not protect the main memory timing channel (Section 5.2.3).

5.1 Related Work

We now describe work that is closely related to HOP.

Obfuscation and Oblivious RAMs. To enable running RAM programs directly

on secure hardware, we use a hardware implementation of an ORAM [56,57] to hide

access patterns to external memory. Using this, we describe a protocol to achieve the

112

definition of VBB obfuscation. Specifically, under VBB obfuscation, an adversary

can execute a program multiple times with inputs of his choice and still not be able to

learn the program. Interestingly, ORAMs were also originally introduced to prevent

software piracy. Compared to an ORAM, we consider a setting weaker than the one

considered by Goldreich and Ostrovsky. We assume a stateless trusted hardware

token instead of a stateful token. We improve the resulting protocol while taking

into consideration other side channels such as the timing channel attacks. Finally,

we implement a prototype hardware that is capable of executing an obfuscated

program.

Secure processors. Secure processors such as AEGIS [141], XOM [99], Bastion [34]

and Intel SGX [111] encrypt and verify the integrity of main memory. Applications

such as VC3 [131] that are built atop Intel SGX can run MapReduce computa-

tions [49] in a distributed cloud setting while keeping code and data encrypted.

However, these secure processors do not hide memory access patterns. An adver-

sary observing communication patterns between a processor and its memory can

still infer significant information about the data [121,156].

There have been some recent secure processor proposals that do hide memory

access patterns [55,102,107,124]. Ascend [55] is a secure processor architecture that

protects privacy of data against physical attacks when running arbitrary programs.

Phantom [107] similarly achieves memory obliviousness, and has been integrated

with GhostRider [102] to perform program analysis and decide whether to use an

encrypted RAM or Oblivious RAM for different memory regions. They also employ

a scratchpad wherever applicable. Raccoon [124] hides data access patterns on

113

commodity processors by evaluating all program paths and using an Oblivious RAM

in software.

The primary difference between the above schemes and HOP is the following.

All of the above schemes focused on protecting input data, while the program is

assumed to be public and known to the adversary. GhostRider [102] even utilizes

public knowledge of program behavior to improve performance through static anal-

ysis. Conversely, obfuscation and HOP protect the program and the input data is

controlled by the adversary. We remark, however, that HOP can be extended to

additionally achieve data privacy simply by adding routines to decrypt the (now

private) inputs and encrypt the final outputs before they are sent to the client (now

different from the HOP processor owner). Naturally, the enhanced security comes

with additional cost. We evaluate this overhead of additionally providing program-

privacy by comparing to GhostRider in Section 5.5.5.

Obfuscation. The formal study of virtual black-box (VBB) obfuscation was initi-

ated by Hada [76] and Barak et al. [14]. Unfortunately, Barak et al. showed that it

is impossible to achieve program obfuscation for general programs. Barak et al. also

defined a weaker notion of indistinguishability obfuscation (iO), which avoids their

impossibility results. Garg et al. [59] proposed a construction of iO for all circuits

based on assumptions related to multilinear maps. However, these constructions are

not efficient from a practical standpoint. There are constructions for iO for RAM

programs proposed where the size of the obfuscated program is independent of the

running time [21,32,90]. However, by definition, these constructions do not achieve

VBB obfuscation.

114

In order to circumvent the impossibility of VBB obfuscation, Goyal et al. [74]

considered virtual black-box obfuscators on minimal secure hardware tokens. Goyal

et al. show how to achieve VBB obfuscation for all polynomial time computable

functions using stateless secure hardware tokens that only perform authenticated

encryption/decryption and a single NAND operation. In a related line of work,

Döttling et al. [52] show a construction for program obfuscation using a single state-

less hardware token in universally input-oblivious models of computation. Bitansky

et al. [20] show a construction for program obfuscation from “leaky” hardware. Sim-

ilarly, Chung et al. [42] considered basing the closely related primitive of functional

encryption on hardware tokens. Unfortunately, all the above works require the ob-

fuscated program run using a universal circuit (or similar model) to achieve function

privacy. They do not support running RAM programs directly. This severely limits

the practicality of the above schemes, as we demonstrate in Section 5.5.5.

Heuristic approaches to obfuscation. There are heuristic approaches to code

obfuscation for resistance to reverse engineering [85,130,156]. These works provide

low overheads, but do not offer any cryptographic security.

Terminology: Hardware Tokens. Trusted hardware is widely referred to as

hardware tokens in the theoretical literature [42, 52, 74, 86]. Secure tokens are typi-

cally assumed to be minimal trusted hardware that support limited operations (e.g.,

a NAND gate in [74]). However, running programs in practice requires full-fledged

processors. In this work, we refer to HOP as “secure hardware” or a “secure proces-

sor”. As a processor, HOP will store a lot more internal state (e.g., a register file,

etc.). We note that from a theoretic perspective, both HOP and ‘simple’ hardware

115

tokens require a number of gates which is polylogarithmic in memory size.

Terminology: Stateful vs. Stateless tokens. The literature further classifies

secure tokens as either stateful tokens or stateless. A stateful token maintains state

across invocations. On the other hand, a stateless token, except for a secret key, does

not maintain any state across invocations. While HOP maintains state across most

invocations for better performance, we will augment HOP to support on-demand

context switching — giving the receiver the ability to swap out an obfuscated pro-

gram for another at any time (Section 5.2.5), which is common in today’s systems.

In an extreme scenario, the adversary can context switch after every processor cy-

cle. In this case, HOP becomes equivalent to a “stateless” token from a theoretical

perspective [42, 74], and our security proof will assume stateless tokens.

5.2 Obfuscation from Trusted Hardware

In this section, we will intuitively describe the HOP architecture. We will

start with an overview of a simple (not practical) HOP processor to introduce some

key points. Each subsection after that introduces additional optimizations (some

expose security issues, which we address) to make the scheme more practical. We

give security intuition where applicable, and formally prove security for the fully

optimized scheme in Section 5.3.

116

5.2.1 Execution On-Chip

Let us start with the simplest case where the whole obfuscated program and

its data (working set) fit in a processor’s on-chip storage. Then, we may architect

a HOP processor to be able to run programs whose working sets don’t exceed a

given size. In the setup phase, first, the sender correctly determines a value T –

the amount of time (in processor cycles) that the program, given any input, runs

on HOP. Then, the sender encrypts (obfuscates) the program together using an

authenticated encryption scheme. T is authenticated along and included with the

program but is public. The obfuscated program is sent to the receiver. The receiver

then sends the obfuscated program and her own input to the HOP processor. The

HOP processor decrypts and runs the program, and returns a result after T processor

cycles. The HOP processor makes no external memory requests during its execution

since the program and data fit on chip. Security follows trivially.

5.2.2 Adding External Memory

Unfortunately, since on-chip storage is scarce (commercial processors have a

few MegaBytes of on-chip storage), the above solution can only run programs with

small working sets. To handle this, like any other modern processor, the HOP

processor needs to access an external memory, which is possibly controlled by the

malicious receiver.

When the HOP processor needs to make an access to this receiver memory,

it needs to hide its access patterns. For the purposes of this discussion, the access

117

pattern indicates the processor’s memory operations (reads vs. writes), the memory

addresses for each access and the data read/written in each access. We hide ac-

cess pattern by using an Oblivious RAM (ORAM), which makes a polylogarithmic

number of physical memory accesses to serve each logical memory request from the

processor [140]. The ORAM appears to HOP as an on-chip memory controller that

intercepts memory requests from the HOP processor to the external memory. That

is, the ORAM is a hardware block on the processor and is trusted. (More formal

definitions for ORAM are given in Section 5.3.1.)

Each ORAM access can take thousands of processor cycles [56]. Executing

instructions – once data is present on-chip – is still as fast as an insecure machine

(e.g., several cycles). To hide when ORAM accesses are actually needed, HOP must

make accesses at a static program-independent frequency (more detail below). As

before, HOP runs for T time on all inputs and hence achieves the same privacy as

the scheme in Section 5.2.1.

Generating T and security requirements. When accessing receiver-controlled

memory, we must change T to represent some amount of work that is independent

of the external memory’s latency. That is, if T is given in processor cycles, the

adversary can learn the true program termination time by running the program

multiple times and varying the ORAM access latency each time (causing a different

number of logical instructions to complete each time). To prevent this, we change

T to mean ‘the number of external memory read/writes made with the receiver.’

Integrity. To ensure authenticity of the encrypted program instructions and data

during the execution, HOP uses a standard Merkle tree (or one that is integrated

118

with the ORAM [127]) and stores the root of a Merkle tree internally. The re-

ceiver cannot tamper with or rewind the memory without breaking the Merkle tree

authentication scheme.

Efficiency. While the above scheme can handle programs with large working sets, it

is very inefficient. The problem is that each instruction may trigger multiple ORAM

accesses. To give off the impression of running any program, we must provision

for this worst case: running each instruction must incur the cost of the worst-case

number of ORAM accesses. This can result in ∼ 10, 000× slowdown over an insecure

processor.3 The next two subsections discuss two techniques to securely reduce this

overhead by over two orders of magnitude. These ideas are based on well-known

observations that many programs have more arithmetic instructions than memory

instructions, and exhibit locality in memory accesses.

5.2.3 Adding Instruction Scheduling

The key intuition behind our first technique is that many programs execute

multiple arithmetic instructions for every memory access. For example, an instruc-

tion trace may be the following: ‘A A A A M A A M’, where A, M refer to arithmetic

and memory instructions respectively.

Our optimization is to let the HOP processor follow a fixed and pre-defined

schedule: N arithmetic instructions followed by one memory access. In the above

3Our ORAM latency from Section 5.5 is 3000 cycles. The RISC-V ISA [33] we adopt can trigger

3 ORAM accesses, one to fetch the instruction, 1 or 2 more to fetch the operand, depending on

whether the operand straddles an ORAM block boundary.

119

example, given a schedule of A4M , the processor would insert two dummy arithmetic

instructions to adhere to the schedule. A dummy arithmetic instruction can be

implemented by executing a nop instruction. The access trace observable to the

adversary would then be:

A A A A M A A A A M

The bold face A letters refer to dummy arithmetic instructions introduced by

the processor.

Likewise, if another part of the program trace contains a long sequence of

arithmetic instructions, the processor will insert dummy ORAM accesses to adhere

to the schedule.

Gains. For most programs in practice, there exists a schedule with N > 1 that

would perform better than our baseline scheme from Section 5.2.2. For (N + 1)

instructions, the baseline scheme performs (N+1) arithmetic and memory accesses.

With an ANM schedule, our optimized scheme performs only one memory access

which translates to a speedup of N× in the best case, when the cost of the memory

access is much higher than an arithmetic instruction. To translate this into perfor-

mance on HOP - given that HOP must run for T time - consider the following: If

N > 1 does improve performance for the given program on all inputs, it means the

sender can specify a smaller T for that program, while still having the guarantee that

the program will complete given any input. A smaller T means better performance.

Setting N and security intuition. We design all HOP processors to use the same

value of N for all programs and all inputs (i.e., N is set at HOP manufacturing time

120

like the private key). More concretely, we set

N =
ORAM latency

Arithmetic latency

In other words, the number of processor cycles spent on arithmetic instructions

and memory instructions are the same. For typical parameter settings, N > 1000

is expected. While this may sound like it will severely hurt performance given

pathological programs, we show that this simple strategy does “well” on arbitrary

programs and data, formalized below.

Claim: For any program and input, the above N results in ≤ 50% of processor

cycles performing dummy work.

Proof. Without loss of generality, we break up a program into a sequence of instruc-

tion epochs, where each epoch consists of a continuous run of arithmetic instructions

followed by a continuous run of memory instructions. Denote the i-th epoch as

AniMpi . For example, the program

A A A A M A A M M M

has 2 epochs, with n1 = 4, p1 = 1, n2 = 2, p2 = 3.

Without loss of generality, we align the start of each epoch with the beginning

of an ANM schedule. Given our choice of N , we examine the number of processor

cycles spent doing dummy operations in each epoch. For the rest of the analysis,

we abbreviate |M | = ORAM latency and |A| = Arithmetic latency.

Consider the start of epoch i (i.e., the first A instruction). To progress from

the start of the epoch to the first M instruction (excluded) in the epoch, we perform

|A|∗N ∗bni
N
c+ |A|∗(ni mod N) real cycles and |M |∗bni

N
c+ |A|∗(N−(ni mod N))

121

dummy cycles worth of work. To progress from the first M instruction (including)

to the end of the epoch, we perform |M | ∗pi real cycles and |A| ∗N ∗ (pi−1) dummy

cycles worth of work. Note that by our definitions of epochs, we have that pi ≥ 1.

Also note that |M | = |A| ∗N by our choice of N . Combining these two time

periods, we spend |M | ∗ (bni
N
c+ pi) + |A| ∗ (ni mod N) real cycles and |M | ∗ (bni

N
c+

pi − 1) + |A| ∗ (N − (ni mod N)) dummy cycles worth of work.

The claim implies that in comparison to a solution that does not protect the

main memory timing channel, our fixed schedule introduces a maximum overhead of

2× given any program – whether they are memory or computation intensive. Said

another way, even when more sophisticated heuristics than a fixed schedule are used

for different applications, the performance gain from those techniques is a factor of

2 at most.

Security. We note that our instruction scheduling scheme does not impact security

because we use a fixed, public N for all programs.

5.2.4 Adding on-chip Scratchpad Memory

Our second optimization adds a scratchpad: a small unit of trusted memory

(RAM) inside the processor, accesses to which are not observable by the adversary.4

It is used to temporarily store a portion of the working set for programs that exhibit

locality in their access patterns.

Running programs with a scratchpad. We briefly cover how to run programs

4We remark that we use a software-managed scratchpad (as opposed to a conventional processor

cache) as it is easier to determine T when using a scratchpad.

122

using a scratchpad here. More (implementation-specific) detail is given in Sec-

tion 5.4.1. At a high level, data is loaded into the scratchpad from ORAM/unloaded

to ORAM using special (new) CPU instructions that are added to the obfuscated

program. These instructions statically determine when to load which data to speci-

fied offsets in the scratchpad. Now, the scratchpad load/unload instructions are the

only instructions that access ORAM (i.e., are the only ‘M’ instructions). Memory

instructions in the original program (e.g., normal loads and stores) merely lookup

the scratchpad inside the processor (these are now considered ‘A’ instructions). We

will assume the program is correctly compiled so that whenever a program mem-

ory instruction looks up the scratchpad, the data in question has been put there

sometime prior by a scratchpad load/unload instruction.

Security intuition. When the program accesses the scratchpad, it is hidden from

the adversary since this is done on-chip. As before, the only adversary-visible behav-

ior is when ORAM is accessed and this will be governed by the program-independent

schedule from Section 5.2.3.

Program independence. We note that HOP with a scratchpad is still program

independent. Multiple programs can be written (and obfuscated) for the same HOP

processor. One minor limitation, however, is that once an obfuscated program is

compiled, it must be compiled with ‘minimum scratchpad size’ specified as a new

parameter and cannot be run on HOP processors that have a smaller scratchpad.

This is necessary because having a smaller scratchpad will increase T by some un-

known amount. If the program is run on a HOP processor with a larger scratchpad,

it will still function but some scratchpad space won’t be used.

123

Gains. In the absence of a scratchpad, the ratio of arithmetic to memory instruc-

tions is on average 5:1 for our workloads. When using a scratchpad, a larger amount

of data is stored by the processor, thus decreasing memory accesses. This effectively

decreases the execution time T of the program and substantially improves perfor-

mance for programs with high locality (evaluated in Section 5.5.3).

5.2.5 Adding context switching and stateless tokens

For the solutions discussed until now, once a program is started, it cannot be

stopped until it returns a response. But a user may wish to concurrently run multiple

obfuscated programs for a practical deployment model. Therefore, we design the

HOP processor to support on-demand context switch, i.e., the receiver can invoke

a context switch at any point during execution. This, however, introduces security

problems that we need to address.

A context switch means that the current program state should be swapped

out from the HOP processor and replaced with another program’s state. Since such

a context switch can potentially happen at every invocation, one can potentially

think of the HOP processor as storing no state, i.e., it is a stateless token. In

such a scenario, we design it to encrypt all its internal state, and send this en-

crypted/authenticated state (denoted state) to the receiver (i.e., the adversary) on

a context switch. Whenever the receiver passes control back to the token, it will

pass back the encrypted state as well, such that the token can “recover” its state

upon every invocation.

124

Challenges. Although on the surface, this idea sounds easy to implement, in reality

it introduces avenues for new attacks that we now need to defend against. For the

rest of the chapter, and in-line with real processors, we assume the only data that

remains in HOP is the per-chip secret key. A notable attack is the rewinding attack.

In this attack, instead of passing to the token the correct and fresh encrypted state

as well as fresh values of memory reads, a malicious receiver can pass old values.5

The receiver can also mix-and-match values from entirely different executions of

the same program or different programs. The rest of the section outlines how to

prevent the above attacks. We remark that while the below have simple fixes, the

problems themselves are easy to overlook and underscore the need for a careful

formal analysis. Indeed, we discovered several of these issues while working through

the security proof itself.

Preventing mix-and-match. To prevent this attack, we enforce that the receiver

must submit an encrypted state state, corresponding to an execution at some point

t, along with a matching read from time t for the same execution. To achieve this,

observe that state is encrypted with a IND-CPA + INT-CTXT-secure authenticated

5 Here is a possible attack by which the adversary can distinguish between two access patterns.

Consider the access pattern {a, a} i.e., accessing the same block consecutively. If a tree-based

ORAM [134] is used, after the first access, the block is remapped to a new path l′ and the new

path l′ would be subsequently accessed. If the adversary rewinds and executes again, the block

may be mapped to a different path l′′. Thus, for two different executions, two different paths (l′

and l′′) are accessed for the second access. Note that for another access pattern {a, b} for a 6= b,

the same paths would be accessed even after rewinding, thus enabling the adversary to distinguish

between access patterns.

125

encryption scheme, and that the state carries all necessary information to authen-

ticate the next memory read. The state contains information unique to the specific

program, the specific program execution, and to the specific instruction that the

token expects.

Preventing rewinding during program execution. An adversary may try

to gain more information by rewinding an execution to a previous time step, and

replaying it from that point on. To prevent an adversary from learning more in-

formation in this way, we make sure that the token simply replays an old answer

should rewinding happen — this way, the adversary gains no more information by

rewinding. To achieve this, we make sure that any execution for a (program, inp)

pair is entirely deterministic no matter how many times you replay it. All random-

ness required by the token (e.g., those required by the ORAM or memory checker)

are generated pseudorandomly based on the tuple (K, HS, HR) where K is a se-

cret key hardwired in the token, HR is a commitment to the receiver’s input and

HS := digest(mem0) is a Merkle root of the program.

Preventing rewinding during input insertion. In our setting, the obfuscated

program’s inputs inp are chosen by the receiver. Since inputs can be long, it may

not be possible to submit the entire input in one shot. As a result, the receiver has

to submit the input word by word. Therefore the malicious receiver may rewind to

a point in the middle of the input submission, and change parts of the input in the

second execution. Such a rewinding causes two inputs to use the same randomness

for some part of the execution.

To prevent such an input rewinding attack, we require that the adversary sub-

126

mit a Merkle tree commitment HR := digest(inp) of its input inp upfront, before

submitting a long input word by word. HR uniquely determines the rest of the exe-

cution, such that any rewinding will effectively cause the token to play old answers

(as mentioned above), and the adversary learns nothing new through rewinding.

5.3 Formal Scheme

We now give a formal model for the fully optimized HOP processor (i.e., in-

cluding all subsections in Section 5.2) and prove its security in UC framework.

Section 5.3.1 describes the preliminaries. Section 5.3.2 describes the ideal function-

ality for obfuscation of RAM programs. Sections 5.3.3 and 5.3.4 describe our formal

scheme and proof in the UC framework.

5.3.1 Preliminaries

The notations used in this section are summarized in Table 5.1. We denote the

assignment-operator with :=, while we use = to denote equality. For succinctness,

encryption of data is denoted by an overline, e.g., state = EncK(state), where Enc

denotes a IND-CPA + INT-CTXT-secure authenticated encryption scheme and K

is the key used for encryption.

Universal Composability framework. The Universal Composability frame-

work [31] considers two worlds – 1. real world where the parties execute a protocol

π. An adversary A controls the corrupted parties. 2. ideal world where we assume

the presence of a trusted third party. The parties interact with a trusted third party

127

(also called ideal functionality F) with a protocol φ. A simulator S tries to mimic

the actions of A. Intuitively, the amount of information revealed by π in the real

world should not be more than what is revealed by interacting with the trusted third

party in the ideal world. In other words, we have the following: an environment

E observes one of the two worlds and guesses the world. Protocol π UC-realizes

ideal functionality F if for any adversary A there exists a simulator S, such that an

environment E cannot distinguish (except with negligible probability) whether it is

interacting with S and φ or with A and π.

Remark: ORAM initialization. In this chapter, we assume an ORAM starts

out with a memory array where the first N words are non-zero (reflecting the ini-

tial unshuffled memory), followed by all zeros. Most ORAM schemes require an

initialization procedure to shuffle the initial memory contents. We assume that the

ORAM algorithm performs a linear scan of first N memory locations and inserts

them into ORAM. This is used by the simulator in our proof to extract the input

used for execution of the program. We use the convention that such initialization

is performed by the ORAM algorithm upon the first read or write operation —

therefore our notation does not make such initialization explicit. This also means

that the first ORAM operation will incur a higher overhead than others.

5.3.2 FRAMobf : Modeling Obfuscation in UC

The ideal functionality for obfuscation FRAMobf is described in Figure 5.2. The

sender sends the description of a RAM program, RAM ∈ RAM and a program

128

Table 5.1: Notations

K Hardwired secret key stored by the token

meminit A program as a list of instructions

inp Input to the program

mem Memory required for program execution

outp Program output

`in, `out, B Bit-lengths of input, output, and memory word

N Number of words in memory

T Time for program execution

RAM.params {T,N, `in, `out, B}

oramstate State stored by ORAM

sstorestate State stored by sstore

HR Digest of receiver’s input, i.e., digest(inp)

HS Digest of sender’s program, i.e., digest(meminit)

H ′ Merkle root of the main memory

ID pid, using the “create” query. The functionality stores this program, pid, the

sender and receiver. When the receiver invokes “execute” query on an input inp, it

evaluates the program on inp, and returns output outp.

129

FRAMobf [sender, receiver]

On receive (“create”, RAM) from sender for the first time:

Create a unique nonce denoted pid

Store (pid,RAM), send (“create”, pid) to receiver

On receive (“execute”, pid, inp) from receiver:

assert (pid,RAM) is stored for some RAM

outp := RAM(inp), send outp to receiver

Figure 5.2: Ideal Functionality FRAMobf . Although there can be multiple instances

of this ideal functionality, we omit writing the session identifier explicity without

risk of ambiguity.

5.3.3 Scheme Description

We now provide the complete description of our scheme. We model the se-

cure hardware token through the Ftoken functionality (Figures 5.3 and 5.4). Our

construction realizes FRAMobf in the Ftoken-hybrid model [74] and is described in Fig-

ure 5.5.

In order to account for all possible token queries that may be required for an

ORAM scheme, Ftoken relies on an internal, transient instance of Finternal to execute

each step of the program evaluation. Each time Ftoken yields control to the receiver,

the entire state of Finternal is destroyed. Whenever the receiver calls back Ftoken

with state, Ftoken once again creates a new, transient instance of Finternal, sets its

state to the decrypted state, and invokes Finternal to execute next step.

130

The sender. Let the program to be obfuscated be RAM with an initial CPU state

cpustateinit and a list of program instructions meminit. The sender first creates the

token containing a hardwired secret key K where K := (K1, K2, K3). K1 is used as

the encryption key for encrypting state, K2 is used as the key to a pseudorandom

function used by the ORAM and K3 is used as the key for a pseudorandom function

used by sstore (described later). This is modeled by our functionality using the

“store key” query (Figure 5.5 line 1). The sender then encrypts mem0 (one instruc-

tion at a time) to obtain meminit. It creates a Merkle root HS := digest(meminit),

which is used by Ftoken during execution to verify integrity of the program. The

sender creates an encrypted header header := EncK1(cpustateinit, HS,RAM.params)

where RAM.params = {T,N, `in, `out, B}. The sender sends header, meminit, and

RAM.params as the obfuscated program to the receiver. As the obfuscated program

consists of only the encrypted program and metadata, for a program of size P bits,

the obfuscated program has size P +O(1) bits. In the real world, the sender sends

the hardware token with the functionality Ftoken to the receiver. The receiver can

use the same stateless token to execute multiple obfuscated programs sent by the

sender.

The receiver. On the receiver’s side, the token functionality makes use of an ORAM

and a secure store sstore. The token functionality (trusted hardware functionality)

is modeled by an augmented RAM machine.

1. ORAM. ORAM takes in [κ := PRFK2(ssid), oramstate] (where ssid :=

(HS, HR)) as internal secret state of the algorithm. κ is a session-specific seed

131

Ftoken [sender, receiver]

// Store the secret key K in the token

On receive (“store key”, K) from sender:

Store the secret key K, ignore future “store key” inputs

Send “done” to sender

// This step commits the receiver to his input through HR

On receive (“initialize”, header, HR) from receiver:

Parse K := (K1, K2, K3)

(cpustate0, HS,RAM.params) := DecK1(header); abort if fail

state := {ssid := (HS, HR), time := 0, rdata := 0, cpustate := cpustateinit,

sstorestate := (“init”, HS, HR, H
′ := 0),

oramstate := “init”, params := RAM.params}

send state := EncK1(state) to receiver

On receive () from Finternal: // ORAM queries

state := EncK1(Finternal.state), Send (, state) to receiver

On receive (, state) from receiver: // ORAM queries

state := DecK1(state), abort if fail

Instantiate Finternal, set Finternal.state := state, and Finternal.K := K

Send to Finternal

Figure 5.3: Functionality Ftoken. For succinctness, encryption of some data is

represented using an overline on it, e.g., state = EncK1(state), where Enc denotes

a IND-CPA + INT-CTXT-secure authenticated encryption scheme. “ ” denotes a

wildcard field that matches any string.
132

Finternal

Define Finternal.state
alias
:= (ssid, time, rdata, cpustate, sstorestate, oramstate, params)

// execute program

On receive (“execute one step”) from Ftoken:

1: assert time ≤ params.T

2: (cpustate, op)← Π′(cpustate, rdata)

3: Send op to ORAM[PRFK2(ssid), oramstate]⇔ sstore[PRFK3(ssid), sstorestate]⇔

Ftoken, wait for output from ORAM, abort if sstore aborts; /* instantiate ORAM

with state oramstate, instantiate sstore with state sstorestate, connect ORAM’s

communication tape to sstore’s input tape, connect sstore’s communication

tape to caller Ftoken. This represents a multi-round protocol. */

4: If op = (read, . . .), let rdata := output

5: time := time+ 1

6: If time = params.T : send (“okay”, rdata) to Ftoken ; else send (“okay”, ⊥) to

Ftoken

Figure 5.4: Functionality Finternal.

133

Protobf [sender, receiver]

Sender:

On receive (“create”, RAM = 〈cpustateinit,meminit〉) from env:

1: If not initialized: K := (K1, K2, K3)
$← {0, 1}3λ, send (“store key”, K) to

Ftoken, await “done”

2: meminit := {EncK1(meminit[i], rand())}i∈|meminit|

3: HS := digest(meminit) // HS: program Merkle root

4: header := EncK1(cpustateinit||HS||RAM.params, rand())

5: Send (header,meminit,RAM.params) to receiver

Receiver:

On receive (“execute”, pid, inp) from env:

1: Await (header,meminit,RAM.params) from sender s.t. RAM.params.HS = pid if

not received already

2: Initialize mem := meminit||inp||~0

3: Send (“initialize”, header, HR := digest(inp)) to Ftoken, await state from Ftoken

4: for t in {1, . . . , T}:

5: Send (“execute one step”, state) to Ftoken

6: Await (oper, state) from Ftoken; // state overwritten with the received value

7: Until oper = (“okay”,), repeat: //multiple requests due to ORAM

8: perform the operation oper on mem and let the response be res

9: forward (res, state) to Ftoken, and await (oper, state) from Ftoken;

10: Parse oper := (“okay”, outp), output outp

Figure 5.5: Protocol Protobf . Realizes FRAMobf in the Ftoken-hybrid model.

134

used to generate all pseudorandom numbers needed by the ORAM algorithm

— recall that all randomness needed by ORAM is replaced by pseudorandom-

ness to avoid rewinding attacks. As mentioned in Section 5.3.1, we assume

that the ORAM initialization is performed during the first read/write oper-

ation. At this point, the ORAM reads the first N memory locations to read

the program and the input, and inserts them into the ORAM data structure

within mem.

2. Secure store module sstore. sstore is a stateful deterministic secure storage

module that sits in between the ORAM module and the untrusted memory

implemented by the receiver. Its job is to provide appropriate memory en-

cryption and authentication. sstore’s internal state includes κ := PRFK3(ssid)

and sstorestate. sstorestate contains a succinct digest of program, input and

memory to perform memory authentication. κ is a session-specific seed used

to generate all pseudorandom numbers for memory encryption.

At the beginning of an execution, sstorestate is initialized to sstorestate :=

(HS, HR, H
′ := 0), whereHS denotes the Merkle root of the encrypted program

provided by the sender, HR denotes the Merkle root of the (cleartext) input

and H ′ denotes the Merkle root of the memory mem. By convention, we

assume that if a Merkle tree or any subtree’s hash is 0, then the entire subtree

must be 0. The operational semantics of sstore is as follows: upon every data

access request (read, addr) or (write, addr,wdata):

• If addr is in the meminit part of the memory (the sender-provided en-

135

1

. . .
cs0
rd0

cs1
op1

cs2 csN−1 csN
opNΠ1 Π2 ΠN

op

Scratchpad

rd1 op2 opN−1 rdN−1rd2

cpustatecpustate
rdata

Figure 5.6: Augmented Random Access Machine. In this figure, cpustatei is

denoted by csi and rdatai is denoted by rdi.

crypted program), interact with mem and use HS to verify responses.

Update HS appropriately if the request type is write.

• If addr is in the inp part of the memory (the receiver-provided input),

interact with mem and use HR to verify responses.

• Otherwise, interact with mem and use H ′ to verify responses. Update H ′

appropriately.

Upon successful completion, sstore outputs the data fetched for read requests,

and outputs 0 or 1 for write requests. Note that the sstore algorithm simply

aborts if any of the responses fail verification.

3. Augmented Random Access Machines. We now extend the RAM model

to support instruction scheduling and a scratchpad (Sections 5.2.3 and 5.2.4).

RAM can be augmented to use a next instruction circuit Π′ := ΠN for a fixed

N , with the following modifications:

(a) Π′ is a combinational circuit, which consists of N next-instruction circuits

Πi cascaded as shown in Figure 5.6.

(b) The Πi’s use an additional shared memory, referred to as scratchpad. Each

136

Πi (except Π1) operates on the output of Πi−1 and an operand rdatai−1

read from scratchpad. The next instruction circuit Π′ outputs opN to

retrieve rdata from mem, which is subsequently used by Π1.

On input inp, the execution of RAM[T,N, `in, `out, B] with parameters Π′, cpustate,mem〉

is similar to what was defined in Section 2.1 but uses Π′ as the next instruction

circuit. The augmented random access machine RAM′ models a RAM that

performs N instructions followed by an ORAM access. If some opi cannot be

served by the scratchpad, subsequent Πj for i + 1 ≤ j ≤ N do not update

cpustatej and output opN = opi to load the required data in scratchpad.

Remark. For augmented random access machines that uses a scratchpad,

rdata would typically be larger than a memory word (e.g. 512 bits).

We now explain how the receiver executes the program using the token de-

scribed in Figure 5.3 and protocol in Figure 5.5.

Program execution. For ease of explanation, let us first assume that the ORAM

is initialized and contains the program and input. The execution for any input

proceeds in T time steps (Figure 5.5 line 4). At each time step, the receiver interacts

with the token with two types of queries. For each type of query, Ftoken decrypts

state (aborts if decryption fails), instantiates Finternal with state and forwards the

request to Finternal. At the end of query, the state is sent to the receiver along with

the query response.

• Execute one step: This is shown in Figure 5.3 and Figure 5.5 line 5. When

this query is invoked, Finternal executes the next instruction circuit Π′ of the

137

RAM machine to obtain an updated cpustate and an op ∈ {read, write}.

Once operation op is performed by the ORAM algorithm, Finternal updates

state.time to reflect the execution of the instruction (Figure 5.3 line 5). The

message “okay” is then sent to the receiver. At time = T , Finternal returns the

program output to the receiver (Figure 5.3 line 6).

• ORAM queries: ORAMs can use a multi-round protocol (with possibly

different types of queries) to read/write (Figure 5.3 line 3). It interacts with

mem stored at the receiver through Ftoken (Figure 5.5 lines 7-9). To account

for instantiation of any ORAM, Ftoken is shown to receive any query from

receiver (indicated by wildcard () in Figures 5.3 and 5.5). These queries are

sent to Finternal and vice-versa.

For each interaction with mem, sstore encrypts (resp. decrypts) data sent

to (resp. from) the receiver. Moreover, sstore authenticates the data sent by the

receiver. This completes the description of execution of the program.

Initialization. To initialize the execution, the receiver first starts by storing the

program and input inp in its memory mem := meminit||inp||~0. It commits to its

input by invoking “initialize” (Figure 5.5 line 3) and sending a Merkle root of its

input (HR = digest(inp)) along with header := EncK1(cpustateinit||HS||RAM.params).

Ftoken initializes the parameters, creates state and sends it to the receiver.

The ORAM and sstore are initialized during the first invocation to “execute one step”,

i.e., t = 1 in Figure 5.5, line 4. The required randomness is generated pseudoran-

domly based on (K2, HS, HR) for ORAM and (K3, HS, HR) for sstore. As mentioned

138

in Section 5.3.1, during initialization, ORAM in Ftoken reads mem0 word by word

(not shown in figure). For each word read, sstore performs Merkle tree verification

with Hs := digest(meminit). Similarly, when the input is read, sstore verifies it with

HR := digest(inp). sstorestate and oramstate uniquely determine the initialization

state. Hence, if the receiver rewinds, the execution trace remains the same. The

commitment HR ensures that the receiver cannot change his input after invoking

“initialize”. This completes the formal scheme description of the UC functionality

Ftoken.

5.3.4 Proof of Security

Theorem 20. Assuming that Enc is an INT-CTXT + IND-CPA authenticated

encryption scheme, ORAM satisfies obliviousness (Section 5.3.1), sstore adopts a

semantically secure encryption scheme and a collision resistant Merkle hash tree

scheme and the security of PRF, the protocol described in Figures 5.3 and 5.5 UC

realizes FRAMobf (Figure 5.2) in the Ftoken-hybrid model.

Description of the simulator. The ideal world simulator simulates the honest

sender and Ftoken.

• The simulator can receive the following three types of valid queries: “create”

queries, “initialize” queries, and execution queries. An execution query is

either of the format (“execute one step”, state) or a response to a memory

request. Henceforth we assume that all responses to memory requests are of

the form (“mem”, , state).

139

• At the beginning, the simulator generates a random key K1.

• Whenever the simulator receives (“create”, pid) from FRAMobf , it sends meminit :=

{EncK1(~0)}i∈|meminit|. header := EncK1(~0||HS := digest(meminit)||RAM.params),

and RAM.params to the receiver.

• Whenever the adversary (i.e., receiver) sends (“initialize”, header, HR): if the

simulator has not sent the adversary header before as a result of a “create”

query, abort. At this time, a new subsession identified by ssid := (HS, HR) is

created where HS is contained in header, and sstorestate and oramstate for this

subsession are initialized honestly.

The simulator sends state := EncK1(~0) to the adversary.

• For each subsession identified by ssid, the simulator maintains the following:

– If state was sent to the adversary during a subsession ssid, then the sim-

ulator remembers a tuple

(sstorestate, oramstate)

which denotes the state of the execution when state was sent to the ad-

versary.

– The simulator forks a new ORAM simulator upon the creation of every

new subsession, the term oramstate is the state of the (stateful) ORAM

simulator.

– The simulator forks an honest instance of sstore upon the creation of

140

every new subsession. The sstore instance is initialized with a randomly

generated key, and the term sstorestate is its internal state.

• Whenever the simulator receives any execution query from the adversary, it

checks if the state received has been sent to the adversary before. If not, the

simulator aborts. Else, continue with the following.

– If the adversary has sent the same execution query before, the simula-

tor replays the old answer from before with the following exception: for

the state contained in the answer, the simulator will re-encrypt state :=

EncK1(~0).

– Otherwise, if state was sent to the adversary earlier as part of a memory

request, then the simulator must check the correctness of the response

returned by the adversary. To achieve this, the simulator retrieves the

sstorestate at the time state was sent to the adversary. Now, using this

sstorestate, the simulator runs the honest sstore instance corresponding

to the current subsession to check the correctness of memory request. If

the check fails, the simulator simply aborts.

– If the simulator has not aborted, the simulator retrieves the oramstate at

the time state was sent to the adversary. Now, the simulator calls the

ORAM simulator to obtain the next memory request — we assume that

the ORAM simulator will return the same answer when invoked with the

same oramstate.

If the next memory request is a write request, then the data for the write

141

is set to a dummy message ~0, and then this message is passed along to

the sstore instance (which internally performs memory encryption). The

outcome of sstore along with a fresh encryption state := EncK1(~0) is sent

to the adversary.

Remark 1. Notice that in the simulation, multiple ciphertexts state can correspond

to the same point of execution in a subsession. However, if the adversary rewinds

the execution of a subsession, all other parts of the response it obtains will be deter-

ministic (i.e., same as the last time) if the simulation does not abort.

We now show that the view of the adversary in a real execution is indis-

tinguishable from that in the above described simulated execution. We show this

indistinguishability between the real and ideal world by using the following sequence

of hybrids:

Hybrid H0: This is the real world execution. The simulator simulates the honest

sender and hence, has access to the sender’s program. It uses the token Ftoken to

respond to queries by the adversary (receiver).

Hybrid H1: This hybrid is identical to hybrid H0 except for the following. For

integrity verification, instead of using the Merkle tree scheme, the simulator performs

an honest memory check. Merkle tree checks are performed for the memory with

Merkle root H ′, program meminit with Merkle root HS and input with Merkle root

HR.

142

For each subsession ssid, the simulator maintains a table storing the requests

sent by the adversary and the responses sent by the simulator. Specifically, it stores

a table consisting of decrypted request state (oramstate and sstorestate, denoting the

execution state), decrypted response state and the snapshot of memory mem′. When

state is sent as a part of memory request in an execution query, instead of using

Merkle root H ′, the simulator verifies the correctness by running an honest sstore

instance for the subsession. Specifically, the simulator looks up the table by response

state and compares the response sent by adversary with mem′. The simulator aborts

if the comparison fails. Otherwise, it runs a simulated execution of the token and

responds to the adversary.

Recall that as mentioned in the scheme, during an initial linear scan for initial-

izing ORAM, both the program and the input are loaded. When program is loaded

during this initialization, the simulator looks up the table based on the decrypted

request state and authenticates the program by comparing it to meminit instead of

using the Merkle root HS. When the adversary initializes execution, the simulator

saves the commitment HR of the adversary’s input in ssid. When the adversary

sends a (state, input value), the simulator looks up the table by decrypted response

state to find the request state sent by the adversary. If it finds an entry, the simu-

lator verifies the correctness of the input value using the Merkle root HR. This is

where the simulator extracts input from the adversary. It should be noted that HR

is generated by the adversary. By the collision resistance of hash functions used by

Merkle trees, the adversary cannot generate two inputs with the same Merkle root

HR.

143

Thus, the only event in which this hybrid differs from H0 is if the adversary

breaks the collision resistance of hash functions used by Merkle trees. In this case,

the simulator aborts. The probability of this bad event is negligible; this can be

shown by reducing the security to a Merkle tree game between a challenger and an

adversary. In the absence of this bad event, this hybrid is identical to H0.

Hybrid H2: This hybrid is identical to the previous one except for the following.

The pseudorandom functions (PRF) are replaced with truly random functions, i.e.,

whenever PRF function (i) with key K2 is invoked by the ORAM algorithm and

(ii) key K3 is invoked by sstore in hybrid H2, the simulator samples a random

number instead. In the protocol, the use of a PRF while initializing ORAM ensures

that the ORAM accesses memory locations in a deterministic manner. Hence, if the

adversary rewinds execution, the same memory locations are accessed by the ORAM

algorithm. In this hybrid, we replace PRF with truly random function. Based on

the decrypted request state, the simulator determines if the adversary has sent the

same query before. If yes, the simulator replays the old answer by using the same

randomness in the ORAM algorithm. Otherwise, the simulator looks up the table

by response state to determine if this state was sent to the adversary as part of a

memory request. If yes, the simulator generates new random numbers to be used

by the ORAM algorithm and stores the request and response states along with the

random numbers in the table. Except for these changes, the simulator computes the

query response as in hybrid H1. The simulator sends the updated response state to

the adversary.

144

This hybrid is computationally indistinguishable from hybrid H1 by the se-

curity of pseudorandom functions. If the adversary can distinguish between this

hybrid and hybrid H1, we can show a reduction to a game where the adversary can

distinguish between a pseudorandom function and a truly random function with

non-negligible probability.

Hybrid H3: This hybrid is identical to the previous one except for the follow-

ing. The simulator replaces the authentication scheme used to verify state with an

honest check. In order to do so, along with the other information stored in the

table in hybrid H2, the simulator also stores the encrypted request and response

state. Note that this is when the simulator starts storing multiple ciphertexts state

corresponding to the same point of execution in a subsession.

Instead of using an authentication scheme to verify state, it compares the

state sent by the adversary with any of the state values that was previously sent

by the simulator. If the simulator does not find an entry in the table, it aborts.

If the check succeeds, the simulator can determine the exact execution state based

on oramstate and sstorestate. The simulator knows the program mem0 from the

honest sender, extracts the input inp from the adversary (as described in hybrid H1)

and has stored a snapshot of all random numbers that were generated for ORAM.

Hence, by simulating an instance of the token, the simulator can compute the exact

response state that needs to be returned without decrypting the request sent by the

adversary. The simulator encrypts this response state and sends the encrypted state

to the adversary. If the execution proceeds without aborting until time T , then at

145

T -th step, the simulator calls the ideal functionality FRAMobf on input inp and sends

the output outp to the adversary.

The computational indistinguishability of this hybrid from hybrid H2 follows

from the INT-CTXT security of the authenticated encryption scheme Enc. If the

adversary can distinguish between hybrid H2 and this hybrid with non-negligible

probability, we can show a reduction where the adversary can break the security of

an INT-CTXT secure authenticated encryption game with non-negligible probabil-

ity.

Hybrid H4: This hybrid is identical to the previous one except for the fol-

lowing. The simulator generates a random key K1. For all state and mem-

ory writes by sstore sent to the adversary, the simulator instead sends EncK1(~0).

Also, the simulator begins execution by sending meminit := {EncK1(~0}i∈|meminit|,

header := EncK1(~0||Hs := digest(meminit||RAM.params) and RAM.params to the ad-

versary.

Given the security of an IND-CPA secure authenticated encryption scheme

Enc, this hybrid is identically distributed as the previous hybrid. If the adversary

can distinguish between this hybrid and hybrid H3, we can show a reduction where

the adversary can break the security of an IND-CPA secure authenticated encryp-

tion scheme.

Hybrid H5: This hybrid is identical to the previous one except for the following.

Instead of the execution of an ORAM algorithm, the simulator invokes an ORAM

146

simulator. For an execution query, after checking the correctness of the response

sent by the adversary, the simulator retrieves the oramstate and invokes the ORAM

simulator with this state. We assume that the ORAM simulator will return the same

answer when invoked with the same oramstate. The output of the ORAM simulator

is sent to the adversary. Assuming that the ORAM scheme is statistically secure,

this hybrid is statistically indistinguishable from hybrid H4.

In this hybrid, the simulator uses an ORAM simulator for ORAM requests,

performs ideal checks for the memory that needs to be stored by the adversary and

for the token state sent to the adversary, uses truly random functions, and sends

EncK1(~0) to the adversary. The simulator knows the program meminit from the

sender, extracts the program input inp from the adversary as described in hybrid

H1. If the execution proceeds until T steps without aborting, the simulator internally

simulates an instance of the ideal functionality FRAMobf to obtain the output outp.

The simulator in this hybrid behaves exactly as the ideal world simulator described

earlier. Hence, this is the ideal world execution.

147

5.4 Implementation

Modified
RISC-V Proc

Data
Scratchpad

ORAM
Controller

Instruction
Scratchpad

DRAM
(ORAM
Bank)

Host Processor

Trust Boundary

Encryption
Unit

Obfuscated Program + InputOutput

Encryption
Unit

Figure 5.7: HOP Architecture

The final architecture of HOP (with the optimizations from Section 5.2) is

shown in Figure 5.7. We now describe implementation-specific details for each major

component.

5.4.1 Modified RISC-V Processor and Scratchpad

We built HOP with a RISC-V processor which implements a single stage

32bit integer base user-level ISA developed at UC Berkeley [33]. A RISC-V C

cross-compiler is used to compile C programs to be run on the processor. The

RISC-V processor is modified to include a 16 KB instruction scratchpad and a 512

KB data scratchpad (Section 5.2.4). The RISC-V processor and the compiler are

modified accordingly to accommodate the new scratchpad load/unload instructions

148

(described below). While HOP uses a single stage RISC-V processor, our system

does not preclude additional hardware optimizations in commodity processors such

as multi-issue, branch predictor, etc. Our only requirement to support such proces-

sor structures is the ability to calculate, for that program over all inputs, a suitably

conservative maximum runtime T .

New scratchpad instructions. For our prototype, we load the scratchpad using

a new instruction called spld, which is specified as follows:

spld addr,#mem, spaddr

In particular, addr is used to specify the starting address of the memory that needs

to be loaded in scratchpad. #mem is the number of memory locations to be loaded

on the scratchpad starting at addr and spaddr is the location in scratchpad to store

the loaded data. When the processor intercepts an spld instruction, it performs

two operations: 1. It writes back the data stored in this scratchpad location to

the appropriate address in main memory (ORAM). 2. It reads #mem memory

locations starting at main memory address addr into scratchpad locations starting

at spaddr. Of course, spld’s precise design is not fundamental: we need a way to

load an on-chip memory such that it is still feasible to statically determine T .

Example scratchpad use.

Figure 5.8 shows an example scenario where spld is used. The program shows a

part of the code used for decompressing data using the bzip2 compression algorithm.

The algorithm decompresses blocks of compressed data and outputs data of size

CSIZE independently. Each block of data may be read and processed multiple

149

1: int decompress(char *chunk) {

2: int compLen = 0;

3: // initial processing

4: burrowsWheeler(chunk, compLen);

5: // more processing

6: writeOutput(chunk);

7: return compLen;

8: }

9: void main() {

10: char *inp = readInput();

11: for (i = 0; i < len(inp); i += len) {

12: spld(inp + i, CSIZE, 0);

13: len = decompress(inp + i);

14: }

15: }

Figure 5.8: Example program using spld: bzip2

150

times during different steps of compression (run-length encoding, Burrows-Wheeler

transform, etc.). Hence, each such block is loaded into the scratchpad (line 12)

before processing. This ensures that every subsequent access to this data is served

by the scratchpad instead of memory (thereby reducing expensive ORAM accesses).

After decompressing the block, spld is executed for the next block of compressed

data.

5.4.2 ORAM Controller

We use a hardware ORAM controller called ‘Tiny ORAM’ from [56, 57]. The

ORAM controller implements an ORAM tree with 25 levels, having 4 blocks per

bucket. Each block is 512 bits (64 Bytes) to match modern processor cache line

size. This corresponds to a total memory of 4 GB. The ORAM controller uses a

stash of size 128 blocks and an on-chip position map of 256 KB. For integrity and

freshness, Tiny ORAM uses the PosMap MAC (PMMAC) scheme [56]. We note

that PMMAC protects data integrity but does not achieve malicious security. We

estimate the cost of malicious security using a hardware Merkle-tree on ORAM in

Table 5.2. We disable the PosMap Lookaside Buffer (PLB) in Freecursive ORAM

to avoid leakage through the total number of ORAM accesses.

5.4.3 Encryption Units

For all encryption units, we can use tinyaes from OpenCores [5]. The encryp-

tion units can communicate with the external DRAM (bandwidth of 64 Bytes/cycle)

151

Table 5.2: Resource allocation and utilization of HOP on Xilinx Virtex

V7485t FPGA. For each row, first line indicates the estimate. % utilization is

mentioned in parentheses. LUT: Slice LookUp Table, FFs: Flip-flops or slice regis-

ters, BRAM: Block RAM.

LUT FFs LUT-Mem BRAM

Total Estimate 169472 51870 81112 566.5

(% Utilization) (55.8%) (8.5%) (62.0%) (55.0%)

HOP Estimate 103462 39803 38725 437

(% Utilization) (34.0%) (6.6%) (47.7%) (42.4%)

(HOP− ORAM) Estimate 21626 6579 1 83

(% Utilization) (7.1%) (1.1%) (∼0%) (8.1%)

Estimate with Merkle tree 221041 81410 81126 566.5

(% Utilization) (72.8%) (13.4%) (62.0%) (55.0%)

as well as the host processor. Data is encrypted before writing to the DRAM. Simi-

larly, all data read from the DRAM is decrypted first before processed by the ORAM

controller. Another encryption unit can be used to decrypt the obfuscated program

before loading it into the instruction scratchpad.

152

5.5 Evaluation

We now present a detailed evaluation of HOP for some commonly used pro-

grams, and compare HOP to prior work.

5.5.1 Methodology

We measure program execution time in processor cycles, and compare with our

own baseline scheme (to show the effectiveness of our optimizations), an insecure

processor as well as related prior work. For each program, we choose parameters

so that our baseline scheme requires about 100 million cycles to execute. We also

report processor idle time, the time spent on dummy arithmetic instructions and

dummy memory accesses to adhere to an ANM schedule (Section 5.2.3).

For the programs we evaluate (except bzip2 ; c.f., Section 5.5.4), we calculate

T manually. We remark that the average input completion time and worst case

time are very similar for these programs. To find T for larger programs, one may

use established techniques in determining worst case execution time (e.g., a tool

from [142]).

In our prototype, evaluating an arithmetic instruction takes 1 cycle while

reading/writing a word from the scratchpad takes 3 cycles. Given the parameters in

Section 5.4.2, an ORAM access takes 3000 cycles. For our HOP configurations with

a scratchpad, we require both scratchpad read/writes and arithmetic instructions

to take 3 cycles in order to hide which is occurring. Following Section 5.2.3, we set

N = 3000 when not using a scratchpad; with a scratchpad, we use N = 1000. For

153

our evaluation, we consider programs ranging from those with high locality (e.g.,

bwt-rle) to those that show no locality (e.g., binsearch).

5.5.2 Area Results

We synthesized, placed and routed (a slightly modified version of) HOP on a

Xilinx Virtex V7485t FPGA for parameters described in Section 5.4. HOP operates

at 79.3 MHz on this FPGA. The resource allocation and utilization figures are

mentioned in Table 5.2. The first three rows represent the total estimate, estimate

for HOP (i.e. excluding RISC-Vprocessor, and the scratchpad) and an estimate

for HOP that does not account for ORAM. The last row shows the total overhead

including an estimate for a Merkle tree scheme. Excluding the processor, scratchpad

and ORAM, HOP consumes < 9% of the FPGA resources. We see that the total

area overhead of HOP is small and can be built on a single FPGA chip.

5.5.3 Main Results

Figure 5.9 shows the execution time of HOP variants relative to an insecure

processor. For each program, there are three bars shown. The first bar is for the

baseline HOP scheme (i.e., Section 5.2.2 only); the second bar only uses an ANM

schedule without a scratchpad (adds Section 5.2.3); and the third bar is our final

scheme that uses a scratchpad and the ANM schedule (adds Section 5.2.4). All

schemes are relative to an insecure processor that does not use ORAM or hide what

instruction it is executing. We assume this processor uses a scratchpad that has the

154

binsearchheappop sum findmaxradixsort hist bwt-rle
100

101

102

103

S
lo

w
d

ow
n

to
In

se
cu

re
E

x
ec

u
ti

on

Baseline ANM Scratchpad with ANM

Figure 5.9: Execution time for different programs with (i) baseline scheme, (ii) ANM

schedule and (iii) Scratchpad + ANM .

same capacity as HOP in Section 5.4.1. The time required to insert the program

and data is not shown.

Comparison of HOP variants. As can been seen in the figure, the ANM schedule

without a scratchpad gives a 1.5× ∼ 18× improvement. Adhering to an ANM

schedule requires some dummy arithmetic or memory instructions during which

the processor is essentially idle. We observe that for our programs, the idle time

ranges between 43% and 49.9% of the execution time, consistent with the claim in

Section 5.2.3.

Effect of a scratchpad. The effect of a scratchpad largely depends on program

locality. We thus classify programs in our evaluation into four classes:

1. Programs such as binsearch, heappop do not show locality. Thus, a scratch-

pad does not improve performance.

155

2. Programs such as sum, findmax stream (linear scan) over the input data.

Given that an ORAM block is larger than a word size (512 bits vs 32 bits in

our case), a scratchpad in these streaming applications can serve the next few

(7 with our parameters) memory accesses after spld. A larger ORAM block

size can slightly benefit these applications while severely penalize programs

with no locality, and therefore is not a good trade-off.

3. Programs that maintain a small working set at all times will greatly benefit

from a scratchpad. We evaluate one such program bwt-rle, which performs

Burrows-Wheeler transform and run length encoding, and is used in compres-

sion algorithms.

4. Lastly, some programs are a mix of the above cases — some data structures

can be entirely loaded into the scratchpad whereas some cannot (e.g. a Radix

sort program).

Comparison to insecure processor. The remaining performance overhead of the

optimized HOP (the third bar) comes from several sources. First, the performance

of ORAM: The number of cycles to perform a memory access using ORAM is much

higher than a regular DRAM. In HOP, an ORAM access is 40× more expensive than

an insecure access. Second, dummy accesses to adhere to a schedule: As shown in

Section 5.2.3, the performance overhead due to dummy accesses≤ 2×. For programs

such as bwt-rle, HOP has a slowdown as low as 8×. This is primarily due to the

reduction in ORAM accesses by maintaining a small working set in the scratchpad.

156

5.5.4 Case Study: bzip2

To show readers how our system performs on a realistic and complex bench-

mark, we evaluate HOP on the open-source algorithm bzip2 (re-written for a

scratchpad, cf. Figure 5.8). We evaluate the decompression algorithm only, as

the decompression algorithm’s performance does not heavily depend on the input

if one fixes the input size [1]. This allows us to run an average case input and use

its performance to approximate the effect of running other inputs. To give a better

sense for how the optimizations are impacted by different inputs, we don’t terminate

at a worst-case time T but rather terminate as soon as the program completes.

We run tests on two inputs, both highly compressible strings. For the first

input, HOP achieves 106× speedup over the baseline scheme and 17× slowdown over

the insecure version. For the second input, HOP achieves 234× speedup over the

baseline and 8× slowdown over the insecure version. Thus, the gains and slowdowns

we see from the prior studies extend to this more sophisticated benchmark.

5.5.5 Comparison with GhostRider [102]

Recall from Section 5.1 that GhostRider protects input data to the program

but not the program. Since our privacy guarantee is strictly greater than GhostRider,

we now compare to that work to show the cost of extra security. Note: we com-

pare to the GhostRider compiler and not the implementation in [102] which uses

a different parameterization for the ORAM scheme. This comparison shows the

additional cost that is incurred by HOP to hide the program. We don’t show the

157

full comparison for lack of space, but point out the following extreme points: For

programs with unpredictable access patterns (binsearch, heappop), GhostRider

outperforms HOP by ∼ 2×. HOP’s additional overhead is from executing dummy

instructions to adhere to a particular schedule. For programs with predictable ac-

cess patterns (sum, findmax, hist), GhostRider’s performance is similar to that

of an insecure processor.

5.5.6 Time for Context Switch

Since it was not required for our performance evaluation, we have not yet

implemented context switching (Section 5.2.5) in our prototype. Recall, context

switching means the receiver interrupts the processor, which encrypts and writes out

all the processor state (including CPU state, instruction scratchpad, data scratch-

pad, ORAM position map and stash) to DRAM. We estimate the time of a context

switch as follows. The total amount of data stored by our token is ∼ 800 KB

(Section 5.4). Assuming a DRAM bandwidth of 10 GB/s and a matching encryp-

tion bandwidth, it would take ∼ 160µs to perform a context switch to run another

program. Note that this assumes all data for a swapped-out context is stored in

DRAM (i.e., the ORAM data already in the DRAM need not be moved). If it must

be swapped out to disk because the DRAM must make room for the new context,

the context switch time grows proportional to the ORAM size.

158

5.6 Conclusion

This chapter makes two main contributions. First, we construct an optimized

hardware architecture - called HOP - for running obfuscated RAM programs. We

give a matching theoretic model for our optimized architecture and prove it secure.

A by-product of our analysis shows the first obfuscation scheme for RAM programs

using ‘stateless’ tokens. Second, we present a complete implementation of our op-

timized architecture and evaluate it on real-world programs. The complete design

would require an estimated 72% the area of a V7485t Field Programmable Gate

Array (FPGA) chip. Run on a variety of benchmarks, HOP achieves an average

overhead of 8× ∼ 76× relative to an insecure system. To the best of our knowledge,

this effort represents the first implementation of a provably secure VBB obfuscation

scheme in any model under any assumptions.

159

Chapter 6: GraphSC: Parallel Secure Computation Made Easy

Through their interactions with many web services, and numerous apps, users

leave behind a dizzying array of data across the web ecosystem. The privacy threats

due to the creation and spread of personal data are by now well known. The

proliferation of data across the ecosystem is so complex and daunting to users,

that encrypting data at all times appears as an attractive approach to privacy.

However, this hinders all benefits derived from mining user data, both by online

companies and the society at large (e.g., through opinion statistics, ad campaigns,

road traffic and disease monitoring, etc). Secure computation allows two or more

parties to evaluate any desirable polynomial-time function over their private data,

while revealing only the answer and nothing else about each party’s data. Although

it was first proposed about three decades ago [150], it is only in the last few years

that the research community has made enormous progress at improving the efficiency

of secure computation [82, 93, 103, 119, 120]. As such, secure computation offers a

better alternative, as it enables data mining while simultaneously protecting user

privacy.

The need to analyze data on a massive scale has led to modern architec-

tures that support parallelism, as well as higher level programming abstractions to

160

take advantage of the underlying architecture. Examples include MapReduce [49],

Pregel [108], GraphLab [105], and Spark [151]. These provide software developers

interfaces handling inputs and parallel data-flow in a relatively intuitive and expres-

sive way. These programming paradigms are also extremely powerful, encompassing

a broad class of machine learning, data mining and graph algorithms. While these

paradigms enable developers to efficiently write and execute complex parallel tasks

on very large datasets, securely computing on private data is not an objective for any

of these frameworks. Our goal is to bring secure computation to such frameworks

in a way that does not require programmers to have cryptographic expertise.

The benefits of integrating secure computation into such frameworks are nu-

merous. The potential to carry out data-analysis tasks while simultaneously not

leaking private data could change the privacy landscape. Consider a few exam-

ples. A very common use of MapReduce is to compute histograms that summarize

data. This has been done for all kinds of data, such as counting word frequencies in

documents, or summarizing online browsing behavior, or YouTube viewing behav-

ior to name just a few. Another common use of the graph parallelization models

(e.g., GraphLab) is to compute influence in a social graph through, for example, the

PageRank algorithm. Today, joint influence over multiple social graphs belonging to

different companies (such as Facebook and LinkedIn), cannot be computed because

companies do not share such data. For this to be feasible, the companies need to

be able to perform an oblivious secure computation on their joint graph in a highly

efficient way that supports their massive datasets and completes in a reasonable

time. A privacy requirement for such an application is to ensure that the graph

161

structure, and any associated data, is not leaked; the performance requirements

for scalability and efficiency demand the application to be highly parallelizable. A

third example application is recommender systems based on the matrix factorization

(MF) algorithm. It was shown that it is possible to carry out secure MF, enabling

users to receive recommendations without ever revealing records of past behavior

(e.g., movies watched or rated) in the clear to the recommender system [119]. But

this previous work did not gracefully incorporate parallelism to scale to millions of

records.

This chapter addresses the following key question: can we build an efficient se-

cure computation framework that uses familiar parallelization programming paradigms?

By creating such a framework, we can bring secure computation to the practical

realm for modern massive datasets. Furthermore, we can make it accessible to a

wide audience of developers that are already familiar with modern parallel program-

ming paradigms, and are not necessarily cryptography experts.

One näıve approach to obtain high parallelization is the following: (a) pro-

grammers write programs using a programming language specifically designed for

(sequential) secure computation such as the SCVM source language [103] or the

ObliVM source language [104]; (b) apply an existing program-to-circuits compiler1;

and (c) exploit parallelism that occurs at the circuit level – in particular, all the

gates within the same layer (circuit depth) can be evaluated in parallel. Henceforth,

1RAM-model compilers such as SCVM [103] and ObliVM [104] effectively compile a program

to a sequence of circuits as well. In particular, dynamic memory accesses are compiled into ORAM

circuits.

162

we use the term circuit-level parallelism to refer to this baseline approach.

While intuitive, this baseline approach is far from ideal. The circuit derived

by a sequential program-to-circuits compiler can also be sequential in nature, and

many opportunities to extract parallelism may remain undiscovered. We know from

experience, in the insecure environment, that generally trying to produce parallel

algorithms requires careful attention. Two approaches have been intensely pursued

(for the case of non-secure computation): (a) Design of parallel algorithms: an en-

tire field of research has focused on designing parallel versions of specific algorithms

that seek to express computation tasks with shallow depth and without significantly

increasing the total amount of work in comparison with the sequential setting; and

(b) Programming abstractions for parallel computation: the alternative to finding

point solutions for particular problems, is to develop programming frameworks that

help programmers to easily extract and express parallelism. The frameworks men-

tioned above fall into this category. These two approaches can also be followed for

solutions in secure computation; examples of point solutions include [119, 120]. In

this work, we follow the second approach to enable parallel oblivious versions for a

range of data mining algorithms.

There are two fundamental challenges to solve our problem. The first is the

need to provide a solution that is data oblivious, in order to prevent any information

leakage and to prevent unnecessary circuit explosion. The second is that of migrating

secure computation models to the parallel environment in an efficient way. Because

our solution focuses on graph-based parallel algorithms, we need to ensure that the

graph structure itself is not revealed.

163

In this chapter, we focus on 2-party computation in the semi-honest model.

Our two parties could be two non-colluding cloud providers (such as Google and

Amazon) where both parties have parallel computing architectures (multiple ma-

chines with multiple cores). In this case, the data is outsourced to the cloud

providers, and within each cloud the secret data could be distributed across mul-

tiple machines. In a second scenario, a single cloud provider splits up the data to

achieve resilience against insider attacks or compromise. To realize these, we make

the following novel contributions.

Our Contributions

We design and implement a parallel secure computation framework called

GraphSC. With GraphSC, developers can write programs using programming ab-

stractions similar to Pregel and GraphLab [68, 105, 108]. GraphSC executes the

program with a parallel secure computation backend. Adopting this programming

abstraction allows GraphSC to naturally support a broad class of data mining algo-

rithms.

New parallel oblivious algorithms. To the best of our knowledge, our work is

the first to design non-trivial parallel oblivious algorithms that outperform generic

Oblivious Parallel RAM [28,35,38]. The OPRAM constructions are of a theoretical

nature, with computational costs that would be prohibitive in a practical implemen-

tation. Analogously, in the sequential literature, a line of research focuses on de-

signing efficient oblivious algorithms that outperform generic ORAM [23,54,72,152].

164

Many of these works focus on specific functionalities of interest. However, such a

one-at-a-time approach is unlikely to gain traction in practice, since real-life pro-

grammers likely do not possess the expertise to design customized oblivious algo-

rithms for each task at hand; moreover, they should not be entrusted to carry out

cryptographic design tasks.

While we focus on designing efficient parallel oblivious algorithms, we take a

departure from such a one-at-a-time design approach. Specifically, we design par-

allel oblivious algorithms for GraphSC’s programming abstractions, which in turn

captures a broad class of interesting data mining and machine learning tasks. We

will demonstrate this capability for four such algorithms. Moreover, our parallel

oblivious algorithms can also be made accessible to non-expert programmers. Our

parallel oblivious algorithms achieve logarithmic total-work and depth blowup in

comparison with the poly-logarithmic blowup of generic OPRAM [28]. In particu-

lar, for a graph containing |E| edges and |V| vertices, GraphSC just has an overhead

of O(log |V|) when compared with the parallel insecure version.

System implementation. ObliVM-GC (http://www.oblivm.com) is a program-

ming language that allows a programmer to write a program that can be compiled

into a garbled circuit, so that the programmer need not worry about the underlying

cryptographic framework. In this chapter, we architect and implement GraphSC, a

parallel secure computation framework that supports graph-parallel programming

abstractions resembling GraphLab [105]. Such graph-parallel abstractions are ex-

pressive and easy-to-program, and have been a popular approach for developing

parallel data mining and machine learning algorithms. GraphSC is suitable for both

165

http://www.oblivm.com

multi-core and cluster-based computing architectures. The source code of GraphSC

is available at http://www.oblivm.com.

Evaluation. To evaluate the performance of our design, we implement four classic

data analysis algorithms: (1) a histogram function assuming an underlying MapRe-

duce paradigm; (2) PageRank for large graphs; and two versions of matrix factor-

ization (MF), namely, (3) MF using gradient descent, and (4) MF using alternating

least squares (ALS). We study numerous metrics, such as the effect of parallelism,

i.e., the change in execution time with increasing number of processors, as well as

the amount of communication between processors. We deploy our experiments in a

realistic setting, both on a controlled testbed and on Amazon Web Services (AWS).

We show that we can achieve practical speeds for our 4 example algorithms, and

that the performance scales gracefully with input size and the number of processors.

We achieve these gains with minimal communication overhead, and an insignifi-

cant impact on accuracy. For example, we were able to run matrix factorization on

MovieLens dataset (6000 users, 4000 movies) consisting of 1 million ratings in less

than 13 hours on a small 7-machine cluster. As far as we know, this is the first

application of a complicated secure computation algorithm on a large real-world

dataset; previous work [119] managed to complete a similar task on only 17K rat-

ings, with no ability to scale beyond a single machine. This demonstrates that our

work can bring secure computation into the realm of practical large-scale parallel

applications.

The rest of the chapter is structured as follows. Following the related work,

in Section 6.2 we present GraphSC, our framework for parallel computation on

166

http://www.oblivm.com

large-scale graphs. In Section 6.3 we detail how GraphSC can support parallel data

oblivious algorithms. Then, in Section 6.4, we discuss how such parallel oblivious

algorithms can be converted into parallel secure algorithms. Section 6.5 discusses the

implementation of GraphSC and detailed evaluation of its performance on several

real-world applications. We conclude the chapter in Section 6.6.

Model and Terminology

Our main deployment scenario is the following parallel secure two-party com-

putation setting. The two parties are two non-colluding, semi-honest cloud providers

(potentially executing some outsourced computation). Since we adopt Yao’s Gar-

bled Circuits [149], one cloud provider acts as the garbler, and the other acts as

the evaluator. Each cloud provider can have multiple processors performing the

garbling or evaluation.

In this chapter, we focus on a specific class of graph computations. For a

graph with V vertices and E edges, we assume that the size information |V|+ |E| is

public. To keep terminology simple, our main algorithms in Section 6.3.3 refer to

parallel oblivious algorithms – assuming a model where multiple processors have a

shared random-access memory. It turns out that once we derive parallel oblivious

algorithms, it is easy to translate them into parallel secure computation protocols.

Section 6.4 and Figure 6.4 later in the chapter will elaborate on the details of our

models and terminology.

167

6.1 Related Work

Secure computation has been studied for decades, starting from theory [73,87,

132,133,149] to implementations [24,79,81,82,92,93,103,109,119,125,155].

Parallel secure computation frameworks. Most existing implementations are

sequential. However, parallel secure computation has naturally attracted attention

due to the wide adoption of multi-core processors and cloud-based compute clusters.

Note that in Yao’s Garbled Circuits [149], the garbler’s garbling operations are

trivially parallelizable. However, evaluation of the garbled circuit must be done

layer by layer, and therefore, the depth of the circuit(s) determine the degree to

which evaluation can be parallelized.

Most research on parallel secure computation just exploits the natural paral-

lelism within each circuit or between circuits (e.g., for performing cut-and-choose

in the malicious model). For example, Husted et al. [83] propose using a GPU-

based backend for parallelizing garbled circuit generation and evaluation. Their

work exploits the natural circuit-level parallelism – however, in cases where the pro-

gram is inherently sequential (e.g., a narrow and deep circuit), their technique will

not be able to exploit massive degrees of parallelism for evaluation. Assuming the

computation on a single vertex/edge is a low-depth circuit, our design ensures that

GraphSC primitives are implemented as low-depth circuits. Though our design cur-

rently works on a multi-core processor architecture or a compute cluster, the same

programming abstraction and parallel oblivious algorithms can be directly ported

to a GPU-based backend; our work thus is complementary to Husted et al. [83].

168

Kreuter et al. [93] exploit parallelism to parallelize cut-and-choose in malicious-

model secure computation. In particular, cut-and-choose techniques require the

garbled evaluation of multiple circuits, such that one can assign each circuit to a

different processor. In comparison, we focus on parallelization in the semi-honest

model. If we were to move to the malicious model, we would also benefit from the

additional parallelism natural in cut-and-choose. Our approach is closest to, and

inspired by, the privacy-preserving matrix factorization (MF) framework by Niko-

laenko et al. [119] that implements gradient-descent MF as a garbled circuit. As in

our design, the authors rely on oblivious sorting that, as they note, is parallelizable.

Though Nikolaenko et al. exploit this to parallelize parts of their MF computation,

their overall design is not parallelizable: it results in a Ω(|V | + |E|)-depth circuit,

containing serial passes over the data. In fact, the algorithm in [119] is equivalent to

the serial algorithm presented in Algorithm 2, restricted to MF. Crucially, beyond

extending our implementation to any algorithm expressed by GraphSC (not just

gradient-descent MF), our design also parallelizes these serial passes (cf. Figure 6.3),

leading to a circuit of logarithmic depth. Finally, as discussed in Section 6.5, the

garbled circuit implementation in [119] can only be run on a single machine, contrary

to GraphSC.

Automated frameworks for sequential secure computation. In the sequen-

tial setting, numerous automated frameworks for secure computation have been

explored, some of which [81, 155] build on (a subset of) a standard language such

as C; others define customized languages [24, 79,92, 103]. As mentioned earlier, the

circuits generated by these sequential compilers may not necessarily have low depth.

169

For general-purpose secure computation backends, several protocols have been in-

vestigated and implemented, including those based on garbled circuits [149, 150],

GMW [66], somewhat or fully homomorphic encryption [60], and others [17,46]. In

this chapter, we focus on a garbled circuits backend for the semi-honest setting,

but our framework and programming abstractions can readily be extended to other

backends as well.

ORAM and oblivious algorithms. While ORAMs obliviously simulate any

RAM program, oblivious algorithms have also been studied to obliviously simu-

late specific algorithms [23, 54, 72, 113, 145, 152]. These solutions provide point so-

lutions that outperform ORAMs. As recent works point out [103], ORAM and

oblivious algorithms are key to transforming programs into compact circuits2 – and

circuits represent the computation model for almost all known secure computation

protocols. Broadly speaking, any data oblivious algorithm admits an efficient cir-

cuit implementation whose size is proportional to the algorithm’s runtime. Generic

RAM programs can be compiled into an oblivious counterpart with polylogarithmic

blowup [67,70,96,134,143].

In a similar manner, Oblivious Parallel RAMs (OPRAM) [28,35,38], essentially

transform PRAM programs into low-depth circuits, also incurring a polylogarithmic

blowup. As mentioned earlier, these works are more of a theoretical nature and ex-

pensive in practice. In comparison, our work proposes efficient oblivious algorithms

2For secure computation, a program is translated into a sequence of circuits whose inputs can

be oblivious memory accesses. Note that this is different from transforming a program into a single

circuit – for the latter, the best known asymptotical result incurs quadratic overhead [129].

170

for a restricted (but sufficiently broad) class of PRAM algorithms, as captured by

our GraphSC programming abstractions.

Parallel programming paradigms. The past decade has given rise to paralleliza-

tion techniques that are suitable to cheap modern hardware architecture. MapRe-

duce [49] is a seminal work that presented a simple programming model for process-

ing massive datasets on large cluster of commodity computers. This model resulted

on a plethora of system-level implementations [135] and improvements [151]. A

second advancement was made with Pregel [108], a simple programming model for

developing efficient parallel algorithms on large-scale graphs. This also resulted in

several implementations, including GraphLab [68, 105] and Giraph [13]. The sim-

plicity of interfaces exposed by these paradigms (like the scatter, gather, and apply

operations of Pregel) led to their widespread adoption, as well as to the proliferation

of algorithms implemented in these frameworks. We introduce similar programming

paradigms to secure computation, in the hope that it can revolutionize the field like

it did to non-secure parallel programming models, thus making secure computation

easily accessible to non-experts, and easily deployable over large, cheap clusters.

6.2 GraphSC

In this section, we formally describe GraphSC, our framework for parallel

computation. GraphSC is inspired by the scatter-gather operations in GraphLab

and Pregel. Several important parallel data mining and machine learning algorithms

can be cast in this framework (some of these are discussed in Section 6.5.1); a brief

171

example (namely, the PageRank algorithm) can also be found below. We conclude

this section by highlighting the challenges behind implementing GraphSC in a secure

fashion.

6.2.1 Programming Abstraction

Data-augmented graphs. The GraphSC framework operates on data-augmented

directed graphs. A data-augmented directed graph G(V,E,D) consists of a directed

graph G(V,E), as well as user-defined data on each vertex and each edge denoted

D ∈ ({0, 1}∗)|V|+|E|. We use the notation v.data ∈ {0, 1}∗ and e.data ∈ {0, 1}∗ to

denote the data associated with a vertex v ∈ V and an edge e ∈ E respectively.

Programming abstractions. GraphSC follows the Pregel/GraphLab program-

ming paradigm, allowing computations that are “graph-parallel” in nature, i.e.,

each vertex performs computations on its own data as well as data collected from

its neighbors. In broad terms, this is achieved through the following three primitives,

which can be thought of as interfaces exposed by the GraphSC abstraction:

1. Scatter: A vertex propagates data to its adjacent edges and updates the edge’s

data. More specifically, Scatter takes a user-defined function fS : {0, 1}∗ ×

{0, 1}∗ → {0, 1}∗, and a bit b ∈ {“in”, “out”}, and updates each directed edge

e = (u, v) as follows:

e.data :=

fS(e.data, v.data) if b = “in”,

fS(e.data, u.data) if b = “out”.

Note that the bit b indicates whether the update operation is to occur over

172

incoming or outgoing edges of each vertex.

2. Gather: Through this operation, a vertex aggregates the data from adjacent

edges and updates its own data. More specifically, Gather takes as input a

binary aggregation operator ⊕ : {0, 1}∗×{0, 1}∗ → {0, 1}∗ and a bit b ∈ { “in”,

“out” } and updates the data on each vertex v ∈ V as follows:

v.data :=

v.data || ⊕

∀e∈neigh(v,in),

e.data if b = “in”,

v.data || ⊕
∀e∈neigh(v,out),

e.data if b = “out”,

where || indicates concatenation, and
⊕

is the iterated binary operation defined

by ⊕, and neigh(v, in) and neigh(v, out) represent the incoming and outgoing

edges of v respectively. Hence, at the conclusion of the operation, the vertex

stores both its previous value, as well as the output of the aggregation through

⊕.

3. Apply: Vertices perform some local computation on their data. More specifi-

cally, Apply takes a user-defined function fA : {0, 1}∗ × {0, 1}∗ → {0, 1}∗, and

updates every vertex’s data as follows:

v.data := fA(v.data).

A program abiding by the GraphSC abstraction can thus make arbitrary calls

to such Scatter, Gather and Apply operations. Beyond determining this sequence,

each invocation of Scatter, Gather, and Apply must also supply the corresponding

user-defined functions fS, fA, and aggregation operator ⊕. Note that the graph

structure G does not change during the execution of any of the three GraphSC

primitives.

173

Throughout our analysis, we assume the time complexity of fS, fA, and the

binary operator ⊕ (applied to only 2 arguments) is constant, i.e., it does not depend

on the size of G. This is true when, e.g., both vertex and edge data take values in

a finite subset of {0, 1}∗, which is the case for all applications we consider3.

Requirements for the aggregation operator ⊕. During the Gather operation,

a vertex aggregates data from multiple adjacent edges through a binary aggregation

operator ⊕. GraphSC requires that this aggregation operator is commutative and

associative, i.e.,

• Commutative: For any a, b ∈ D, a⊕ b = b⊕ a.

• Associative: For any a, b, c ∈ D, (a⊕ b)⊕ c = a⊕ (b⊕ c).

Here, D represents the set of values that can be assumed by vertex and edge data in

the graph. Roughly speaking, commutativity and associativity guarantee that the

result of the aggregation is insensitive to the ordering of the edges.

6.2.2 Expressiveness

At a high level, GraphSC borrows its structure from Pregel/GraphLab [68,105,

108], which is also defined by the three conceptual primitives called Gather, Apply

and Scatter. There are however a few differences that are not included in GraphSC,

3Note that, due to the concatenation operation ||, the memory size of the data at a vertex can in

theory increase after repeated consecutive Gather operations. However, in the Pregel/GraphLab

paradigm, a Gather is always followed by an Apply, that merges the aggregated edge data with the

vertex data through an appropriate user-defined merge operation fA. Thus, after each iteration

completes the size of vertex data remains constant.

174

as they break obliviousness. For instance, Pregel allows arbitrary message exchanges

between vertices, which is not supported by GraphSC. Pregel also supports modifi-

cation of the graph structure during computation, whereas GraphSC does not allow

such modifications. Finally, GraphLab supports asynchronous parallel computa-

tion of the primitives, whereas GraphSC, and its data oblivious implementation we

describe in Section 6.3, are both synchronous.

Except for these differences that are necessary to maintain obliviousness,

all other programs that can be expressed in Pregel/GraphLab can be expressed

in GraphSC. GraphSC encompasses classic graph algorithms like Bellman-Ford,

bipartite matching, connected component identification, graph coloring, etc., as

well as several important data mining and machine learning operations including

PageRank [123], matrix factorization using gradient descent and alternating least

squares [91], training neural networks through back propagation [128] or parallel

empirical risk minimization through the alternating direction method of multipliers

(ADMM) [27]. We review some of these examples in more detail in Section 6.5.1.

6.2.3 Example: PageRank

Let us try to understand these primitives using the PageRank algorithm [123]

as an example. Recall that PageRank computes a ranking score PR for each vertex

u of a graph G through a repeated iteration of the following assignment:

∀u ∈ V, PR(u) =
0.15

|V| + 0.85×
∑

(v,u)∈E

PR(v)

L(v)
,

175

Algorithm 1 PageRank example

1: function computePageRank(G(V,E,D))

2: fS(e.data, u.data) : e.data := u.data.PR
u.data.L

3: ⊕(e1.data, e2.data) : e1.data + e2.data

4: fA(v.data) : v.data.PR := 0.15
|V| + 0.85× v.data.agg

5: for i := 1 to K do // K: number of iterations until convergence

6: Scatter(G, fS, “out”)

7: Gather(G,⊕, “in”)

8: Apply(G, fA)

9: // Every vertex v stores its PageRank PR

where L(v) is the number of outgoing edges. Initially, all vertices are assigned a

PageRank of 1
|V| .

PageRank can be expressed in GraphSC as shown in Algorithm 1. The data

of every vertex v comprises two real values, one for the PageRank (PR) of the vertex

and the other for the number of its outgoing edges (L(v)). The data of every edge

e = (u, v) comprises a single real value corresponding to the weighted contribution

of PageRank of the outgoing vertex u.

For simplicity, we assume that each vertex v has pre-computed and stored

L(v) at the beginning of the algorithm’s execution. The algorithm then consists

of several iterations, each evoking a Scatter, Gather and Apply operation. The

Scatter operation updates the edge data e = (u, v) by the weighted PageRank of the

176

outgoing vertex u, i.e., b = “out” and

fS(e.data, u.data) : e.data :=
u.data.PR

u.data.L
.

In the Gather operation, every vertex v adds up the weighted PageRank over

incoming edges e(u, v) and concatenates the result with the existing vertex data, by

storing it in the variable v.data.agg. That is, b = “in”, and ⊕ is given by

⊕(e1.data, e2.data) : e1.data + e2.data.

Scatter 0.08 0.08

0.08
Gather

0.25
0.08

0.25

0.25

0.25||0.58

0.25||0.08

0.25||0

0.25||0.08

0.08

0.08

0.25

0.25

Apply 0.08

0.08

0.53

0.11

0.04

0.08

0.25

0.25

0.11

0.25

0.25

0.25

0.25

0.25

0.25

0.25

Figure 6.1: One iteration of PageRank computation. 1. Every page starts

with PR = 0.25. 2. During Scatter, outgoing edges are updated with the weighted

PageRank of vertices. 3. Vertices then aggregate the data on incoming edges in a

Gather operation and store it along with their own data. 4. Finally, vertices update

their PageRank in an Apply operation.

The Apply operation computes the new PageRank of vertex v using v.data.agg.

fA(v.data) : v.data.PR :=
0.15

|V| + 0.85× v.data.agg.

An example iteration is shown in Figure 6.1.

177

6.2.4 Parallelization and Challenges in Secure Implementation

Under our standing assumption that fS, fA, and ⊕ have O(1) time complexity,

all three primitives are linear in the input, i.e., can be computed in O(|V| + |E|)

time. Moreover, like Pregel/GraphLab operations, Scatter, Gather and Apply can

be easily parallelized, by assigning each vertex in graph G to a different processor.

Each vertex also maintains a list of all incoming edges and outgoing edges, along

with their associated data. Scatter operations involve transmissions: e.g., in a

Scatter “out” operation, a vertex sends its data to all its outgoing neighbors, who

update their corresponding incoming edges. Gather operations on the other hand

are local: e.g., in a Gather “in” operation, a vertex simply aggregates the data in its

incoming edges and appends it to its own data. Both Scatter and Gather operations

can thus be executed in parallel across different processors storing the vertices.

Finally, in such a configuration, Apply operations are also trivially parallelizable

across vertices. Note that, in the presence of P < |V| processors, to avoid a single

overloaded processor becoming a bottleneck, the partitioning of the graph should

balance computation and communication across processors.

In this chapter, we wish to design a secure computation framework imple-

menting GraphSC operations in a privacy-preserving fashion, while maintaining its

parallelizability. In particular, our design should be such that, only the final out-

put of the program is revealed; the input, i.e., the directed data-augmented graph

G(V,E,D) should not be leaked during the execution of the program. We note that

there are several applications in which hiding the data as well as the graph structure

178

of G is important. For example, in PageRank, the entire input is described by the

graph structure G. As noted in [119], in the case of matrix factorization, the graph

structure leaks which items a user has rated, which can again be very revealing. To

highlight the difficulties that arise in implementing GraphSC in a secure fashion,

we note that näıve parallelization, as described above, leaks a lot of information. In

particular:

1. The amount of data stored by vertices, based on the above partitioning of the

graph, reveals information about its neighborhood.

2. The number of times a vertex is accessed during a scatter phase reveals the

number of outgoing neighbors.

3. Finally, the neighbors with which each vertex communicates during a Scatter

phase reveals the entire graph G.

6.3 GraphSC Primitives as Efficient Parallel Oblivious Algorithms

In this section, we discuss how the three primitives exposed by the GraphSC

abstraction can be expressed as parallel data oblivious algorithms. A parallel obliv-

ious algorithm can be converted to a parallel secure algorithm using standard tech-

niques; we describe such a conversion in more detail in Section 6.4, focusing here on

data-obliviousness and parallelizability.

179

6.3.1 Parallel Oblivious Algorithms: Definitions and Metrics

A parallel algorithm ALG ∈ ALG is said to be perfectly oblivious, iff for any

two inputs inp0 and inp1 to the algorithm such that |inp0| = |inp1| and such that

ALG is known to the adversary, it holds that

Addresses[ALG](inp0) ≡ Addresses[ALG](inp0)

In this chapter, our parallel oblivious algorithms are all deterministic and thus,

the traces are identical. Also, our inputs are data-augmented graphs. Thus, for any

two graphs, G = (V,E,D) and G′ = (V′,E′,D′) such that |V|+ |E| = |V′|+ |E′| and

|d| = |d′| for d ∈ D and d′ ∈ D′, we require that,

Addresses[ALG](G) ≡ Addresses[ALG](G′)

Note that, by the above definition, a parallel oblivious algorithm hides both

the graph structure and the data on the graph’s vertices and edges. Only the “size”

of the graph |V| + |E| is revealed. Moreover, if such an algorithm is represented

as a circuit of depth Θ(T), then it comprises of Θ(T) layers and each such layer

represents the state of the shared memory at time t.

For our parallel oblivious algorithms, we are interested in the total work

blowup and the depth blowup. The total work of a parallel oblivious algorithm

may increase due to two reasons – First, due to the cost of parallelism: the most

efficient (insecure) parallel algorithm may incur a blowup in terms of total work.

Second, due to the cost of obliviousness: requiring that the algorithm is oblivious

may also incur additional blowup in total work. We refer the reader to Section 2.2

180

3

2

1

4

(a) Graph G.

1, D1 2, D2 3, D3 4, D4 (1,2), D1,2 (1,3), D1,3 (1,4), D1,4 (2,3), D2,3 (4,3), D4,3

1, D1 2, D2 3, D3 4, D4 (1,2), D1,2 (1,3), D1,3 (1,4), D1,4 (2,3), D2,3 (4,3), D4,3

O-Sort

1, D1 2, D2 3, D3 4, D4 (1,2), D’1,2 (1,3), D’1,3 (1,4), D’1,4 (2,3), D’2,3 (4,3), D’4,3

fS(D1, D1,3) fS(D1, D1,2) fS(D1, D1,4) fS(D2, D2,3) fS(D4, D4,3)

1, D1 2, D2 3, D3 4, D4 (1,2), D’1,2 (1,3), D’2,3 (1,4), D’1,4 (2,3), D’1,3 (4,3), D’4,3

O-Sort

1, D1 2, D’2 3, D’3 4, D’4 (1,2), D’1,2 (1,3), D’2,3 (1,4), D’1,4 (2,3), D’1,3 (4,3), D’4,3
S

c
a
tt

e
r

(G
,

f S
,

b
=
“
o
u
t”
)

D2||D1,2 D3||(D’1,3 + D’2,3 + D’4,3) D4||D’1,4

G
a
th

e
r(

G
,
+

 ,

b
=
“
in
”
)

(b) Transformations of list representing graph G.

Figure 6.2: Oblivious Scatter and Gather on a single processor. We apply a Scatter

followed by a Gather. Scatter : Graph tuples are sorted so that edges are grouped

together after the outgoing vertex. e.g. D1,2, D1,3, D1,4 are grouped after D1. Then,

in a single pass, all edges are updated. e.g. D1,3 is updated as fS(D1, D1,3). Gather :

Graph tuples are sorted so that edges are grouped together before the incoming

vertex. e.g. D′1,3, D
′
2,3, D

′
4,3 are grouped before D3. Then, in a single pass, all

vertices compute the aggregate. e.g. D′3 = D3||D′1,3 ⊕D′2,3 ⊕D′4,3.

in Chapter 2 for the specific definitions of total work blowup and depth blowup.

6.3.2 Single-Processor Oblivious Algorithm

Before presenting our fully-parallel solution, we describe how to implement

each of the three primitives in a data-oblivious way on a single processor (i.e., when

P = 1). One key challenge is how to hide the graph structure G during computation.

Alternative graph representation: Our oblivious algorithms require an alterna-

tive representation of graphs, that does not differentiate between edges and vertices.

181

Both vertices and edges are represented as tuples of the form 〈u, v, isVertex, data〉.

In particular, each vertex u is represented by the tuple: 〈u, u, 1, data〉; and each edge

(u, v) is represented by the tuple: 〈u, v, 0, data〉. We represent a graph as a list of

tuples, i.e., G := (ti)i∈[|V|+|E|] where each ti is of the form 〈u, v, isVertex, data〉.

Algorithm description. We now describe the single-processor oblivious imple-

mentation of GraphSC primitives. The formal description of the implementation is

provided in Algorithm 2. We also provide an example of the Scatter and Gather

operations in Figure 6.2b, for a very simple graph shown in Figure 6.2a.

Apply. The Apply operation is straightforward to make oblivious under our

new graph representation. Essentially, we make a linear scan over the list G. During

this scan, we apply the function fA to each vertex tuple in the list, and a dummy

operation to each edge tuple.

Scatter. Without loss of generality, we use b = “out” as an example. The

algorithm for b = “in” is similar. The Scatter operation then proceeds in two steps,

illustrated in the first three lines of Figure 6.2b.

Step 1: Oblivious sort: First, perform an oblivious sort on G, so that tuples with

the same source vertex are grouped together. Moreover, each vertex should appear

before all the edges originating from that vertex.

Step 2: Propagate: Next, in a single linear scan, update the value of each edge with

the nearest preceding vertex by applying the fS function.

Gather. Again, without loss of generality, we will use b = “in” as an example.

The algorithm for b = “out” is similar. Gather proceeds in a fashion similar to

182

Algorithm 2 Oblivious GraphSC on a Single Processor

G: list of tuples 〈u, v, isVertex, data〉, N = |V|+ |E|

1: function Scatter(G, fS, b = “out”)

/* b = “in” is similar and omitted */

2: sort G by (u,−isVertex)

3: for i := 1 to N do /* Propagate */

4: if G[i].isVertex then

5: val := G[i].data

6: else

7: G[i].data := fS(G[i].data, val)

1: function Gather(G, ⊕, b = “in”)

/* b = “out” is similar and omitted */

2: sort G by (v, isVertex)

3: var agg := 1⊕ // identity w.r.t. ⊕

4: for i := 1 to N do /* Aggregate */

5: if G[i].isVertex then

6: G[i].data := G[i].data||agg

7: agg := 1⊕

8: else

9: agg := agg ⊕ G[i].data

1: function Apply(G, fA)

2: for i := 1 to N do

3: G[i].data := fA(G[i].data)

183

Scatter in two steps, illustrated in the last three lines of Figure 6.2b.

Step 1: Oblivious sort: First, perform an oblivious sort on G, so that tuples with the

same destination vertex appear adjacent to each other. Further, each vertex should

appear after the list of edges ending at that vertex.

Step 2: Aggregate: Next, in a single linear scan, update the value of each vertex

with the ⊕-sum of the longest preceding sequence of edges. In other words, values

on all edges ending at some vertex v are now aggregated into the vertex v.

Efficiency. Let N := |V| + |E| denote the total number of tuples. Assume that

the data on each vertex and edge is O(1) length, and hence each fS, fA, and ⊕

operator is ofO(1) cost. Clearly, an Apply operation can be performed inO(N) time.

Oblivious sort can be performed in O(N logN) time using [44, 88] while propagate

and aggregate take O(N) time. Therefore, a Scatter and a Gather operation each

runs in time O(N logN).

6.3.3 Parallel Oblivious Algorithms for GraphSC

We now describe how to parallelize the sequential oblivious primitives Scat-

ter, Gather, and Apply described in Section 6.3.2. We will describe our parallel

algorithms assuming there are a sufficient number of processors, namely |V| + |E|

processors. Later in Section 6.3.4, we describe some practical optimizations when

the number of processors is smaller than |V|+ |E|.

First, observe that the Apply operation can be parallelized trivially. We now

demonstrate how to parallelize the Scatter and Gather operations. Recall that both

184

Scatter and Gather start with an oblivious sort, followed by either an aggregate or a

propagate operation as described in Section 6.3.2. The oblivious sort is, in principle,

a log(|V| + |E|)-depth circuit [10]. In practice, this sorting circuit is inefficient and

thus, we can use a Bitonic sort [15] which has a log2(|V|+|E|)-depth circuit. However,

both these circuits are trivially parallelizable at the circuit level.

It thus suffices to show how to execute the aggregate and propagate operations

in parallel. To highlight the difficulty behind the parallelization of these operations,

recall that in a data-oblivious execution, a processor needs to, e.g., aggregate values

by accessing the list representing the graph at fixed locations, which do not depend

on the data. However, as seen in Figure 6.2b, the positions of edges (i.e., black cells)

whose values are to be aggregated and stored in vertices (i.e., white cells) clearly

depend on the input (namely, the graph G).

Parallelizing the aggregate operation. Recall that an aggregate operation up-

dates the value of each vertex with values of the longest sequence of edges preceding

it. For ease of exposition, we first present a few definitions before presenting our

parallel aggregate algorithm.

Definition 1. Longest Edge Prefix: For j ∈ {1, 2, . . . , |V|+|E|}, the longest edge

prefix before j, denoted LEP[1, j), is defined to be the longest consecutive sequence

of edges before j, not including j.

Similarly, let 1 ≤ i < j ≤ |V|+ |E|, we use the notation LEP[i, j) to denote the

longest consecutive sequence of edges before j, constrained to the subarray G[i . . . j)

(index i being inclusive, and index j being exclusive).

185

Definition 2. Longest Prefix Sum: Let 1 ≤ i < j ≤ |V|+|E|, we use the notation

LPS[i, j) to denote the “sum” (with respect to the ⊕ operator), of LEP[i, j).

Abusing notation, we treat LPS[i, j) as an alias for LPS[1, j) if i < 1. The

parallel aggregate algorithm is described in Figure 6.3. The algorithm proceeds

in a total of log(|V| + |E|) steps. In each intermediate step τ , a processor j ∈

{1, 2, . . . , |V|+ |E|} computes LPS[j − 2τ , j). As a result, at the conclusion of these

log(|V|+ |E|) steps, each processor j has computed LPS[1, j).

This way, by time τ , all processors compute the LPS values for all segments

of length 2τ . Now, observe that LPS[j − 2τ , j) can be computed by combining

LPS[j − 2τ , j − 2τ−1) and LPS[j − 2τ−1, j) in a slightly subtle (but natural) manner

as described in Figure 6.3. Intuitively, at each τ , a segment is aggregated with the

immediately preceding segment of equal size only if a vertex has not be encountered

so far.

At the end of log(|V|+|E|) steps, each processor j working on a vertex, appends

its data to the aggregation result LPS[1, j) – this part is omitted from Figure 6.3

for simplicity.

Parallelizing the propagate operation. Recall that, in a propagate operation,

each edge updates its data with the data of the nearest preceding vertex. The

propagate operation can be parallelized in a manner similar to aggregate. In fact, we

can even express a propagate operation as a special aggregate operation as follows:

Initially, every edge stores (i) the value of the preceding vertex if a vertex precedes;

and (ii) −∞ otherwise. Next, we perform an aggregate operation where the ⊕

186

Parallel Aggregate:

/* For convenience, assume that for i ≤ 0, G[i] is a vertex; and similarly for i ≤ 0,

LPS[i, j) as an alias for LPS[1, j) */.

Initialize: Every processor j computes:

• LPS[j − 1, j) :=

G[j − 1].data if G[j − 1] is an edge

1⊕ o.w.

• existsvert[j − 1, j) :=

False if G[j − 1] is an edge

True o.w.

Main algorithm: For each time step τ := 1 to log(|V|+ |E|)− 1: each processor

j computes

• if existsvert[j − 2τ−1, j) = False

LPS[j − 2τ , j) := LPS[j − 2τ , j − 2τ−1) ⊕ LPS[j − 2τ−1, j)

else LPS[j − 2τ , j) := LPS[j − 2τ−1, j)

• existsvert[j − 2τ , j) := existsvert[j − 2τ , j − 2τ−1) or existsvert[j − 2τ−1)

Figure 6.3: Performing the aggregate operation (Step 2 of Gather) in parallel, as-

suming sufficient number of processors with a shared memory to store the variables.

187

operator is defined to be the max operator. At the end of log |V| + |E| time steps,

each processor has computed LPS[1, j), i.e., the value of the nearest vertex preceding

j. Now if cell G[j] is an edge, we can overwrite its data entry with LPS[1, j).

Cost analysis. Recall our standing assumption that the maximum data length

on each tuple is O(1). It is not hard to see that the parallel runtime of both the

aggregate and propagate operations is O(log(|V| + |E|)). The total amount of work

for both aggregate and propagate is O((|V|+ |E|) · log(|V|+ |E|)).

Based on this, we can see that Scatter and Gather each takes O(log(|V|+ |E|))

parallel time and O((|V| + |E|) · log(|V| + |E|)) total amount of work. Obviously,

Apply takes O(1) parallel time and O(|V|+ |E|) total work.

Table 6.1 illustrates the performance of our parallel oblivious algorithms for

the common case when |E| = Ω(|V|), and the blowup in comparison with a paral-

lel insecure version. Notice that in the insecure world, there exists a trivial O(1)

parallel-time algorithm to evaluate Scatter and Apply operations. However, in the

insecure world, Gather would take O(log(|E| + |V|)) parallel time to evaluate the

⊕-sum over |E| + |V| variables. Notice also that the |V| term in the asymptotic

bound is absorbed by the |E| term when |E| = Ω(|V|). The above performance

characterization is summarized by the following theorem:

Theorem 21 (Parallel oblivious algorithm for GraphSC). Let M := |V| + |E| de-

note the graph size. There exists a parallel oblivious algorithm for programs in the

GraphSC model, where each Scatter or Gather operation requires O(logM) parallel

time and O(M logM) total work; and each Apply operation requires O(1) parallel

188

Op
Total work Parallel time/Depth

Par. insec. Par. obliv. Blowup Par. insec. Par. obliv. Blowup

Scatter O(|E|) O(|E| log |V|) O(log |V|) O(1) O(log |V|) O(log |V|)

Gather O(|E| log d) O(|E| log |V|) O(logd |V|) O(log d) O(log |V|) O(logd |V|)

Apply O(|V|) O(|E|) O(|E|/|V|) O(1) O(1) O(1)

Table 6.1: Complexity of our parallel oblivious algorithms assuming |E| =

Ω(|V|). |V | denotes the number of vertices, and |E| denotes the number of edges. d

denotes the maximum degree of a vertex in the graph. Blowup is defined as the ratio

of the parallel oblivious algorithm with respect to the best known parallel insecure

algorithm. We assume that the data length on each vertex/edge is upper-bounded

by a known bound D, and for simplicity we omit a multiplicative factor of D from

our asymptotical bounds. In comparison with Theorem 21, in this table, some |V|

terms are absorbed by the |E| term since |E| = Ω(|V|).

189

…

Processors

Memory

Oblivious accesses

(a) Architecture for parallel oblivi-

ous algorithms.

Evaluators

Secret-shared memory

…
Oblivious accesses, E-E comm.

Garblers

Secret-shared memory

…

… … …

Oblivious accesses, G-G comm.

… … …

(b) Architecture for parallel secure computa-

tion.

Figure 6.4: From parallel oblivious algorithms to parallel secure computation.

time and O(M) total amount of work.

6.3.4 Practical Optimizations for Fixed Number of Processors

The parallel algorithm described in Figure 6.3 requires M = |V|+ |E| proces-

sors. In practice, however, for large datasets, the number of processors P may be

smaller than M . Without loss of generality, suppose that M is a multiple of P . In

this case, a näıve approach is for each processor to simulate M
P

processors, resulting

in M logM
P

parallel time, and M logM total amount of work. We propose the follow-

ing practical optimization that can reduce the total parallel time to O(M
P

+ logP),

and reduce the total amount of work to O(P logP +M).

We assign to each processor a consecutive range of cells. Suppose that proces-

sor j gets range [sj, tj] where sj = (j − 1) · M
P

+ 1 and tj = j · M
P

. In our algorithm,

190

each processor will compute LPS[1, sj), and afterwards, in O(M/P) time-steps, it

can (sequentially) compute LPS[1, i) for every sj ≤ i ≤ tj. Every processor then

computes LPS[1, sj) as follows

• First, every processor sequentially computes LPS[sj, tj+1) and existswhite[sj, tj+

1).

• Now, assume that every processor started with a single value LPS[sj, tj +1) and

a single value existswhite[sj, tj + 1). Perform the parallel aggregate algorithm

on this array of length P .

Sparsity of communication. In a distributed memory setting where memory is

split across the processors, the conceptual shared memory is in reality implemented

by inter-process communication. An additional advantage of our algorithm is that

each processor needs to communicate with at most O(logP) other processors – this

applies to both the oblivious sort step, and the aggregate or propagate steps. In fact,

it is not hard to see that the communication graph forms a hypercube [112].

Let M := |V|+|E| and recall that the maximum amount of data on each vertex

or edge is O(1). The following corollary summarizes the above observations:

Corollary 22 (Bounded processors, distributed memory.). When P < M , there

exists a parallel oblivious algorithm for programs in the GraphSC model, where (a)

each processor stores O(M/P) amount of data; (b) each Scatter or Gather operation

requires O(M/P+logP) parallel time and O(P logP+M) total work; (c) each Apply

operation requires O(1) parallel time and O(|E|+ |V|) total amount of work; and (d)

each processor sends messages to only O(logP) other processors.

191

Security analysis. The oblivious nature of our algorithms is not hard to see: in

every time step, the shared memory locations accessed by each processor is fixed

and independent of the sensitive input. This can be seen from Figure 6.3, and the

description of practical optimizations in this section.

6.4 From Parallel Oblivious Algorithms to Parallel Secure Compu-

tation

So far, we have discussed how GraphSC primitives can be implemented as

efficient parallel oblivious algorithms, we now turn our attention to how the latter

translate to parallel secure computation. In this section, we outline the reduction

between the two, focusing on a garbled-circuit backend [150] for secure computation.

System Setting. Recall that our focus in this chapter is on secure 2-party compu-

tation. As an example, Figure 6.4b depicts two non-colluding cloud service providers

(e.g., Facebook and Amazon) – henceforth referred to as the two parties. The sen-

sitive data (e.g., user preference data, sensitive social graphs) can be secret-shared

between these two parties. Each party has P processors in total – thus there are

in total P pairs of processors. The two parties wish to run a parallel secure com-

putation protocol computing a function (e.g., matrix factorization), over the secret-

shared data.

While in general, other secure 2-party computation protocols can also be em-

ployed, this chapter focuses on a garbled circuit backend [150]. Our focus is on the

semi-honest model, although this can be extended with existing techniques [93,100].

192

Using this secure model, the oblivious algorithm is represented as a binary circuit.

One party then acts as the garbler and the other acts as the evaluator, as illus-

trated in Figure 6.4b. To exploit parallelization, each of the two parties parallelize

the computational task (garbling and evaluating the circuit, respectively) across its

processors. There is a one-to-one mapping between garbler and evaluator processors:

each garbler processor sends the tables it garbles to the corresponding correspond-

ing evaluator processor, that evaluates them. We refer to such communication as

garbler-to-evaluator (GE) communication.

Note that there is a natural correspondence between a parallel oblivious al-

gorithm and a parallel secure computation protocol: First, each processor in the

former becomes a (garbler, evaluator) pair in the latter. Second, memory in the

former becomes secret-shared memory amongst the two parties. Finally, in each

time step, each processor’s computation in the former becomes a secure evaluation

protocol between a (garbler, evaluator) pair in the latter.

Architectural choices for realizing parallelism. There are various choices for

instantiating the parallel computing architecture of each party in Figure 6.4b.

• Multi-core processor architecture. At each party, each processor can be imple-

mented by a core in a multi-core processor architecture. These processors share

a common memory array.

• Compute cluster. At each party, each processor can be a machine in a compute

cluster. In this case, accesses to the “shared memory” are actually imple-

mented with garbler-to-garbler communication or evaluator-to-evaluator com-

193

munication. In other words, the memory is conceptually shared but physically

distributed.

• Hybrid. The architecture can be a hybrid of the above, with a compute cluster

where each machine is a multi-core architecture.

While our design applies to all three architectures, we used a hybrid architecture

in our implementation, exploiting both multi-core and multi-machine parallelism.

Note that, in the case of a hybrid or cluster architecture with P machines, Corol-

lary 22 implies that each garbler (evaluator) communicates with only O(logP) other

garblers (evaluators) throughout the entire execution. In particular, both garblers

and evaluators connect through a hypercube topology. This is another desirable

property of GraphSC.

Metrics. Using the above natural correspondence between a parallel oblivious

algorithm and a parallel secure computation protocol, there is also a natural cor-

respondence between the primary performance metrics in these two settings: First,

the total work of the former directly characterizes (a) the total work and (b) the

total garbler-to-evaluator (GE) communication in the latter. Second, the parallel

runtime of the former directly characterizes the parallel runtime of the latter. We

note that, in theory, the garbler is infinitely parallelizable, as each gate can be

garbled independently. However, the parallelization of the evaluator (and, thus, of

the entire system) is confined by the sequential order defined by the circuit. Thus,

parallel runtime is determined by the circuit depth.

In the cluster and hybrid cases, where memory is conceptually shared but

194

physically distributed, two additional metrics may be of interest, namely, the garbler-

to-garbler (GG) communication and evaluator-to-evaluator (EE) communication.

These directly relate to the parallel runtime, since in each parallel time step, each

processor makes only one memory access; hence, each processor communicates with

at most one other processor at each time-step.

6.5 Evaluation

In this section we present a detailed evaluation of our systems for a few

well-known applications that are commonly used for evaluating highly-parallelizable

frameworks.

6.5.1 Application Scenarios

In all scenarios, we assume that the data is secret-shared across two non-

colluding cloud providers, as motivated in Section 6.4. In all cases, we refer to the

total number of vertices and edges in the corresponding GraphSC graph as input

size.

Histogram. A canonical use case of MapReduce is a word-count (or histogram)

of words across multiple documents. Assuming a (large) corpus of documents, each

comprising a set of words, the algorithm counts word occurrences across all docu-

ments. The MapReduce algorithm maps each word as a key with the value of 1, and

the reducer sums up the values of all keys, resulting in the count of appearances of

each word. In the secure version, we want to compute the word frequency histogram

195

while hiding the text in each document. In GraphSC, this is a simple instance of

edge counting over a bipartite graph G, where edges connect keys to words. We rep-

resent keys and words as 16-bit integers, while accumulators (i.e., key vertex data)

are stored using 20-bit integers.

Simplified PageRank. A canonical use case of graph parallelization models is

the PageRank algorithm. We consider a scenario in which multiple social network

companies, e.g., Facebook, Twitter and LinkedIn, would like to compute the “real”

social influence of users on a social graph that is the aggregate of each company’s

graph (assume users are uniquely identified across networks by their email address).

In the secure version, each company is not willing to reveal user data and their social

graph with the other network. Vertices are identified using 16-bit integers, and 1bit

for isVertex (see Section 6.3.2). The PageRank value of each vertex is stored using

a 40-bit fixed-point representation, with 20-bit for the fractional part.

Matrix Factorization (MF). Matrix Factorization [91] splits a large sparse low-

rank matrix into two dense low-dimension matrices that, when multiplied, closely

approximate the original matrix. Following the Netflix prize competition [18], matrix

factorization is widely used in recommender systems. In the secure version, we want

to factorize the matrix and learn the user or item feature vectors (learning both

can reveal the original input), while hiding both the ratings and items each user

has rated. MF can be expressed in GraphSC using a bi-partite graph with vertices

representing users and items, and edges connecting each user to the items they rated,

carrying the ratings as data. In addition, data at each vertex also contains a feature

vector, corresponding to its respective row in the user/item factor matrix. We study

196

two methods for matrix factorization – gradient descent and alternative least-squares

(ALS) (see, e.g., [91]). In gradient descent, the gradient is computed for each rating

separately, and then accumulated for each user and each item feature vectors, thus it

is highly parallelizable. In ALS we alternate the computation between user feature

vectors (assuming fixed item feature vectors) and item feature vectors (assuming

fixed user feature vectors). For each step, each vector solves (in parallel) a linear

regression using the data from its neighbors. Similar to PageRank, we use 16-bit

for vertex id and 1-bit for isVertex. The user and item feature vectors are with

dimension 10, with each element stored as a 40-bit fixed-point real.

The secure implementation of matrix factorization using gradient descent has

been studied by Nikolaenko et al. [119] who, as discussed in Section 6.1, constructed

circuits of linear depth. The authors used a multi-core machine to exploit paral-

lelization during sorting, and relied on shared memory across threads. This limits

the ability to scale beyond a single machine, both in terms of the number of parallel

processors (32 processors) as well as, crucially, input size (they considered no more

than 17K ratings, over a 128 GB RAM server).

6.5.2 Implementation

We implemented GraphSC atop ObliVM-GC, the Java-based garbled circuit

implementation that comprises the back end of the GraphSC secure computation

framework [7,104]. ObliVM-GC provides easy-to-use Java classes for composing cir-

cuit libraries. We extend ObliVM-GC with a simple MPI-like interface where pro-

197

3

5

2
1

6

7
1 Gb

4

(a) Evaluation setup, all machines

are connected in a star topology

with 1Gbps links.

Machine #Proc Memory CPU Freq

1 24 128 GB 1.9 GHz

2 24 128 GB 1.9 GHz

3 24 64 GB 1.9 GHz

4 24 64 GB 1.9 GHz

5 24 64 GB 1.9 GHz

6 32 128 GB 2.1 GHz

7 32 256 GB 2.6 GHz

(b) Servers’ hardware used for our evaluation.

The processor used for machine 6 is AMD

Opteron 6272. For all other machines, AMD

Opteron 6282 SE is used.

Figure 6.5: Experimental setup for our evaluation.

cesses can additionally call non-blocking send and blocking receive operations.

Processes in ObliVM-GC are identified by their unique identifiers.

Finally, we implement oblivious sorting using the bitonic sort protocol [88]

which sorts in O(N log2N) time. Asymptotically faster protocols such as the

O(N logN) AKS sort [10] and the recent ZigZag sort [69] are much slower in practice

for practical ranges of data sizes.

198

6.5.3 Setup

We conduct experiments on both a testbed that uses a LAN, and on a realistic

Amazon AWS deployment. We first describe our main experiments conducted using

a compute cluster connected by a Local Area Network. Later, in Section 6.5.8, we

will describe results from the AWS deployment.

Testbed Setup on Local Area Network: Our experimental testbed consists of

7 servers with the configurations detailed in Table 6.5b. These servers are inter-

connected using a star topology with 1Gbps Ethernet links as shown in Figure 6.5a.

All experiments (except the large-scale experiment reported in Section 6.5.6 that

uses all of them) are performed using a pair of servers from the seven machines.

These servers were dedicated to the experiments during our measurements, not

running processes by other users.

To verify that our results are robust, we repeated the experiments several

times, and made sure that the standard deviation is small. For example, we ran

PageRank 10 times using 16 processors for an input length of 32K. The resulting

mean execution time was 390 seconds, with a standard deviation of 14.8 seconds;

we therefore report evaluations from single runs.

6.5.4 Evaluation Metrics

We study the gains and overheads that result from our parallelization tech-

niques and implementation. Specifically, we study the following key metrics:

Total Work. We measure the total work using the overall number of AND gates

199

for each application. As mentioned earlier in Section 6.3.4, the total work grows log-

arithmically with respect to the number of processors P in theory – and in practice,

since we employ bitonic sort, the actual growth is log-squared.

Actual runtimes. We report our actual runtimes and compare the overhead with

a cleartext baseline running over GraphLab [2, 68, 105]. We stress that while our

circuit size metrics are platform independent, actual runtime is a platform dependent

metric. For example, we expect a factor of 20 speedup if the backend garbled

circuit implementation adopts a JustGarble-like approach (using hardware AES-

NI) – assuming roughly 2700 Mbps bandwidth provisioned between each garbler

and evaluator pair.

Speedup. The obvious first metric to study is the speedup in the time to run each

application as a result of adding more processors. In our applications, computation

is the main bottleneck. Therefore, in the ideal case, we should observe a factor of x

speedup with x factor more processors.

Communication. Parallelization introduces communication overhead between gar-

blers and between evaluators. We study this overhead and compare it to the com-

munication between garblers and evaluators.

Accuracy. Although not directly related to parallelization, for completeness we

study the loss in accuracy obtained as a result of implementing the secure version

of the applications, both when using fixed-point representation and floating-point

representation of the reals.

200

22 23 24 25

Processors

28
210
212
214

T
im

e
(s

ec
) 32K

64K
128K

256K
512K

(a) Histogram

22 23 24 25

Processors

28
210
212

T
im

e
(s

ec
) 4K

8K
16K

32K
64K

(b) PageRank

22 23 24 25

Processors

28
210
212
214

T
im

e
(s

ec
) 2K

4K
8K

16K
32K

(c) Gradient Descent

22 23 24 25

Processors

210

212

214

216

T
im

e
(s

ec
) 256
512
1K

2K
4K

(d) ALS

Figure 6.6: Computation time for increasing number of processors, showing an

almost linear decrease with the number of processors. The lines correspond to

different input lengths. For PageRank, gradient descent and ALS, the computation

time refers to the time required for one iteration.

201

212 214 216

Input length

23

26

29

212

215

T
im

e
(s

ec
)

(a) Histogram

212 214 216

Input length

23

26

29

212

215

T
im

e
(s

ec
)

(b) PageRank

210 212 214

Input length

26

29

212

215

T
im

e
(s

ec
)

(c) Gradient Descent

26 28 210 212

Input length

26

29

212

215

T
im

e
(s

ec
)

(d) ALS

Processors 4 8 16 32 Baseline Nikolaenko et al.

Figure 6.7: Computation time for increasing input size, showing an almost-linear

increase with the input size, with a small log2 factor incurred by the bitonic sort.

The lines correspond to different input lengths. For PageRank, gradient descent

and ALS, the computation time refers to the time required for one iteration.

In Figure 6.7a, the baseline is a sequential ORAM-based baseline using Circuit

ORAM [143]. Figure 6.7c compares our performance with the performance of Niko-

laenko et al. [119] who implemented the circuit using FastGC [82] and parallelized

at the circuit level using 32 processors.

202

6.5.5 Main Results

Speedup. Figure 6.6 shows the total computation time across the different appli-

cations. For all applications except histogram we show the time of a single iteration

(consecutive iterations are independent). Since in our experimental setup computa-

tion is the bottleneck, the figures show an almost ideal linear speedup as the number

of processors grow. Figure 6.7 shows that our method is highly scalable with the

input size, with an almost linear increase (a factor of O(P/ log2 P)). Figure 6.7a

provides the time to compute a histogram using an oblivious RAM implementation.

We use the state-of-the-art Circuit ORAM [143] for this purpose. As the figure

shows, the baseline is 2 orders of magnitude slower compared to the parallel version

using two garblers and two evaluators.

Figure 6.7c provides the timing presented in Nikolaenko et al. [120] using 32

processors. As the figure shows, using a similar hardware architecture, we manage to

achieve a speedup of roughly×16 compared to their results. Most of the performance

gains comes from the usage of GraphSC architecture – whereas Nikolaenko et al.

used a multi-threaded version of FastGC [82] as the secure computation backend.

Total Work. Figure 6.8 shows that the total amount of work grows very slowly

with respect to the number of processors, indicating that we indeed achieved a very

low overhead in the total work (and overall circuit size).

Communication. Figure 6.9a and Figure 6.9b show the amount of total com-

munication and per processor communication, respectively, for running gradient

descent. Each plot shows both the communication between garblers and evalua-

203

22 23 24 25 26

Processors

1.00

1.03

1.06

1.09

1.12

#
A

N
D

ga
te

s
ra

ti
o

32K
64K
128K

256K
512K

(a) Histogram

22 23 24 25 26

Processors

1.00

1.03

1.06

1.09

1.12

#
A

N
D

ga
te

s
ra

ti
o

4K
8K
16K

32K
64K

(b) PageRank

22 23 24 25 26

Processors

1.00

1.02

1.04

1.06

1.08

#
A

N
D

ga
te

s
ra

ti
o

2K
4K
8K

16K
32K

(c) Gradient Descent

22 23 24 25 26

Processors

1.00

1.01

1.021.02
#

A
N

D
ga

te
s

ra
ti

o
256
512
1K

2K
4K

(d) ALS

Figure 6.8: Total work in terms of # AND gates, normalized such that the 4 proces-

sor case is 1×. The different curves correspond to different input lengths. Plots are

in a log-log scale, showing the expected small increase to the number of processors

P . Recall that our theoretical analysis suggests that the total amount of work is

O(P logP + M), where M := |V| + |E| is the graph size. In practice, since we use

bitonic sort, the actual total work is O(P log2 P +M).

204

22 23 24 25 26

Processors

28
210
212
214

T
ot

al
C

om
m

(M
B

)

GE comm
GG comm

(a) Total Communication

22 23 24 25 26

Processors

26

29

212

215

C
om

m
/p

ro
ce

ss
or

(M
B

)

GE comm
GG comm

(b) Communication per proc.

Figure 6.9: Communication of garbler-evaluator (GE) and garbler-garbler (GG) for

gradient descent (input length 2048).

tors, and the overhead introduced by the communication between garblers (com-

munication between evaluators is identical). Figure 6.9a shows that the total com-

munication between garblers and evaluators remains constant as we increase the

number of processors, showing that parallelization does not introduce overhead to

the garblers-to-evaluator communication. Furthermore, the garbler-to-garbler (GG)

communication is significantly lower than the garblers-to-evaluator communication,

showing that the communication overhead due to parallelization is low. As expected,

adding more processors increases the total communication between garblers, follow-

ing log2 P (where P is the number of processors), due to the bitonic sort. Figure 6.9b

shows the communications per-processor (dividing the results of Figure 6.9a by P).

This helps understand overheads in our setting, where, for example, a cloud provider

that provides secure computation services (garbling or evaluating) is interested in

the communication costs of its facility rather than the total costs. As the num-

ber of processors increase, the “out-going” communication (e.g., a provider running

205

21 22 23 24

Processors

2−6
20
26

212
218

T
im

e
(s

ec
) Secure

Cleartext

100K

400K

700K

S
lo

w
d

ow
n

Slowdown

Figure 6.10: Comparison with cleartext implementation on GraphLab for gradient

descent (input length 32K)

garblers see the communication with evaluators as “out-going” communication) de-

creases. The GG communication (or EE communication) remains roughly the same

(following log2 P/P), and significantly lower than the “out-going” communication.

Comparison with a Cleartext Baseline. To better understand the overhead

that is incurred from cryptography, we compared GraphSC’s execution time with

GraphLab [2, 68, 105], a state-of-the-art framework for running graph-parallel al-

gorithms on clear text. We compute the slowdown relative to an insecure base-

line, assuming that the same number of processors is employed for GraphLab and

GraphSC. Using both frameworks, we ran Matrix Factorization using gradient de-

scent with input length of 32K. For the cleartext experiments, we ran 1000 iterations

of gradient descent 3 times, and computed the average time for a single iteration.

Figure 6.10 shows that GraphSC is about 200K - 500K times slower than

GraphLab when run on 2 to 16 processors. Since GraphLab is highly optimized

and extremely fast, such a large discrepancy is expected. Nevertheless, we note that

increasing parallelism decreases this slowdown, as overheads and communication

206

Table 6.2: Summary of machines used in large-scale experiment, performing matrix

factorization over the MovieLens 1M ratings dataset.

Machine Processors Type JVM Memory Size Num Ratings

1 16 Garbler 64 GB 256K

2 16 Evaluator 60.8 GB 256K

3 6 Garbler 24 GB 96K

3 6 Evaluator 24 GB 96K

4 15 Garbler 58.5 GB 240K

5 15 Evaluator 58.5 GB 240K

6 27 Garbler 113.4 GB 432K

7 27 Evaluator 121.5 GB 432K

Total 128 524.7 GB 1M

costs impact both systems.

6.5.6 Running at Scale

In order to have a full-scale experiment of our system, we ran matrix factor-

ization using gradient descent on the real-world MovieLens dataset that contains 1

million ratings provided by 6040 users to 3883 movies [4]. We factorized the matrix

to users and movie feature vectors, each vector with a dimension of 10. We used

40-bit fixed-point representation for reals, with 20 bits reserved for the fractional

part. We ran the experiment on an heterogeneous set of machines that we have in

the lab. Table 6.2 summarizes the machines and the allocation of data across them.

207

A single iteration of gradient descent took roughly 13 hours to run on 7 ma-

chines with 128 processors, at ˜104 MB data size (i.e., 1M entries). As prior machine

learning literature reports [19,84], about 20 iterations are necessary for convergence

for the same MovieLens dataset – which would take about 11 days with 128 pro-

cessors. In practice, this means that the recommendation system can be retrained

every 11 days. As mentioned earlier, about 20× speedup is immediately attainable

by switching to a JustGarble-like back end implementation with hardware AES-NI,

and assuming 2700 Mbps bandwidth between each garbler-evaluator pair. One can

also speed up the execution by provisioning more processors.

In comparison, as far as we know, the closest large-scale experiment in running

secure matrix factorization was recently performed by Nikolaenko et al. [119]. The

authors used 16K ratings and 32 processors to factorize a matrix (on a machine

similar to machine 7 in Table 6.2), taking almost 3 hours to complete. The authors

could not scale further because their framework runs on a single machine.

6.5.7 Performance Profiling

Finally, we perform micro-benchmarks to better understand the time the ap-

plications spend in the different parts of the computation and network transmissions.

Figure 6.11 shows the breakdown of the overall execution between various opera-

tions for PageRank and gradient descent. Figure 6.12 shows a similar breakdown

for different input sizes. As the plots show, the garbler is computation-intensive

whereas the evaluator spends a considerable amount of time waiting for the gar-

208

4 8 16 32
Processors

0

30

60

90

120

T
im

e
(s

ec
) OT I/O

OT CPU
G-G I/O
G-E I/O
Garble CPU

(a) PageRank: Garbler

4 8 16 32
Processors

0

30

60

90

120

T
im

e
(s

ec
) OT I/O

OT CPU
E-E I/O
G-E I/O
Eval CPU

(b) PageRank: Evaluator

4 8 16 32
Processors

0

300

600

900

1200

T
im

e
(s

ec
) OT I/O

OT CPU
G-G I/O
G-E I/O
Garble CPU

(c) Gradient Descent: Garbler

4 8 16 32
Processors

0

300

600

900

1200

T
im

e
(s

ec
) OT I/O

OT CPU
E-E I/O
G-E I/O
Eval CPU

(d) Gradient Descent: Evaluator

Figure 6.11: A breakdown of the execution times of the garbler and evaluator run-

ning one iteration of PageRank and gradient descent for an input size of 2048 entries

Here I/O overhead means the time a processor spends blocking on I/O. The remain-

ing time is reported as CPU time.

209

210 211 212 213

Input length

0

50

100

150

200

T
im

e
(s

ec
) OT I/O

OT CPU
G-G I/O
G-E I/O
Garble CPU

(a) PageRank: Garbler

210 211 212 213

Input length

0

50

100

150

200

T
im

e
(s

ec
) OT I/O

OT CPU
E-E I/O
G-E I/O
Eval CPU

(b) PageRank: Evaluator

28 29 210 211

Input length

0

100

200

300

400

T
im

e
(s

ec
) OT I/O

OT CPU
G-G I/O
G-E I/O
Garble CPU

(c) Gradient Descent: Garbler

28 29 210 211

Input length

0

100

200

300

400

T
im

e
(s

ec
) OT I/O

OT CPU
E-E I/O
G-E I/O
Eval CPU

(d) Gradient Descent: Evaluator

Figure 6.12: A breakdown of the execution times of the garbler and evaluator run-

ning one iteration of PageRank and gradient descent for an increasing input size

using 8 processors for garblers and 8 for evaluators.

bled tables (receive is a blocking operation). In our implementation, the garbler

computes 4 hashes to garble each gate, and the evaluator computes only 1 hash

for evaluation. This explains why the evaluation time is smaller than the garbling

time. Since the computation tasks under consideration are superlinear in the size of

the inputs, we see that the time spent on oblivious transfer (both communication

and computation) is insignificant in comparison to the time for garbling/evaluating.

Our current implementation is built atop Java, and we do not make use of hardware

210

512 768 1024
Bandwidth (Mbps)

0

100

200

300

T
im

e
(s

ec
) 4 8

(a) Varying bandwidths.

21 22 23 24

Processors

26

28

210

212

T
im

e
(s

ec
) 8K

16K
32K

(b) Across data centers

Figure 6.13: Performance of PageRank. Figure 6.13a shows performance for 4 and

8 processors at varying bandwidths. The dotted vertical line indicates the inflexion

point for 8 processors, below which the bandwidth becomes a bottleneck, resulting

in reduced performance. Figure 6.13b shows the performance of PageRank running

on geographically distant data centers (Oregon and North Virginia).

AES-NI instructions. We expect that the garbling and evaluation CPU will reduce

noticeably if hardware AES-NI were employed [16]. We leave it for future work to

port GraphSC to a C-based implementation capable of employing hardware AES-NI

features.

6.5.8 Amazon AWS Experiments

We conduct two experiments on Amazon AWS machines. First, we study the

performance of the system under different bandwidths on the same AWS data cen-

ter (Figure 6.13a). Second, to test the performance on a more realistic deployment,

where the garbler and evaluator are not co-located, we also conduct experiments

by deploying GraphSC on a pair of AWS virtual machines located in different geo-

211

graphical regions (Figure 6.13b).

The time reported for these experiments should not be compared to the earlier

experiments as different machines were used.

Setup. For the experiments with varying bandwidths, both garblers and evaluators

were located in the same data center (Oregon - US West). For the experiment across

data centers, the garblers were located in Oregon (US West) and the evaluators

were located in N. Virginia (US East). We ran our experiments on shared instances

running on Intel Xeon CPU E5-2666 v3 processors clocked at 2.9 GHz. Each of our

virtual machines consisted of 16 cores and 30 GB of RAM.

Results for Varying Bandwidths. Since communication between garblers and

evaluators is a key component in system performance, we further study the band-

width requirements of the system on a real-world deployment.

We measure the time for a single PageRank iteration with input length of 16K

entries. We vary the bandwidth using tc [6], a tool for bandwidth manipulation,

and then measure the exact bandwidth between machines using iperf [3].

Figure 6.13a shows the execution time for two setups, one with 4 processors

(2 garblers and 2 evaluators) and the second with 8 processors. Using 4 processors

the required bandwidth is always lower than the capacity of the link, thus the

execution time remains the same throughout the experiment. However, when using 8

processors the total bandwidth required is higher, and when the available bandwidth

is below 570 Mbps the link becomes saturated. The saturation point indicates that

each garbler-evaluator pair requires a bandwidth of 570/4 ≈ 142 Mbps. GraphSC

has an effective throughput of ˜ 0.58M gates/sec between a pair of processors on our

212

Amazon AWS instances. Each gate has a size of 240 bits. Hence, the theoretical

bandwidth required is 0.58 × 240 × 106/220 ≈ 133 Mbps. Considering GraphSC

is implemented in Java, garbage collection happens intermittently due to which

the communication link is not used effectively. Hence, the implementation requires

slightly more bandwidth than the theoretical calculation.

Given such bandwidth requirements, the available bandwidth in our AWS

setup, i.e., 2 Gbps between the machines, will saturate beyond roughly 14 garbler-

evaluator pairs (28 processors). At this point, the linear speedup trend w.r.t. the

number of processors (as shown in Figure 6.6) will stop, unless larger bandwidth

becomes available. In a real deployment scenario, the total bandwidth can be in-

creased by having multiple machines for garbling and evaluating, hence supporting

more processors without affecting the speedup.

Results for Cross-Data-Center Experiments. For this experiment, the garblers

are hosted in the AWS Oregon data center and the evaluators are hosted in the AWS

North Virginia data center. We measure the execution time of a single iteration

of PageRank for different input lengths. As in the previous experiment, we used

machines with 2Gbps network links, however, measuring the TCP throughput with

iperf resulted in ˜50 Mbps per TCP connection. By increasing the receiver TCP

buffer size we managed to increase the effective throughput for each TCP connection

to ˜400 Mbps.

Figure 6.13b shows that this realistic deployment manages to sustain a linear

speedup when increasing the number of processors. Moreover, even 16 processors

do not saturate the 2 Gbps link, meaning that the geographical distance does not

213

Table 6.3: Summary of key evaluation results (1 iteration).

Experiment Input size Time (32 processors)

Histogram 1K - 0.5M 4 sec - 34 min

PageRank 4K - 128K 20 sec - 15.5 min

Gradient Descent 1K - 32K 47 sec - 34 min

ALS 64 - 4K 2 min - 2.35 hours

Gradient Descent
1M ratings

13 hours

large scale) (128 processors)

impact the speedup resulting from adding additional processors. We note that if

more than 14 garbler-evaluator pairs are needed (to further reduce execution time),

AWS provides higher capacity links (e.g., 10 Gbps), thereby allowing even higher

degrees of parallelism.

During the computation, the garbler garbles gates and sends it to the evalua-

tor. As there are no round trips involved (i.e. garbler does not wait to receive data

from the evaluator), the time required for computation across data centers is the

same as in the LAN setting.

6.5.9 Summary of Main Results

To summarize, Table 6.3 highlights some of the results, and we present the

main findings:

• As mandated from “big-data” algorithms, GraphSC provides high scalability

214

with the input size, exhibiting an almost linear increase with the input size (up

to poly-log factor).

• Parallelization provides an almost ideal linear improvement in execution time

with small communication overhead (especially on computation-intensive tasks),

both in a LAN based setting and across data centers.

• GraphSC can work on real workloads. We ran a first-of-its-kind large-scale

secure matrix factorization experiment, factorizing a matrix comprised of the

MovieLens 1M ratings dataset within 13 hours on a heterogeneous set of 7

machines with a total of 128 processors.

• GraphSC supports fixed-point and floating-point reals representation, yielding

an overall low rounding errors (provided sufficient fraction bits) compared to

execution in the clear.

6.6 Conclusion

This chapter introduced GraphSC, a parallel data-oblivious and secure frame-

work for efficient implementation and execution of algorithms on large datasets.

GraphSC seamlessly integrates modern parallel programming paradigms that are

familiar to a wide range of developers into an secure data-oblivious framework.

215

Chapter 7: Conclusion

In this dissertation, we have shown four contributions to advance the under-

standing of oblivious computation, both theoretically and in practice. Specifically,

• We show an ORAM construction which achieved a sub-logarithmic bandwidth

blowup while requiring the servers to perform an inexpensive XOR computa-

tion.

• We show the first perfectly-secure OPRAM construction, achieving O(log3N)

simulation overhead and O(logN(logm+ log logN)) depth blowup when the

PRAM has m CPUs and stores N blocks of data.

• We described two systems – HOP and GraphSC – to address the problem of

performing graph-parallel computations on private data and the distribution

of proprietary programs.

216

Bibliography

[1] bzip2 man pages. http://www.bzip.org/1.0.5/bzip2.txt.

[2] Graphlab powergraph tutorials. https://github.com/graphlab-code/

graphlab.

[3] Iperf. https://iperf.fr/.

[4] Movielens dataset. http://grouplens.org/datasets/movielens/.

[5] Open cores. http://opencores.org/.

[6] Tc man page. http://manpages.ubuntu.com/manpages//karmic/man8/tc.

8.html.

[7] http://www.oblivm.com.

[8] Ittai Abraham, Christopher W Fletcher, Kartik Nayak, Benny Pinkas, and

Ling Ren. Asymptotically tight bounds for composing ORAM with PIR. In

IACR International Workshop on Public Key Cryptography, 2017.

217

http://www.bzip.org/1.0.5/bzip2.txt
https://github.com/graphlab-code/graphlab
https://github.com/graphlab-code/graphlab
https://iperf.fr/
http://grouplens.org/datasets/movielens/
http://opencores.org/
http://manpages.ubuntu.com/manpages//karmic/man8/tc.8.html
http://manpages.ubuntu.com/manpages//karmic/man8/tc.8.html
http://www.oblivm.com

[9] Dakshi Agrawal, Bruce Archambeault, Josyula R Rao, and Pankaj Rohatgi.

The EM side–channel(s). In International Workshop on Cryptographic Hard-

ware and Embedded Systems, 2002.

[10] M. Ajtai, J. Komlós, and E. Szemerédi. An O(N logN) sorting network. In

Proceedings of the Fifteenth Annual ACM Symposium on Theory of Comput-

ing, 1983.

[11] Miklós Ajtai. Oblivious RAMs without cryptographic assumptions. In Pro-

ceedings of the forty-second ACM symposium on Theory of computing, 2010.

[12] Daniel Apon, Jonathan Katz, Elaine Shi, and Aishwarya Thiruvengadam.

Verifiable oblivious storage. In International Workshop on Public Key Cryp-

tography, 2014.

[13] Ching Avery. Giraph: Large-scale graph processing infrastruction on hadoop.

Hadoop Summit., 2011.

[14] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,

Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs.

In Proceedings of the 21st Annual International Cryptology Conference on

Advances in Cryptology, 2001.

[15] K. E. Batcher. Sorting Networks and Their Applications. AFIPS ’68 (Spring),

1968.

218

[16] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Ef-

ficient garbling from a fixed-key blockcipher. In IEEE Symposium on Security

and Privacy (SP), 2013.

[17] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness the-

orems for non-cryptographic fault-tolerant distributed computation. In Pro-

ceedings of the Twentieth Annual ACM Symposium on Theory of Computing,

1988.

[18] James Bennett and Stan Lanning. The netflix prize. In Proceedings of KDD

cup and workshop, 2007.

[19] Smriti Bhagat, Udi Weinsberg, Stratis Ioannidis, and Nina Taft. Recom-

mending with an agenda: Active learning of private attributes using matrix

factorization. In RecSys ’14. ACM.

[20] Nir Bitansky, Ran Canetti, Shafi Goldwasser, Shai Halevi, Yael Tauman Kalai,

and Guy N Rothblum. Program obfuscation with leaky hardware. In Advances

in Cryptology–ASIACRYPT 2011. 2011.

[21] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang.

Succinct randomized encodings and their applications. In Proceedings of the

Forty-Seventh Annual ACM on Symposium on Theory of Computing, 2015.

[22] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan

Boneh. Hacking blind. In IEEE S&P, 2014.

219

[23] Marina Blanton, Aaron Steele, and Mehrdad Alisagari. Data-oblivious graph

algorithms for secure computation and outsourcing. In Proceedings of the

8th ACM SIGSAC symposium on Information, computer and communications

security, 2013.

[24] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A Framework for

Fast Privacy-Preserving Computations. In ESORICS, 2008.

[25] Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the importance

of checking cryptographic protocols for faults. In International Conference on

the Theory and Applications of Cryptographic Techniques, 1997.

[26] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Defini-

tions and challenges. In Theory of Cryptography - 8th Theory of Cryptography

Conference, TCC, 2011.

[27] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.

Distributed optimization and statistical learning via the alternating direction

method of multipliers. Found. Trends Mach. Learn., 3(1):1–122, January 2011.

[28] Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivious parallel RAM and

applications. In Theory of Cryptography Conference, 2016.

[29] Elette Boyle and Moni Naor. Is there an oblivious RAM lower bound? In Pro-

ceedings of the 2016 ACM Conference on Innovations in Theoretical Computer

Science, 2016.

220

[30] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private

information retrieval with polylogarithmic communication. In Proceedings of

the 17th international conference on Theory and application of cryptographic

techniques, EUROCRYPT’99, 1999.

[31] R. Canetti. Universally composable security: A new paradigm for crypto-

graphic protocols. In FOCS, 2001.

[32] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan.

Succinct garbling and indistinguishability obfuscation for RAM programs. In

Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of

Computing, pages 429–437. ACM, 2015.

[33] Christopher Celio and Eric Love. The sodor processor collection. http://

riscv.org/download.html#tab_sodor.

[34] D. Champagne and R. B. Lee. Scalable architectural support for trusted

software. In HPCA, 2010.

[35] T-H. Hubert Chan, Kai-Min Chung, and Elaine Shi. On the depth of oblivious

parallel RAM. In Asiacrypt, 2017.

[36] T-H. Hubert Chan, Yue Guo, Wei-Kai Lin, and Elaine Shi. Oblivious hashing

revisited, and applications to asymptotically efficient ORAM and OPRAM.

In Asiacrypt, 2017.

[37] T-H. Hubert Chan, Kartik Nayak, and Elaine Shi. Perfectly secure oblivious

parallel RAM. Cryptology ePrint Archive, Report 2018/364, 2018.

221

http://riscv.org/download.html#tab_sodor
http://riscv.org/download.html#tab_sodor

[38] T-H. Hubert Chan and Elaine Shi. Circuit OPRAM: A unifying framework

for computationally and statistically secure ORAMs and OPRAMs. In TCC,

2017.

[39] Binyi Chen, Huijia Lin, and Stefano Tessaro. Oblivious parallel RAM: im-

proved efficiency and generic constructions. In Theory of Cryptography - 13th

International Conference, TCC 2016-A, 2016.

[40] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien

Stehlé. Cryptanalysis of the multilinear map over the integers. In EURO-

CRYPT. 2015.

[41] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private

information retrieval. Journal of the ACM (JACM), 45(6):965–981, 1998.

[42] Kai-Min Chung, Jonathan Katz, and Hong-Sheng Zhou. Functional encryption

from (small) hardware tokens. In ASIACRYPT, 2013.

[43] Kai-Min Chung, Zhenming Liu, and Rafael Pass. Statistically-secure ORAM

with Õ(log2 n) overhead. In International Conference on the Theory and Ap-

plication of Cryptology and Information Security, 2014.

[44] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms, pages 428–436. MIT Press, third edition, 2009.

[45] Victor Costan and Srinivas Devadas. Intel SGX explained. Cryptology ePrint

Archive, Report 2016/086, 2016. http://eprint.iacr.org/2016/086.

222

http://eprint.iacr.org/2016/086

[46] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl,

and Nigel P Smart. Practical covertly secure mpc for dishonest majority–or:

Breaking the spdz limits. In Computer Security–ESORICS 2013. 2013.

[47] Ivan Damg̊ard, Sigurd Meldgaard, and Jesper Buus Nielsen. Perfectly secure

oblivious RAM without random oracles. In Theory of Cryptography Conference

(TCC), pages 144–163. Springer, 2011.

[48] Jonathan Dautrich, Emil Stefanov, and Elaine Shi. Burst ORAM: Minimizing

oram response times for bursty access patterns. In 23rd USENIX Security

Symposium (USENIX Security 14), 2014.

[49] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing

on large clusters. In Operating Systems Design and Implementation (OSDI),

2004.

[50] Ioannis Demertzis, Dimitris Papadopoulos, and Charalampos Papamanthou.

Searchable encryption with optimal locality: Achieving sublogarithmic read

efficiency. In CRYPTO, 2018.

[51] Srinivas Devadas, Marten van Dijk, Christopher W. Fletcher, Ling Ren, Elaine

Shi, and Daniel Wichs. Onion ORAM: A constant bandwidth blowup oblivious

RAM. In Theory of Cryptography - 13th International Conference, TCC 2016-

A, 2016.

223

[52] Nico Döttling, Thilo Mie, Jörn Müller-Quade, and Tobias Nilges. Basing

obfuscation on simple tamper-proof hardware assumptions. IACR Cryptology

ePrint Archive, 2011.

[53] Zeev Dvir and Sivakanth Gopi. 2-server PIR with sub-polynomial communi-

cation. In Proceedings of the Forty-Seventh Annual ACM on Symposium on

Theory of Computing, STOC, 2015.

[54] David Eppstein, Michael T. Goodrich, and Roberto Tamassia. Privacy-

preserving data-oblivious geometric algorithms for geographic data. In

SIGSPATIAL, 2010.

[55] Christopher W Fletcher, Marten van Dijk, and Srinivas Devadas. A secure

processor architecture for encrypted computation on untrusted programs. In

Proceedings of the seventh ACM workshop on Scalable trusted computing, 2012.

[56] Christopher W. Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, and Srini-

vas Devadas. Freecursive ORAM: [nearly] free recursion and integrity verifi-

cation for position-based oblivious RAM. In ASPLOS, 2015.

[57] Christopher W Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, Emil Ste-

fanov, Dimitrios Serpanos, and Srinivas Devadas. A low-latency, low-area

hardware oblivious RAM controller. In Field-Programmable Custom Comput-

ing Machines (FCCM), 2015 IEEE 23rd Annual International Symposium on,

2015.

224

[58] Sanjam Garg. Program obfuscation via multilinear maps. In Security and

Cryptography for Networks. 2014.

[59] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and

Brent Waters. Candidate indistinguishability obfuscation and functional en-

cryption for all circuits. In IEEE Symposium on Foundations of Computer

Science (FOCS), 2013.

[60] Craig Gentry. Fully homomorphic encryption using ideal lattices. In ACM

symposium on Theory of computing (STOC), 2009.

[61] Craig Gentry, Kenny A. Goldman, Shai Halevi, Charanjit S. Jutla, Mariana

Raykova, and Daniel Wichs. Optimizing ORAM and using it efficiently for

secure computation. In Privacy Enhancing Technologies Symposium (PETS),

2013.

[62] Craig Gentry, Shai Halevi, Charanjit Jutla, and Mariana Raykova. Private

database access with HE-over-ORAM architecture. In International Confer-

ence on Applied Cryptography and Network Security, pages 172–191. Springer,

2015.

[63] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and

Daniel Wichs. Garbled RAM revisited. In Annual International Conference

on the Theory and Applications of Cryptographic Techniques, 2014.

225

[64] Craig Gentry and Zulfikar Ramzan. Single-database private information re-

trieval with constant communication rate. In International Colloquium on

Automata, Languages and Programming (ICALP), 2005.

[65] O. Goldreich. Towards a theory of software protection and simulation by

oblivious RAMs. In ACM symposium on Theory of computing (STOC), 1987.

[66] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In

STOC, 1987.

[67] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on

oblivious RAMs. J. ACM, 1996.

[68] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos

Guestrin. Powergraph: distributed graph-parallel computation on natural

graphs. In Operating System Design and Implementation (OSDI), 2012.

[69] Michael T. Goodrich. Zig-zag sort: A simple deterministic data-oblivious

sorting algorithm running in O(N logN) time. In Proceedings of the 46th

Annual ACM Symposium on Theory of Computing (STOC), 2014.

[70] Michael T. Goodrich and Michael Mitzenmacher. Privacy-preserving access of

outsourced data via oblivious RAM simulation. In International Colloquium

on Automata, Languages, and Programming, 2011.

[71] Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto

Tamassia. Privacy-preserving group data access via stateless oblivious ram

simulation. In SODA, 2012.

226

[72] Michael T. Goodrich, Olga Ohrimenko, and Roberto Tamassia. Data-oblivious

graph drawing model and algorithms. CoRR, abs/1209.0756, 2012.

[73] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal

Malkin, Mariana Raykova, and Yevgeniy Vahlis. Secure two-party computa-

tion in sublinear (amortized) time. In ACM Conference on Computer and

Communications Security (CCS), 2012.

[74] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay

Wadia. Founding cryptography on tamper-proof hardware tokens. In TCC,

2010.

[75] David Grawrock. Dynamics of a Trusted Platform: A Building Block Ap-

proach. Intel Press, 1st edition, 2009.

[76] Satoshi Hada. Zero-knowledge and code obfuscation. In ASIACRYPT, 2000.

[77] Torben Hagerup. Fast and optimal simulations between CRCW PRAMs. In

STACS, 9th Annual Symposium on Theoretical Aspects of Computer Science,

1992.

[78] Torben Hagerup. The log-star revolution. In Proceedings of the 9th Annual

Symposium on Theoretical Aspects of Computer Science, 1992.

[79] Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schneider, and

Immo Wehrenberg. Tasty: tool for automating secure two-party computations.

In CCS, 2010.

227

[80] Thang Hoang, Ceyhun D Ozkaptan, Attila A Yavuz, Jorge Guajardo, and Tam

Nguyen. S3ORAM: A computation-efficient and constant client bandwidth

blowup ORAM with shamir secret sharing. In Conference on Computer and

Communications Security (CCS), 2017.

[81] Andreas Holzer, Martin Franz, Stefan Katzenbeisser, and Helmut Veith. Se-

cure two-party computations in ANSI C. In ACM Conference on Computer

and Communications Security (CCS), 2012.

[82] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure

two-party computation using garbled circuits. In Usenix Security Symposium,

2011.

[83] Nathaniel Husted, Steven Myers, Abhi Shelat, and Paul Grubbs. GPU and

CPU parallelization of honest-but-curious secure two-party computation. In

Annual Computer Security Applications Conference, 2013.

[84] Stratis Ioannidis, Andrea Montanari, Udi Weinsberg, Smriti Bhagat, Nadia

Fawaz, and Nina Taft. Privacy tradeoffs in predictive analytics. In SIGMET-

RICS’14. ACM, 2014.

[85] Meha Kainth, Lekshmi Krishnan, Chaitra Narayana, Sandesh Gubbi Viru-

paksha, and Russell Tessier. Hardware-assisted code obfuscation for FPGA

soft microprocessors. In Design, Automation & Test in Europe Conference &

Exhibition, 2015.

228

[86] Jonathan Katz. Universally composable multi-party computation using

tamper-proof hardware. In Annual International Conference on the Theory

and Applications of Cryptographic Techniques, 2007.

[87] Florian Kerschbaum. Automatically optimizing secure computation. In Com-

puter and Communication Security Conference (CCS), 2011.

[88] Donald E. Knuth. The art of computer programming, volume 3: (2nd ed.)

sorting and searching. Addison Wesley Longman Publishing Co., Inc., Red-

wood City, CA, USA, 1998.

[89] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.

In CRYPTO’99, 1999.

[90] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishabil-

ity obfuscation for turing machines with unbounded memory. In Proceedings

of the Forty-Seventh Annual ACM on Symposium on Theory of Computing,

2015.

[91] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization tech-

niques for recommender systems. Computer, 42(8):30–37, 2009.

[92] Ben Kreuter, Benjamin Mood, Abhi Shelat, and Kevin Butler. PCF: A

portable circuit format for scalable two-party secure computation. In Usenix

Security, 2013.

[93] Benjamin Kreuter, abhi shelat, and Chih-Hao Shen. Billion-gate secure com-

putation with malicious adversaries. In USENIX Security symposium, 2012.

229

[94] E. Kushilevitz and R. Ostrovsky. Replication is not needed: single database,

computationally-private information retrieval. In Proceedings of the 38th An-

nual Symposium on Foundations of Computer Science, 1997.

[95] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)security of

hash-based oblivious RAM and a new balancing scheme. In Proceedings of the

Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, 2012.

[96] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)security of hash-

based oblivious RAM and a new balancing scheme. In SODA, 2012.

[97] Eyal Kushilevitz and Tamer Mour. Sub-logarithmic distributed oblivious

RAM with small block size. CoRR, abs/1802.05145, 2018.

[98] Kevin Lewi, Alex J Malozemoff, Daniel Apon, Brent Carmer, Adam Foltzer,

Daniel Wagner, David W Archer, Dan Boneh, Jonathan Katz, and Mariana

Raykova. 5Gen: A framework for prototyping applications using multilin-

ear maps and matrix branching programs. In ACM SIGSAC Conference on

Computer and Communications Security, 2016.

[99] David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan

Boneh, John Mitchell, and Mark Horowitz. Architectural support for copy

and tamper resistant software. ACM SIGPLAN Notices, 2000.

[100] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party

computation in the presence of malicious adversaries. In EUROCRYPT. 2007.

230

[101] Helger Lipmaa. An oblivious transfer protocol with log-squared communica-

tion. In International Conference on Information Security, 2005.

[102] Chang Liu, Michael Hicks, Austin Harris, Mohit Tiwari, Martin Maas, and

Elaine Shi. Ghostrider: A hardware-software system for memory trace oblivi-

ous computation. In ASPLOS, 2015.

[103] Chang Liu, Yan Huang, Elaine Shi, Jonathan Katz, and Michael Hicks. Au-

tomating Efficient RAM-model Secure Computation. In IEEE Security and

Privacy (S & P), 2014.

[104] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi.

ObliVM: A programming framework for secure computation. In 2015 IEEE

Symposium on Security and Privacy, 2015.

[105] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos

Guestrin, and Joseph M. Hellerstein. GraphLab: A new framework for paral-

lel machine learning. In UAI, Proceedings of the Twenty-Sixth Conference on

Uncertainty in Artificial Intelligence, 2010.

[106] Steve Lu and Rafail Ostrovsky. Distributed oblivious RAM for secure two-

party computation. In Theory of Cryptography Conference (TCC), 2013.

[107] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste

Asanovic, John Kubiatowicz, and Dawn Song. Phantom: Practical oblivi-

ous computation in a secure processor. In CCS, 2013.

231

[108] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale

graph processing. In SIGMOD, pages 135–146. ACM, 2010.

[109] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay: a

secure two-party computation system. In USENIX Security, 2004.

[110] Travis Mayberry, Erik-Oliver Blass, and Agnes Hui Chan. Efficient private

file retrieval by combining ORAM and PIR. In NDSS. Citeseer, 2014.

[111] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham

Shafi, Vedvyas Shanbhogue, and Uday R Savagaonkar. Innovative instructions

and software model for isolated execution. In HASP@ ISCA, page 10, 2013.

[112] Russ Miller and Laurence Boxer. Algorithms sequential & parallel: A unified

approach. Cengage Learning, 2012.

[113] John C. Mitchell and Joe Zimmerman. Data-Oblivious Data Structures. In

Theoretical Aspects of Computer Science (STACS), 2014.

[114] Tarik Moataz, Erik-Oliver Blass, and Travis Mayberry. CHf-ORAM: a con-

stant communication ORAM without homomorphic encryption. Cryptology

ePrint Archive, Report 2015/1116, 2015.

[115] Tarik Moataz, Travis Mayberry, and Erik-Oliver Blass. Constant communica-

tion ORAM with small blocksize. In Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security, 2015.

232

[116] Kartik Nayak, Christopher Fletcher, Ling Ren, Nishanth Chandran, Satya

Lokam, Elaine Shi, and Vipul Goyal. HOP: Hardware makes obfuscation prac-

tical. In 24th Annual Network and Distributed System Security Symposium,

NDSS, 2017.

[117] Kartik Nayak and Jonathan Katz. An oblivious parallel RAM with O(log2N)

parallel runtime blowup. Cryptology ePrint Archive, Report 2016/1141, 2016.

http://eprint.iacr.org/2016/1141.

[118] Kartik Nayak, Xiao Shaun Wang, Stratis Ioannidis, Udi Weinsberg, Nina Taft,

and Elaine Shi. GraphSC: Parallel Secure Computation Made Easy. In IEEE

S & P, 2015.

[119] Valeria Nikolaenko, Stratis Ioannidis, Udi Weinsberg, Marc Joye, Nina Taft,

and Dan Boneh. Privacy-preserving matrix factorization. In ACM SIGSAC

Conference on Computer & Communications Security (CCS), 2013.

[120] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan Boneh,

and Nina Taft. Privacy-preserving ridge regression on hundreds of millions of

records. In S & P, 2013.

[121] Olga Ohrimenko, Manuel Costa, Cedric Fournet, Christos Gkantsidis, Markulf

Kohlweiss, and Divya Sharma. Observing and preventing leakage in MapRe-

duce. In ACM CCS, 2015.

233

http://eprint.iacr.org/2016/1141

[122] Rafail Ostrovsky and Victor Shoup. Private information storage. In Proceed-

ings of the twenty-ninth annual ACM symposium on Theory of computing,

1997.

[123] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation

ranking: Bringing order to the web. In Proceedings of the 7th International

World Wide Web Conference, 1998.

[124] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon: closing digital side-

channels through obfuscated execution. In USENIX Security Symposium,

2015.

[125] Aseem Rastogi, Matthew A. Hammer, and Michael Hicks. Wysteria: A pro-

gramming language for generic, mixed-mode multiparty computations. In

IEEE S & P, 2014.

[126] Ling Ren, Christopher Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi,

Marten Van Dijk, and Srinivas Devadas. Constants count: Practical improve-

ments to oblivious RAM. In USENIX Security Symposium, 2015.

[127] Ling Ren, Xiangyao Yu, Christopher W Fletcher, Marten Van Dijk, and Srini-

vas Devadas. Design space exploration and optimization of path oblivious

RAM in secure processors. In ACM SIGARCH Computer Architecture News,

2013.

[128] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning

representations by back-propagating errors. Cognitive modeling, 5, 1988.

234

[129] John E. Savage. Models of Computation: Exploring the Power of Computing.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition,

1997.

[130] Sebastian Schrittwieser and Stefan Katzenbeisser. Code obfuscation against

static and dynamic reverse engineering. In Information Hiding, 2011.

[131] Felix Schuster, Manuel Costa, Cedric Fournet, Christos Gkantsidis, Marcus

Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. VC3: Trustworthy data

analytics in the cloud. In IEEE S& P, 2015.

[132] abhi shelat and Chih-Hao Shen. Two-output secure computation with mali-

cious adversaries. In EUROCRYPT, 2011.

[133] abhi shelat and Chih-Hao Shen. Fast two-party secure computation with

minimal assumptions. In CCS, 2013.

[134] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious

RAM with O(log3N) worst-case cost. In ASIACRYPT, 2011.

[135] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.

The Hadoop distributed file system. In Mass Storage Systems and Technologies

(MSST), 2010.

[136] Emil Stefanov and Elaine Shi. Multi-cloud oblivious storage. In ACM Con-

ference on Computer and Communications Security (CCS), 2013.

235

[137] Emil Stefanov and Elaine Shi. Oblivistore: High performance oblivious cloud

storage. In Security and Privacy (SP), 2013 IEEE Symposium on, 2013.

[138] Emil Stefanov, Elaine Shi, and Dawn Song. Towards practical oblivious RAM.

In NDSS, 2011.

[139] Emil Stefanov, Marten van Dijk, Elaine Shi, T-H. Hubert Chan, Christopher

Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. Path ORAM: An

extremely simple oblivious RAM protocol. Cryptology ePrint Archive, Report

2013/280 v3, 2013. http://eprint.iacr.org/2013/280.

[140] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,

Xiangyao Yu, and Srinivas Devadas. Path ORAM: an extremely simple obliv-

ious RAM protocol. In ACM SIGSAC Conference on Computer & Commu-

nications Security, 2013.

[141] G Edward Suh, Dwaine Clarke, Blaise Gassend, Marten Van Dijk, and Srini-

vas Devadas. AEGIS: architecture for tamper-evident and tamper-resistant

processing. In Conference on Supercomputing, 2003.

[142] L. Tan. The worst case execution time tool challenge 2006: The external test.

In Leveraging Applications of Formal Methods, Verification and Validation,

2006.

[143] Xiao Wang, Hubert Chan, and Elaine Shi. Circuit ORAM: On tightness of the

Goldreich-Ostrovsky lower bound. In ACM SIGSAC Conference on Computer

and Communications Security (CCS), 2015.

236

http://eprint.iacr.org/2013/280

[144] Xiao Wang, Dov Gordon, and Jonathan Katz. Simple and efficient two-server

oram. Cryptology ePrint Archive, Report 2018/005, 2018. https://eprint.

iacr.org/2018/005.

[145] Xiao Shaun Wang, Kartik Nayak, Chang Liu, TH Chan, Elaine Shi, Emil

Stefanov, and Yan Huang. Oblivious data structures. In ACM SIGSAC Con-

ference on Computer and Communications Security, 2014.

[146] Peter Williams and Radu Sion. SR-ORAM: Single round-trip oblivious RAM.

ACNS, Industrial Track, 2012.

[147] Peter Williams, Radu Sion, and Alin Tomescu. PrivateFS: A parallel oblivious

file system. In ACM Conference on Computer and Communications Security,

2012.

[148] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel at-

tacks: Deterministic side channels for untrusted operating systems. In IEEE

Security and Privacy (SP), 2015.

[149] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract).

In IEEE symposium on Foundations of Computer Science (FOCS), 1982.

[150] Andrew Chi-Chih Yao. How to generate and exchange secrets. In FOCS, 1986.

[151] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and

Ion Stoica. Spark: Cluster computing with working sets. In Proceedings of the

2Nd USENIX Conference on Hot Topics in Cloud Computing, 2010.

237

https://eprint.iacr.org/2018/005
https://eprint.iacr.org/2018/005

[152] Samee Zahur and David Evans. Circuit structures for improving efficiency of

security and privacy tools. In S & P, 2013.

[153] Jinsheng Zhang, Qiumao Ma, Wensheng Zhang, and Daji Qiao. KT-ORAM:

A bandwidth-efficient oram built on k-ary tree of PIR nodes. 2014.

[154] Jinsheng Zhang, Qiumao Ma, Wensheng Zhang, and Daji Qiao. MSKT-

ORAM: A constant bandwidth ORAM without homomorphic encryption.

IACR Cryptology ePrint Archive, Report 2016/882, 2016.

[155] Yihua Zhang, Aaron Steele, and Marina Blanton. PICCO: a general-purpose

compiler for private distributed computation. In Computer and Communica-

tion Security Conference (CCS), 2013.

[156] Xiaotong Zhuang, Tao Zhang, and Santosh Pande. Hide: an infrastructure

for efficiently protecting information leakage on the address bus. In ACM

SIGPLAN Notices, 2004.

238

	Acknowledgments
	Introduction
	Protecting Memory Access Patterns via an Oblivious RAM
	A Short Literature Survey
	Outline of the Dissertation
	An Oblivious RAM with a Sub-logarithmic Bandwidth Blowup
	A Perfectly Secure Oblivious Parallel RAM
	Executing Obfuscated Programs using HOP
	Parallel Secure Computation for Graph-parallel Algorithms

	Definitions and Preliminaries
	Parallel Random-Access Machines
	Oblivious Parallel Random-Access Machines
	Private Information Retrieval Protocols

	Asymptotically Tight Bounds for Composing ORAM with PIR
	Tree-based ORAM
	Main Construction
	Analysis
	Overflow Analsysis
	Security Analysis
	Reducing Client Storage
	Bandwidth Analysis

	Extending the Goldreich-Ostrovsky Lower Bound
	Original Lower Bound
	Augmented Lower Bound (after adding PIR)
	Discussion

	Related Work
	Conclusion, Subsequent Work, and Open Problems

	Perfectly Secure Oblivious RAM
	Technical Roadmap
	Simplified Perfectly Secure ORAM with Asymptotically Smaller Space
	Building Blocks

	Parallel One-Time Oblivious Memory
	Definition: One-Time Oblivious Memory
	Construction

	OPRAM with O(log3 N) Simulation Overhead
	Position-Based OPRAM
	OPRAM Scheme from Position-Based OPRAM
	Analysis and Extensions
	Extension: Results for Large Block Sizes

	Related Work
	Conclusion and Future Work

	HOP: Hardware Makes Obfuscation Practical
	Related Work
	Obfuscation from Trusted Hardware
	Execution On-Chip
	Adding External Memory
	Adding Instruction Scheduling
	Adding on-chip Scratchpad Memory
	Adding context switching and stateless tokens

	Formal Scheme
	Preliminaries
	FobfRAM: Modeling Obfuscation in UC
	Scheme Description
	Proof of Security

	Implementation
	Modified RISC-V Processor and Scratchpad
	ORAM Controller
	Encryption Units

	Evaluation
	Methodology
	Area Results
	Main Results
	Case Study: bzip2
	Comparison with GhostRider ghostrider
	Time for Context Switch

	Conclusion

	GraphSC: Parallel Secure Computation Made Easy
	Related Work
	GraphSC
	Programming Abstraction
	Expressiveness
	Example: PageRank
	Parallelization and Challenges in Secure Implementation

	GraphSC Primitives as Efficient Parallel Oblivious Algorithms
	Parallel Oblivious Algorithms: Definitions and Metrics
	Single-Processor Oblivious Algorithm
	Parallel Oblivious Algorithms for GraphSC
	Practical Optimizations for Fixed Number of Processors

	From Parallel Oblivious Algorithms to Parallel Secure Computation
	Evaluation
	Application Scenarios
	Implementation
	Setup
	Evaluation Metrics
	Main Results
	Running at Scale
	Performance Profiling
	Amazon AWS Experiments
	Summary of Main Results

	Conclusion

	Conclusion
	Bibliography

