
ABSTRACT

Title of thesis: EFFICIENT SECURE COMPUTATION FOR REAL-WORLD
SETTINGS AND SECURITY MODELS

Alex J. Malozemoff, Doctor of Philosophy, 2016

Thesis directed by: Professor Jonathan Katz
Department of Computer Science

Secure computation involves multiple parties computing a common function while keeping their
inputs private, and is a growing field of cryptography due to its potential for maintaining privacy
guarantees in real-world applications. However, current secure computation protocols are not yet
efficient enough to be used in practice. We argue that this is due to much of the research effort
being focused on generality rather than specificity. Namely, current research tends to focus on
constructing and improving protocols for the strongest notions of security or for an arbitrary number
of parties. However, in real-world deployments, these security notions are often too strong, or the
number of parties running a protocol would be smaller. In this thesis we make several steps towards
bridging the efficiency gap of secure computation by focusing on constructing efficient protocols
for specific real-world settings and security models. In particular, we make the following four
contributions:

1. We show an efficient (when amortized over multiple runs) maliciously secure two-party secure
computation (2PC) protocol in the multiple-execution setting, where the same function is
computed multiple times by the same pair of parties.

2. We improve the efficiency of 2PC protocols in the publicly verifiable covert security model,
where a party can cheat with some probability but if it gets caught then the honest party
obtains a certificate proving that the given party cheated.

3. We show how to optimize existing 2PC protocols when the function to be computed includes
predicate checks on its inputs.

4. We demonstrate an efficient maliciously secure protocol in the three-party setting.

1

Efficient Secure Computation for Real-world
Settings and Security Models

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2016

Alex J. Malozemoff

Advisor:
Prof. Jonathan Katz

Committee Members:
Prof. Michael Hicks

Prof. Héctor Corrada Bravo
Dr. Vladimir Kolesnikov

Prof. Lawrence C. Washington

Department of Computer Science
University of Maryland, College Park, MD 20742

c© Copyright by
Alex J. Malozemoff

2016

Acknowledgments

I want to begin by thanking my advisor Jonathan Katz. He took me on from my first semester
at Maryland, gave me freedom to pursue my own interests, encouraged me to apply for fellowships
during my first year, always had funding available for travel to conferences and workshops, and
guided me throughout my research career at Maryland. He always had faith in my ability, even
when I didn’t have much faith myself, and that support certainly helped me progress through my
Ph.D.

I would also like to thank the three plus years of financial support I received from the National
Defense Science & Engineering Graduate (NDSEG) Fellowship, which gave me a lot of freedom
and stability to work on my own interests. For the time not covered by the above fellowship, I was
supported through my advisor by NSF award #1111599, and am thankful for the support.

I am very grateful for the support I received during my first year at Maryland from the post-
docs and senior students in the Crypto group: Seung Geol Choi, Ranjit Kumaresan, Dominique
Schröder, Hong-Sheng Zhou, and Vassilis Zikas. They were all very generous with their advice,
guidance, and willingness to work with me from the get-go, even before I really knew much about
how to conduct research, let alone secure computation. Two of the chapters of this thesis are
direct results from those initial collaborations, and I thank them all for their help and continued
friendship.

I am also appreciative of the guidance and friendship of Vlad Kolesnikov, with whom I did
a brief internship with at Bell Labs in the winter of 2015 and with whom I have collaborated
with ever since. I would also like to thank all my officemates and friends throughout my time at
Maryland, who helped make the Ph.D. journey an enjoyable experience. And of course thanks to
all my co-authors whose work has contributed to this thesis: Seung Geol Choi, Yan Huang, Jon
Katz, Vlad Kolesnikov, Ranjit Kumaresan, Xiao Wang, and Vassilis Zikas.

Finally, I would like to thank all of my committee members, Jon Katz, Mike Hicks, Héctor Cor-
rada Bravo, Vlad Kolesnikov, and Larry Washington, for taking the time to review my dissertation
and participate in my defense.

2

Contents

1 Introduction 1

2 Preliminaries 5

3 The Multiple-execution Setting 10
3.1 Our Contribution . 11
3.2 Preliminaries . 14
3.3 The Parallel Execution Setting . 17
3.4 The Sequential Execution Setting . 31

4 The Publicly Verifiable Covert Setting 37
4.1 Our Contribution . 38
4.2 Preliminaries . 39
4.3 Signed Oblivious Transfer Extension . 44
4.4 Our Protocol . 51
4.5 Evaluation . 59

5 The Input Validity Setting 64
5.1 Preliminaries . 67
5.2 Our Protocol . 69
5.3 Protocol Optimizations . 75
5.4 Evaluation . 76

6 The Three Party Setting 83
6.1 Our Contribution . 83
6.2 Preliminaries . 85
6.3 Two-Party Distributed Garbling Scheme . 86
6.4 Three-Party Computation from Cut-and-Choose . 90
6.5 Hybrid Functionalities . 100
6.6 Evaluation . 106

7 Conclusion 109

Bibliography 110

i

Chapter 1

Introduction

Secure computation describes the problem of multiple parties P1, . . . , Pn wishing to compute some
common function f on their private inputs x1, . . . , xn; each party would like to learn f(x1, . . . , xn)
while preventing the other parties from learning anything about its input (besides what can be
learned from the output of f). First proposed by Yao [Yao82], many of the initial results were mostly
of theoretical interest [GMW87, BOGW88, etc]. However, since the work of Fairplay [MNPS04],
which demonstrated the first implementation of secure computation, this area of cryptography has
seen the research focus shift towards practical efficiency. Although much progress has been made
over these last few years, there are still many hurdles before secure computation can be useful in
practice. In this thesis, we investigate various approaches towards improving this efficiency gap
by focusing on realistic use cases and security models. In particular, our improvements result
from focusing on those settings where one could potentially see secure computation being used
in practice, versus focusing on improving general constructions which may not be applicable to
real-world settings. Namely, we focus on models and security settings which we argue are more
realistic in a practical setting, and devise efficient protocols for these particular use cases.

Before discussing our contributions, we begin with a brief overview of secure computation and its
security models. We mostly focus on the two-party case, although we briefly discuss the three-party
case.

Two-party secure computation. We begin with a discussion of two-party secure computation
(2PC), and how protocols in this setting work. One common solution to the 2PC problem is to use
garbled circuits [Yao86]. Suppose we have two parties, P1 with input x1 and P2 with input x2, and
they would like to compute some function f(·, ·) on their inputs. We treat f as a Boolean circuit C
(e.g., a circuit with AND and XOR gates). One of the parties, say P1, acts as a garbler (also called
the generator), constructing a “garbled” version of C which hides all of the internal details of the
computation of C. Namely, each wire value is represented by an opaque label and there is a method
(known only to the garbler) of mapping labels to their actual bit values. P1 can send this garbled
circuit, denoted by Ĉ, to party P2, known as the evaluator. Now, the evaluator can evaluate Ĉ
given labels for each of the input wires to C. P1 can directly send the labels corresponding to its
input x1 (recalling that these labels are opaque, this reveals no information to P2 about what input
the labels represent). The last difficulty is for P2 to get the wire labels for its input x2. This is
accomplished through an oblivious transfer (OT) protocol, where a sender inputs two messages
m0 and m1, and a receiver inputs a choice bit b; the sender receives no output and the receiver
receives mb. Thus, P1 can input the two labels for each of P2’s input bits into the OT protocol,

1

and P2 can input as its choice bits the appropriate bits in x2, allowing P2 to learn the appropriate
labels without P1 learning anything about P2’s input. Now, P2 can take all of the wire labels and
evaluate Ĉ to learn the output.

Two-party secure computation from garbled circuits is very efficient. Garbling and evaluating
require only symmetric key operations and can utilize hardware AES support [BHKR13]. The main
bottleneck of the described protocol, then, is the OTs required for P2’s inputs, as OT protocols
require costly public-key operations. However, Ishai et al. [IKNP03] showed how, given a fixed
number of base OTs, one can construct any polynomial number of OTs using only symmetric-key
operations. This process, known as OT extension, has had a huge impact on the efficiency of the
garbled circuit approach to 2PC and is necessary for any practical instantiation of the garbled
circuit protocol.

The malicious security model. While the above described protocol is secure in the semi-honest
security setting, where parties are assumed to follow the protocol but can try to learn additional
information by looking at the protocol transcript, it is not secure in the malicious setting, where an
adversarial party can deviate arbitrarily from the protocol. As an example of what can go wrong,
a malicious P1 can input an invalid wire label for the 0-bit for one of P2’s inputs. If P2 aborts the
protocol (due to having an invalid wire label), P1 learns that that bit of P2’s input was 0. If P2 does
not abort, then P1 learns that that bit was 1. This attack, known as the selective failure attack,
is just one example of the many things that can go wrong when the parties can deviate from the
protocol description.

The garbled circuit approach can be adapted to the malicious setting using the cut-and-choose
paradigm [LP07, LP11]. Instead of garbling one circuit, the generator garbles O(ρ) circuits, where
ρ is a statistical security parameter (i.e., a malicious party can successfully cheat with probability
2−ρ). The garbler sends these garbled circuits to the evaluator, who asks for, say, half to be
opened. If any of the opened circuits are invalid garblings, the evaluator detects cheating and
aborts. Otherwise, it takes the leftover (unopened) circuits and evaluates them, outputting the
majority output as the output of the protocol. Although this basic approach has several issues
that must be addressed (e.g., how to force the generator to use the same input in each of the
evaluated circuits, avoiding the selective failure attack, etc.), this basic paradigm is a common way
to construct maliciously secure 2PC protocols using garbled circuits. However, the best existing
protocol based on the cut-and-choose paradigm has a garbled circuit replication factor equal to the
statistical security parameter [Lin13] (i.e., to securely compute a circuit, it must be garbled ρ times
for security 2−ρ). Thus, for ρ = 40 we still get a 40× overhead over the semi-honest setting, which
is often still prohibitive for real-world use.

The multiple-execution setting. In practice, however, the same function can potentially be
executed many times on different inputs. For example, consider the following use cases for 2PC: a
bank customer performing financial transactions (e.g., payments or transfers), a cell phone customer
performing private location-based queries, two businesses or government agencies querying their
joint databases of customers, etc. In all of these scenarios, many of the securely evaluated functions
are the same, only differing on their inputs. In fact, it seems plausible that single-execution functions
may be less likely to be used in commercial settings. This is because, as a rule-of-thumb of security,
externally-accessible interfaces need to be clean and standardized. Allowing a small number of
predetermined customer actions allows for more manageable overall security.

Additionally, many complex protocols from the research literature include multiple executions
of the same function evaluated on different inputs. For example, Gordon et al. [GKK+12] propose

2

sublinear 2PC based on oblivious RAM (ORAM). In their protocol, each ORAM step is executed
by evaluating the same function using 2PC. Another frequently used subroutine is an oblivious
pseudorandom function, used, e.g., in the previously mentioned sublinear 2PC work [GKK+12] as
well as in private database searches [CJJ+13, JJK+13]. Likewise, work by Pappas et al. [PKV+14]
traverses the database search tree by evaluating the same match function at each tree node.

Say two parties run the same function t times. Can we construct a protocol that requires
fewer than ρt garbled circuits while still retaining the malicious security guarantee with
2−ρ security?

We consider malicious 2PC in what we call the multiple-execution setting, where two parties wish
to securely evaluate the same circuit multiple times. As mentioned above, recent works by Lin-
dell [Lin13] and Huang et al. [HKE13] have obtained optimal complexity for cut-and-choose per-
formed over garbled circuits in the single execution setting. We show that it is possible to obtain
much lower amortized overhead for cut-and-choose in the multiple-execution setting.

Our efficiency improvements result from a novel way to combine the “fast cut-and-choose” tech-
nique of Lindell [Lin13] with LEGO-based cut-and-choose techniques [FJN+13, NO09]. In concrete
terms, for 40-bit statistical security we obtain a 2× improvement (per execution) in communica-
tion and computation for as few as 7 executions, and require only 8 garbled circuits (i.e., a 5×
improvement) per execution for as low as 3500 executions. Our results suggest the possibility that
2PC in the malicious setting can be less than an order of magnitude more expensive than in the
semi-honest setting.

This work is based on work published at Crypto 2014 [HKK+14]. See Chapter 3 for details.
The covert security model. A third security model (besides semi-honest and malicious) is that
of covert security [AL10]. In this setting an adversarial party can successfully cheat with some
probability 1 − ε. However, with probability ε it gets caught and does not learn anything about
the other party’s input. A recent extension of this model provides public verifiability [AO12]: if a
party gets caught cheating, the honest party can produce a certificate which provides proof of this
cheating to any third party. This model is very compelling, as the ability to demonstrate proof
of cheating is a powerful incentive not to cheat. Unfortunately, the only existing protocol in this
setting [AO12] is not that efficient due to the need to (at a high level) use OT for each of P2’s
inputs; that is, the protocol cannot take advantage of OT extension to improve its running time.

Can we construct a more efficient protocol in the publicly verifiable covert (PVC) secu-
rity model based on OT extension?

We improve the performance in the PVC model by constructing a PVC-compatible OT extension
protocol as well as making several practical improvements to the existing protocol. As compared
to the state-of-the-art OT extension-based two-party covert protocol, our PVC protocol adds rel-
atively little: four signatures and a roughly 67% increase in running the OT extension protocol.
This is a significant improvement over the existing protocol, which requires public-key-based OTs
per input bit. We present detailed estimates showing (up to orders of magnitude) concrete per-
formance improvements over the existing PVC protocol [AO12] and the best known malicious
protocol [AMPR14].

This work is based on work published at Asiacrypt 2015 [KM15]. See Chapter 4 for details.
Predicate checks on inputs. When using cut-and-choose to construct covert or malicious pro-
tocols, the same circuit needs to be garbled multiple times. Suppose, now, that we are interested

3

in computing functions where each party’s input must satisfy some predicate. As an example,
consider a setting where one party’s input must contain a valid signature; that is, the party inputs
its input along with a signature on that input that is checked for validity before the actual function
of interest can be computed. Clearly, we can include this check within the garbled circuit; however,
this means that when using cut-and-choose protocols, this check is repeated in each garbled circuit.
For predicate checks such as the above signature example, this can be very costly, especially when
the underlying function to be computed over the inputs is relatively simple.

For circuits where we want to check a predicate on either party’s input, can we construct
a protocol more efficient than the naive solution of including the check in each garbled
circuit?

Here we show a protocol in which only the underlying function is garbled ρ times, and the predicate
checks are each garbled only once. For certain natural examples (e.g., signature verification followed
by evaluation of a million-gate circuit), this can lead to huge savings in communication (up to 80×)
and computation (up to 56×). We provide detailed estimates using realistic examples to validate
our claims.

This work is based on a preprint [KMW16]. See Chapter 5 for details.

Secure three-party computation. The setting of secure computation for three or more parties,
where we assume all but one of the parties may be malicious and colluding, has been much less stud-
ied, at least from a practical performance perspective. Although secure multi-party computation
protocols exist, they either require a complicated (and extremely costly) setup phase [DPSZ12] or
are not known to be practically efficient [IPS08]. However, in real-world settings, it seems unlikely
that one would run secure computation among, say, one hundred parties. Most likely one would run
secure computation among a small number of parties, say three or four. While existing multi-party
protocols are designed to handle an arbitrary number of parties, it seems possible that one could
design a more efficient protocol for a small fixed number of parties.

Can we construct more practically efficient secure computation protocols when restrict-
ing the number of parties to some fixed n > 2? In particular, can we construct an
efficient secure computation protocol for three parties?

In this work we explore the possibility of using cut-and-choose for practical secure three-party
computation. We propose a constant-round protocol for three-party computation tolerating any
number of malicious parties, whose computational cost is essentially only a small constant worse
than that of state-of-the-art two-party protocols.

This work is based on work published at Crypto 2014 [CKMZ14]. See Chapter 6 for details.

Summary. In this thesis we present four constructions which improve the state-of-the-art of secure
computation, with a focus on realistic settings and security models. While there is still a lot of work
to be done before secure computation can be made truly practical, this thesis presents a further
step on this path towards practicality.

4

Chapter 2

Preliminaries

Notation

We let κ denote the computational security parameter and let ρ denote the statistical security
parameter; namely, a (computationally bounded) adversary can succeed in cheating with probability
≤ 2−ρ + negl(ρ). We use ppt to denote “probabilistic polynomial time” and let negl(·) denote a
negligible function in its input.

When considering two-party protocols between parties P1 and P2, when we use subscript i ∈
{1, 2} to denote a party we let subscript -i = 3 − i denote the other party. We use i∗ ∈ {1, 2} to
denote a malicious party and -i∗ = 3− i∗ to denote the associated honest party.

We use [n] to denote {1, . . . , n} and ‖ to denote concatenation. Let “a := f(x1, x2, . . .)” denote
setting a to be the deterministic output of f on inputs x1, x2, . . . ; the notation “a← f(x1, x2, . . .)”
is the same except that f here is randomized. We use a ∈R S to denote selecting a uniformly at
random from set S. For bitstring x, we let x[i] denote the ith bit of x.

Defining Security

We use the standard definition of security for two-party computation in the presence of malicious
adversaries [Gol04, Chapter 7], and we repeat the definition here for completeness and to fix
notation.

We let A be an adversary that can corrupt one or more parties. Here we consider the malicious
setting, which means that when A corrupts a party, it learns the entire internal state of said party
and can deviate from the protocol arbitrarily.

Security is defined by comparing the execution of the protocol with an “idealized” world, where
we have access to an ideal functionality which exactly captures the expected correct behavior of
said protocol. If an adversary A is unable to tell whether it is interacting in the ideal world or the
real world, then we say the protocol is a secure realization of the ideal functionality. By “unable to
tell,” we mean that the distributions of the two worlds are computationally indistinguishable from
the point of view of the adversary, which we denote by c≈.

Below, we give a formal treatment for the case of two-party secure computation; however, it is
easy to adapt this treatment to handle three or more parties.

Ideal model execution. In the ideal model, we have parties P1 and P2, and an adversary A
with auxiliary information aux who can corrupt one of the two parties. An ideal execution for the

5

computation of a function f(·, ·) proceeds as follows. We let F define the idealized execution of
f(·, ·), where we assume without loss of generality [LP07] that only P2 receives output.

• Party P1 obtains input x, and party P2 obtains input y.

• An honest party sends its given input to the ideal functionality F, whereas a malicious party
can send an arbitrary input. Denote the inputs given to F as x′ and y′.

• The functionality F computes z ← f(x′, y′) and sends z to P2.

• An honest party outputs the given output from F, whereas a malicious party outputs an
arbitrary function of its view of the protocol execution.

We let IdealF,A(aux)(x, y, 1κ) denote the joint output of the adversary A and the honest party
with inputs x and y when interacting with ideal functionality F.

Real model execution. In the real model, we again have parties P1 and P2 and an adversary A
with auxiliary information aux who can corrupt one of the two parties. In this setting, the parties
execute some two-party protocol Πf computing function f(·, ·). We let RealΠf ,A(aux)(x, y, 1κ) de-
note the joint output of the adversary A and the honest party with inputs x and y when interacting
with protocol Πf .

Definition 2.1. Protocol Πf securely computes F if for every ppt adversary A in the real model,
there exists a ppt simulator S in the ideal model such that for all x, y, and aux, it holds that

{IdealF,S(aux)(x, y, 1κ)} c≈ {RealΠf ,A(aux)(x, y, 1κ)}.

Remarks. One way to prove that a protocol securely computes some ideal functionality is to
construct a simulator with black-box access to an adversary A such that the view of the simulator
in the ideal world is computationally indistinguishable from the view of the adversary in the real
world. This implies that the view of the adversary in the real world “looks the same” as the view
of the simulator when interacting with an idealized version of the protocol, thus implying that
the adversary gains no additional information in the real world than what is leaked by the ideal
functionality in the ideal world.

Note that we can define ideal functionality F using a “functionality box” as follows.

Functionality F

P1 inputs input x, and P2 inputs input y.

F sends f(x, y) to P2. P1 receives no output.

This box exactly captures the ideal model behavior of F as explained above. Throughout this thesis
we use both methods of defining a functionality interchangeably.

Garbled Circuits

For completeness, we give a description of a garbling scheme constructing garbled circuits. Let
f(·, ·) be some function. A garbling scheme is a tuple of two functions (Gb,Ev). We define a
garbling scheme producing garbled circuits as follows.

6

The garbling procedure Gb works as follows. We begin by treating f as a Boolean circuit C. We
associate two random labels Xw,0, Xw,1 with each wire w in the circuit; label Xw,0 corresponds to
the value ‘0’ and Xw,1 corresponds to the value ‘1’. In addition, for each wire w we choose a random
permutation (or mask) bit λw. Each label has an associated tag, derived from the permutation bit,
which acts as a blinding of the true value the label represents. Now, consider gate Gγ in the circuit
with input wires α and β. The garbled gate of Gγ consists of an array of four encryptions: for
each (bα, bβ) ∈ {0, 1} × {0, 1}, the row (bα, bβ) consists of an encryption of Xγ,Gγ(bα⊕λα,bβ⊕λβ)⊕λγ
and its corresponding tag Gγ(bα ⊕ λα, bβ ⊕ λβ)⊕ λγ under labels Xα,bα and Xβ,bβ . Let P denote a
table that stores all the garbled gates; in particular, the entry P [γ, bα, bβ] contains an encryption
corresponding to row (bα, bβ) of the garbled gate for Gγ .

The evaluation procedure Ev is as follows. Let α and β be input wires connected to gate G
with index γ. The evaluator is given (Xα,bα⊕λα , bα ⊕ λα) and (Xβ,bβ⊕λβ , bβ ⊕ λβ), along with P .
It takes the row P [γ, bα ⊕ λα, bβ ⊕ λβ] and decrypts it using the labels Xα,bα⊕λα and Xβ,bβ⊕λβ ,
resulting in (Xγ,G(bα,bβ)⊕λγ , G(bα, bβ)⊕ λγ). It is straightforward to verify that by continuing this
evaluation, the output of each gate will be revealed masked by its corresponding mask. By picking
masks of the output wires to be ‘0’ we ensure that the evaluator receives the (unmasked) output
of the circuit.

Security. For a garbling scheme to be secure, it should satisfy some notion of privacy. Namely,
given some output z of f , there should exist a simulator that can produce a garbling of a circuit
that outputs z that is indistinguishable from a correctly garbled circuit.

Definition 2.2. Garbling scheme (Gb,Ev) satisfies privacy if there exists a ppt simulator S such
that for every ppt adversary A, for all polynomial size functions f and inputs x and y it holds that

Pr
[
A(Ĉ, {Xw,x[i]}, {Yw,y[i]) = 1 : (Ĉ, {Xw,b}, {Yw,b})← Gb(1κ, f)

]
c≈

Pr
[
A(Ĉ, {Xi}, {Yi) = 1 : (Ĉ, {Xi}, {Yi})← S(1κ, f(x, y))

]
.

It is well known that the above described garbling scheme satisfies privacy [LP09].

Using garbled circuits in secure computation. As mentioned in the Introduction, garbled
circuits can be used to achieve two-party secure computation using a primitive called oblivious
transfer (OT), where a sender inputs two messages m0 and m1 and a receiver receives message
mb for some choice bit b. Party P1 with input x and acting as the garbler constructs a garbled
circuit and sends it to party P2 with input y and acting as the evaluator. In addition, P1 and P2
run an OT protocol for each of P2’s input bits, with P1 inputting as the sender the two wire labels
Xw,0, Xw,1, and P2 receiving Xw,y[i]. P1 then sends the input-wire labels {Xw,x[i]} corresponding
to its own inputs, allowing P2 to evaluate the garbled circuit and learn the output.

The free-XOR technique. We note one optimization technique that we reference throughout the
thesis. This technique, called the “free-XOR” technique [KS08], allows one to construct a garbled
circuit such that when evaluating the garbled circuits, XOR gates can be evaluated “for free”;
namely, evaluating an XOR gates only requires an XOR operation by the evaluator.1 This is done
as follows. The garbler selects some global random value ∆, and for each input wire w chooses

1In order to prove security of the “free-XOR” technique in the standard model, one needs to make additional
assumptions about the encryption used in garbled circuits [App13, CKKZ12, KS08].

7

Xw,0 at random at sets Xw,1 := Xw,0 ⊕∆. Now, for each XOR gate in the circuit, the garbler sets
the output 0-label to be the XOR of the two input 0-labels, and sets the output 1-label to be the
output 0-label XORed with ∆. AND gates are handled as before.

Because the evaluator only learns a single label, it cannot learn ∆ and thus security is preserved.
However, note that now, when processing an XOR gate, the evaluator only needs to XOR the two
wire labels together to learn the output-wire label of that gate. Namely, given Xα := Xα,0 ⊕ b∆
and Xβ := Xβ,0 ⊕ b′∆, it holds that Xγ,b⊕b′ = Xα ⊕Xβ.

Achieving Malicious Security

The basic garbled circuit protocol described above is only secure against semi-honest adversaries,
that is, adversaries that are assumed to follow the protocol but may try to deduce the other party’s
input from the protocol transcript. As described in the Introduction, the cut-and-choose paradigm
is a common way to lift the garbled circuit approach to handle malicious adversaries. Cut-and-
choose protocols for garbled circuits work by letting P1 generate and send a number of garbled
circuits to P2, who then chooses a subset of circuits to open and check for correctness. If the checks
pass, P2 evaluates the remaining circuits and obtains the final output by taking majority over the
individual outputs. However, using cut-and-choose introduces two possible avenues of attack: a
selective failure attack on P2’s input and input inconsistency on P2’s input. We discuss each in
turn, as well as known approaches to solve each problem.

Selective failure: This attack proceeds as follows. Recall that P1 sends the input-wire labels of
P2’s inputs through oblivious transfer. However, a malicious P1 could set, say, the 0-bit label
of the ith input-wire among all the garbled circuits to garbage. Now, if P2 receives these
garbage labels (because its ith input bit was 0) it cannot evaluate the garbled circuits, and
thus must abort, allowing P1 to learn P2’s ith input bit.
There are two main ways to circumvent this attack. Lindell and Pinkas introduced the “XOR-
tree” approach [LP07], where the parties modify the circuit such that instead of P2 having
input y, it has ρ inputs {y1, . . . , yρ}. P2 chooses these values randomly such that y =

⊕
i yi.

Now, if P1 launches a selective failure attack on a single input bit it only learns a random
share of P2’s real input bit y[i]. Of course, P1 can launch a selective failure attack on multiple
bits, but can only learn one of P2’s input bits with probability 2−ρ. Note that the approach
as described blows up P2’s input from n to ρn, where n is the length of P2’s input. However,
Lindell and Pinkas [LP07] showed how to reduce this to max{4n, 8ρ}.
Another approach for dealing with the selective failure attack is cut-and-choose oblivious
transfer [LP11]. This protocol is similar to oblivious transfer, except now P2 also inputs a
“check set” J , and learns both of P1’s inputs for those indices in J . Thus, P2 can execute
cut-and-choose on P1’s inputs to the oblivious transfer itself, aborting on any inconsistency.

Input inconsistency: Another issue with using cut-and-choose is that one needs to enforce that
P1 uses the same input x in all the evaluation circuits. Otherwise, P1 could get P2 to evaluate,
for example, f(x1, y) and f(x2, y), potentially allowing P1 to learn some information about y
based on choices of x1 and x2.
While there are several approaches to solving this issue, we focus on the approach introduced
by Lindell and Pinkas [LP11], which we make use of throughout this thesis. For each of

8

its n input bits, P1 chooses values {gai,b}b∈{0,1} for random ai,b. Likewise, for each of the s
garbled circuits in the cut-and-choose, P1 chooses values {grj}j∈[s] for random rj . Now, the
input-wire label for input bit b for the ith input of the jth circuit is set to gai,b·rj . Using this
specific structure of the labels allows P1 to efficiently prove in zero-knowledge that its choices
of its ith bit are consistent across all evaluation circuits. Namely, suppose P2 has labels X
and X ′ and knows the values {gai,b} and {grj}. Then P1 can efficiently prove that for input
{gai,0·rj , gai,1·rj , gai,0·rj′ , gai,1·rj′} and bit σ it holds that X = gai,σ ·rj and X ′ = gai,σ ·rj′ ; namely,
that the labels P2 has for P1’s ith input bit across all evaluation circuits are consistent with
P1’s input σ := x[i].

Fast cut-and-choose using cheating punishment [Lin13]. Prior cut-and-choose works [LP07,
sS11] required P1 to send at least 125 circuits to guarantee security 2−40. Lindell’s improved
technique [Lin13] achieves 2−ρ security while requiring P1 to send only ρ circuits (i.e., 40 circuits
for 2−40 security).

Lindell’s protocol (which we call the “fast cut-and-choose” protocol) has two phases. In the
first phase, P1 with input x and P2 with input y run a modified cut-and-choose which ensures that
P2 obtains a proof of cheating φ if it receives two inconsistent output values in any two evaluation
circuits. Now, if all evaluation circuits produce the same output z, P2 locally stores z as its output.
Both parties always continue to the second cheating-punishment phase. In it, P1 and P2 securely
evaluate (using some existing secure computation protocol) a smaller circuit C ′, which takes as
inputs P1’s input x and P2’s proof φ. (P2 inputs random values if it does not have φ.) P1 proves
in zero-knowledge the consistency of its input x between the two phases. C ′ outputs x to P2 if φ
is a valid proof of cheating; otherwise P2 receives nothing. The efficiency improvement is due to
the fact that cheating is punished by revealing P1’s input x to P2 if there is any inconsistency in
outputs, and thus P2 can simply compute f(x, y) itself.

9

Chapter 3

The Multiple-execution Setting

As mentioned in Chapter 1, the classical technique for lifting the garbled circuit approach to work in
the malicious setting is cut-and-choose, formalized and proven secure by Lindell and Pinkas [LP07].
Until recently, this approach required significant overhead: to guarantee probability of cheating
≤ 2−ρ, approximately 3ρ garbled circuits needed to be generated and sent. However, in 2013
two works reduced the number of garbled circuits required in cut-and-choose to ρ + O(log ρ) per
party [HKE13] and to ρ [Lin13].

In this chapter we present a way to further significantly reduce the replication factor for cut-
and-choose-based protocols in the multiple-execution setting, where the same function (possibly
with different inputs) is evaluated multiple times either in parallel or sequentially. To achieve this,
we combine in a novel way the “fast cut-and-choose” technique of Lindell [Lin13] (cf. Chapter 2)
with the “LEGO cut-and-choose” technique [FJN+13, NO09] (see below).

Notation. Besides the notation introduced in Chapter 2, we let t denote the total number of times
the parties wish to evaluate a given circuit, and let ν = ν(ρ, t) represent the number of circuits,
per evaluation, that need to be generated to achieve an error probability of ≤ 2−ρ.

LEGO cut-and-choose [FJN+13, NO09]. These works take a different approach than stan-
dard cut-and-choose protocols by implementing a two-stage cut-and-choose at the gate level. The
evaluation circuit C is then constructed from the unopened garbled gates. In the first stage, P1
sends multiple garbled gates and P2 performs a standard cut-and-choose with replication factor
ν(ρ) = O(ρ/ log |C|). P2 aborts if any opened gate is garbled incorrectly. In the next stage, P2
partitions the ν(ρ)|C| garbled gates into buckets such that each bucket contains O(ν(ρ)) garbled
gates. This two-stage cut-and-choose ensures that, except with probability ≤ 2−ρ, each bucket
contains a majority of correctly constructed garbled gates.

To connect gates with one another, Nielsen and Orlandi [NO09] use homomorphic Pedersen
commitments. The resulting computational efficiency is relatively poor as they perform several
expensive public-key operations per gate. This is addressed in the miniLEGO work [FJN+13], where
the authors (among other things) construct homomorphic commitments from oblivious transfer
(OT), whose cost can be amortized by OT extension [IKNP03]. However, the overall efficiency of
this construction is still lacking in concrete terms due to large constants inside the big-O notation. In
particular, the communication efficiency is adversely affected by the use of asymptotically constant-
rate codes that are concretely inefficient.

Naive approaches to combining fast cut-and-choose with LEGO. We now discuss two

10

natural approaches for combining Lindell’s fast cut-and-choose technique with LEGO-based cut-
and-choose to achieve protocols secure in the multiple-execution setting, which yield baseline bench-
marks.

The obvious and uninteresting approach is to simply run a maliciously-secure protocol mul-
tiple times. More interestingly, the following LEGO trick, implicit in the work of Nordholt et
al. [NNOB12], can help. Consider a circuit C̃ which consists of t copies of the original circuit C.
We perform gate-level LEGO cut-and-choose directly on C̃.1 Doing this requires a replication factor
of ν = O(ρ/ log |C̃|) = O(ρ/(log |C| + log t)). However, while this is a good asymptotic improve-
ment, the concrete efficiency of LEGO protocols is weak due to both heavy public-key machinery
per gate [NO09] and expensive communication [FJN+13]. Furthermore, LEGO requires a majority
of gates in each bucket to be good.

This leads to the second natural approach: use fast cut-and-choose in LEGO and require that as
long as each bucket contains at least one (as opposed to a majority) correctly constructed garbled
gate, the protocol succeeds. Unfortunately, the circuit C′ used in the corresponding cheating-
punishment phase is no longer small. Indeed, C′ has to deliver P1’s input x to P2 if P2 supplies a
valid cheating proof φ. However, the number of possible proofs are now proportional to |C|, since
such a proof could be generated from any of the |C| buckets. This implies that C′ is of size at least
|C|.2 Therefore, this approach cannot perform better than evaluating C from scratch using fast
cut-and-choose.

3.1 Our Contribution

Our main idea for the multiple-execution setting is to run two-stage LEGO-style cut-and-choose
at the circuit level, and then use fast cut-and-choose in the second stage (thereby requiring only a
single correctly constructed circuit from each bucket). In particular, now the size of C′ used in each
execution depends only on the input and output lengths of C, and is no longer proportional to |C|.
In this section, we focus only on the cut-and-choose aspect of the protocol; namely, on preventing
P1’s cheating by submitting incorrect garbled circuits. More detailed protocol descriptions for both
the parallel and sequential settings can be found in Sections 3.3 and 3.4.

In the first-stage cut-and-choose, P1 constructs and sends to P2 a total of νt garbled circuits.
Next, P2 requests that P1 open a random νt/2-sized subset of the garbled circuits. If P2 discovers
that any opened garbled circuit is incorrectly constructed, it aborts. Otherwise, P2 proceeds to the
second stage cut-and-choose, where it randomly assigns unopened circuits to t buckets such that
each bucket contains ν/2 circuits. Now, as in the fast cut-and-choose protocol [Lin13], each of the t
evaluations are executed in two phases. In the first phase of the kth execution, P2 evaluates the ν/2
evaluation circuits contained in the kth bucket. The circuits are designed such that if P2 obtains
different outputs from evaluating circuits in the kth bucket, then it obtains a proof of cheating φk.
Next, both parties continue to the cheating-punishment phase, where P1 and P2 securely evaluate
a smaller circuit that outputs P1’s input xk if P2 provides a valid proof φk.

Clearly, P1 succeeds in cheating only if (1) it constructed m ≥ ν/2 bad circuits, (2) none
of these m bad circuits were caught in the first cut-and-choose stage (in particular, m ≤ νt/2),

1A similar approach (i.e., of directly securely evaluating C̃) can be used to run Lindell’s protocol [Lin13] t times
in parallel without having to increase the replication factor.

2The size of C′ is also proportional to the computational security parameter κ, as the proofs are of length at least
2κ.

11

100 101 102 103

number of executions (t)

0

5

10

15

20

25

30

35

40

n
u

m
b

er
of

G
C

s
p

er
ex

ec
u

ti
on

(ν
)

our approach

naive approach

Figure 3.1: Graph depicting the number of garbled circuits required per execution for statistical security
2−40 for our approach and the naive approach which uses the fast cut-and-choose protocol [Lin13] for each
setting of t.

and (3) in the second stage, there exists a bucket that contains all bad circuits. It is easy to
see that the probability with which m bad circuits escape detection in the first stage cut-and-
choose is

(νt−m
νt/2

)
/
(νt
νt/2

)
. Conditioned on this event happening, the probability that a particular

bucket contains all bad circuits is
(m
ν/2
)
/
(νt/2
ν/2
)
. Applying the union bound, we conclude that the

probability that P1 succeeds in cheating is bounded by

t

(
νt−m
νt/2

)(
m

ν/2

)/(
νt

νt/2

)(
νt/2
ν/2

)
.

For any given t and ρ, the smallest ν, hinging on the maximal probability of P1’s successful at-
tack, can be determined by enumerating over all possible values of m (in particular, {ν/2, ν/2 +
1, . . . , νt/2}).

As an example, for t = 20 with ρ = 40, using our protocol the circuit generator needs to
construct 16·t = 320 garbled circuits, whereas using a naive application of Lindell’s protocol [Lin13]
requires 40 · t = 800 garbled circuits. See Figure 3.1 for a comparison of our approach and the prior
work for various settings of t.
Parallel versus sequential executions. As will be evident, it is important to distinguish between
the settings where the parties carry out multiple evaluations in parallel (e.g., when all inputs are
available at the start of the protocol) and where these evaluations are carried out sequentially
(e.g., when not all inputs are available as they, for example, depend on the outputs of previous
executions). Below, we provide an overview of the main challenges of each setting, and an outline
of our solutions.

Parallel executions. We apply our cut-and-choose technique in the parallel execution setting by
modifying the fast cut-and-choose protocol [Lin13] as follows. Lindell uses a primitive called

12

cut-and-choose oblivious transfer (C&C OT) to prevent a malicious P1 from learning a bit of
P2’s input using the so called “selective failure attack” (discussed in more detail in Section 3.3).
In this work, we construct a generalized C&C OT functionality that supports multi-stage cut-
and-choose. We call this functionality Fmcot, and show an efficient realization that is only
a factor νt2/ρ less efficient (per execution) than the C&C OT realization of Lindell [Lin13].
We elaborate more on this, and other important details, in Section 3.3.

Sequential executions. To prevent a malicious evaluator from choosing its inputs based on the
garbled circuit (which is required in order to prove security), garbled circuit-based 2PC pro-
tocols perform oblivious transfer before the garbler sends its garbled circuits to the evaluator
(i.e., before the cut-and-choose phase). This forces the parties, and in particular the evaluator,
to “commit” to their inputs before performing the cut-and-choose. This, however, does not
work in the sequential setting, where the parties may not know all their inputs at the beginning
of the protocol. Standard solutions used in previous works [AIKW13, GGP10, MR13] include
assuming the garbled circuit is adaptively secure or using adaptively-secure garbling [BHR12a]
explicitly, assuming the programmable random-oracle model. Another issue is that since now
we perform OTs for each execution separately, we can no longer use C&C OT or its variants;
instead we rely on the “XOR-tree” approach of Lindell and Pinkas [LP07] to avoid selective
failure attacks. We elaborate more on this, and other details, in Section 3.4.

Our solution for the sequential setting readily carries over to the parallel setting. In particular,
adapting our protocol from the sequential to the parallel setting may address situations where the
cost incurred by the use of Fmcot outweighs the cost of using both the XOR-tree approach and
adaptively-secure garbled circuits.

Related work. Lindell and Pinkas [LP07] gave the first3 rigorous 2PC protocol based on cut-
and-choose. For ρ = 40, their protocol required at least 17ρ = 680 garbled circuits. Subsequent
work by the same authors [LP11] reduced the number of circuits to 128. This was later improved
by shelat and Shen [sS11] to 125 using a more precise analysis of the cut-and-choose approach.
In Crypto 2013, two works [HKE13, Lin13] proposed (among other things) improvements to the
number of garbled circuits that need to be sent. For achieving statistical security 2−ρ, Huang et
al.’s protocol [HKE13] requires 2ρ+O(log ρ) circuits, where each party generates half of them, and
Lindell’s protocol [Lin13] requires exactly ρ circuits, plus an additional (but inexpensive) recovery
phase.

While all of the above works perform cut-and-choose over circuits, applying cut-and-choose at
the gate-level has also been considered [DO10, FJN+13, NNOB12, NO09]. As discussed above, this
approach naturally extends to the multiple-execution setting, and furthermore is not inherently
limited to considering settings where the same function is evaluated multiple times. Nielsen et
al. [NNOB12] indeed show concrete efficiency improvements using gate-level cut-and-choose tech-
niques. However, the number of rounds grows linearly with the depth of the evaluated circuit.

Finally, in independent and concurrent work, Lindell and Riva [LR14] also investigate the
multiple-execution setting, and obtain performance improvements similar to ours. An interesting
difference between our works is that while we always let the evaluator pick half the circuits to
check, they show that varying the number of check circuits can lead to an additional performance

3Cut-and-choose mechanisms were previously employed in works by Pinkas [Pin03] and Malkhi et al. [MNPS04]
but these approaches were later shown to be flawed [KS06, MF06].

13

improvement. In subsequent work, Lindell and Riva [LR15] introduced a new efficient input consis-
tency mechanism and implemented their construction, showing that AES can be securely evaluated
online in only 7 ms per execution, thus demonstrating the practicality of this approach.

3.2 Preliminaries

We consider the setting where a function is executed t times over different inputs. We assume that
only one party (the evaluator) receives output. Known techniques [LP07] can be used to lift this
setting to one in which both parties receive output.

Our constructions make use of three (standard) two-party ideal functionalities for oblivious
transfer, zero-knowledge proof-of-knowledge of an exponent, and coin tossing; see below. All three
functionalities have efficient and standard instantiations [LP11, CO15, KOS15].

Fot On sender input (x0, x1) and receiver input σ, send xσ to the receiver.

Fzk On prover input ({ga0·rj , ga1·,rj , ga0·rj′ , ga1·rj′}, σ) and receiver input (Xj , Xj′ , Y0, Y1, Zj , Zj′),
send 1 to the receiver if it holds that Y0 = ga0 , Y1 = ga1 , Zj = grj , Zj′ = grj′ , Xj = gaσ·rj , and
Xj′ = gaσ·rj′ , and 0 otherwise.

Fct Output random string r to both parties.

We also make use of adaptively secure garbled circuits [BHR12a], which we now define. These
are similar to the garbled circuit notion (cf. Chapter 2) used throughout this work, except that
the evaluator may decide on its choice of input after receiving the garbled circuit, and can thus
base its input on a function of the received garbled circuit. We consider the fine-grained variant of
adaptively secure garbled circuits, where the adversary can choose its input bit-by-bit (namely, it
receives the input-wire label for bit i before choosing its value for bit i+ 1).

We augment the standard privacy notion for garbling schemes (cf. Definition 2.2) as follows. In
the adaptive case, the simulator S does not have access to the output f(x, y) of the computation
until the adversary A has specified its entire input. Thus, it must construct a fake garbled circuit
“blindly.” Only once A specifies all the input bits does the simulator learn f(x, y), and at this point
it must “fix” the garbled circuit to produce this as the output. Namely, A is given oracle access
to an Input(w, b) function which returns the b-label of the wth input wire. This oracle can only be
called once per input wire w. In the real world, A receives the actual input-wire label generated by
Gb; that is, Xw,b := Input(w, b). In the ideal world, we have S “simulate” the output of Input, given
only the wire index; only once labels are output for all input-wire labels does S learn the output
f(x, y). More concretely, we split S into two simulators, S1 and S2. S1 is only given as input the
security parameter and must generate a garbled circuit Ĉ. S2 is called on each call A makes to
Input, and receives as input the wire index w, the number of calls Q made to Input, and f(x, y) if
Q equals the length of the input and ⊥ otherwise, and must output a label in such a way that A
cannot distinguish between the two worlds.

Definition 3.1. Garbling scheme (Gb,Ev) satisfies adaptive privacy if for every ppt adversary A,
there exists a ppt simulator S such that for all polynomial size functions f and inputs x and y it

14

holds that

Pr
[
AInput(·,·)(Ĉ) = 1 : (Ĉ, {Xw,b})← Gb(1κ, f)

Xw,b := Input(w, b)

]
c≈

Pr
[
AInput(·,·)(Ĉ) = 1 : Ĉ ← S1(1κ)

Xw,b ← S2(f(x, y) or ⊥, w,Q)

]
.

Relatively efficient constructions of adaptively secure garbled circuits can be constructed in the
random oracle model [BHR12a]. The basic idea is to mask the garbled circuit by some random
string that is only revealed once the adversary receives all of its input-wire labels.

3.2.1 Security Definitions

Our security definitions allow one of the two participating parties to be corrupted by an adversaryA.
We assume that there is an environment Z which interacts with A and the honest party in the
way specified below. At the end of the execution, Z needs to distinguish between the case where
A runs a protocol with the real honest party, and the case where A and the honest party invoke
an ideal functionality that computes the function f , where the protocol is secure if Z’s advantage
in distinguishing the two cases is negligible.

The Parallel Execution Setting

Ideal model execution. In the ideal model, we have parties P1 and P2, and an adversary A
who can corrupt one of the two parties. An ideal execution for the computation of the function f
multiple times in parallel, where the parties have access to an ideal functionality Fpar, proceeds as
follows.

Auxiliary Input: P1 and P2 hold 1κ, and Z holds auxiliary input aux. In addition, Z provides
P1 and P2 a parameter t which denotes the number of times the function f is executed.

• P1 and P2 obtain inputs (x1, . . . , xt) and (y1, . . . , yt), respectively, from Z, where each xi and
yi is of length {0, 1}n.

• The honest party sends its input vector to Fpar. The corrupted party may send any input
vector of its choice.

• If an input is invalid, Fpar outputs ⊥ to both parties and halts. Otherwise, Fpar sends
f(x1, y1), . . . , f(xt, yt) to P2.

• P1 has no output, and P2 has output f(x1, y1), . . . , f(xt, yt). The honest party gives whatever
it was sent by Fpar to Z, and the corrupted party gives an arbitrary function of its view to
Z. In the end, Z outputs a bit. We let Idealf,A,Z(aux)(1κ) denote the output of Z.

Real model execution. In the real model, we have parties P1 and P2 who execute a two-party
protocol Πf . The protocol Πf has a parameter t initialized by Z which specifies the number
of times f is evaluated in parallel. P1 and P2 obtain their inputs (x1, . . . , xt) and (y1, . . . , yt),

15

respectively, from Z, and obtain output (z1, . . . , zt) by executing Πf using their respective inputs.
The honest party sends its output to Z and the adversary A sends its view to Z. Throughout
the protocol execution, A obtains the inputs of the corrupted party and sends all messages on its
behalf, whereas the honest party follows the instructions of Πf . In the end, Z outputs a bit. We
let RealΠf ,A,Z(aux)(1κ) denote the output of Z.

Definition 3.2. Protocol Πf is said to securely compute Fpar if for every ppt adversary A in the
real model, there exists a ppt adversary S in the ideal model such that for every aux ∈ {0, 1}∗, κ, ρ ∈
N, and non-uniform ppt environment Z that specifies the number of executions as t ∈ poly(κ), it
holds that

{Idealf,S,Z(aux)(1κ)} c≈ {RealΠf ,A,Z(aux)(1κ)}+ 2−ρ.

Remarks. The definition above is somewhat similar to security definitions in the Universal Com-
posability (UC) framework [Can01] in the way we define security as the success probability of an
environment Z that attempts to distinguish between the ideal world and the real world. In spite
of this we stress that our definition is not as strong as the UC definition, as the latter allows Z to
interact arbitrarily with A during the protocol execution.

The Sequential Execution Setting

Ideal model execution. In the ideal model, we have parties P1 and P2, and an adversary A
who can corrupt one of the two parties. An ideal execution for the computation of the function f
multiple times sequentially, where the parties have access to an ideal functionality Fseq, proceeds
as follows.

Auxiliary Input: P1 and P2 hold 1κ and are stateful, and Z holds auxiliary input aux. In
addition, Z provides P1 and P2 a parameter t which denotes the number of times the function
f is executed.

For k ∈ [t]:

• P1 and P2 obtain inputs xk ∈ {0, 1}n and yk ∈ {0, 1}n, respectively, from Z.

• The honest party sends its input to Fseq. The corrupted party may send any input of its
choice.

• If an input is invalid, Fseq outputs ⊥ to both parties and halts. Otherwise, Fseq sends
f(xk, yk) to P2.

• P1 has no output, and P2 has output f(xk, yk). The honest party gives whatever it was sent
by Fseq to Z, and the corrupted party gives an arbitrary function of its view to Z.

At the end of t iterations, Z outputs a bit. We let Idealf,A,Z(aux)(1κ) denote the output of Z.

Real model execution. In the real model, we have parties P1 and P2 who execute a two-party
protocol Πf . The protocol Πf has a parameter t, initialized by Z, which specifies the number of
times f is evaluated. Protocol Πf is stateful across its execution spanning t stages. In each stage,
P1 and P2 obtain their inputs xk respectively yk from Z, and obtain their output zk by executing
Πf using their respective inputs. At the end of each stage, the honest party sends its output to Z

16

and the adversary sends its view to Z. Throughout the protocol execution, A obtains the inputs
of the corrupted party and sends all messages on its behalf, whereas the honest party follows the
instructions of Πf . At the end of t stages of Πf , Z outputs a bit. We let RealΠf ,A,Z(aux)(1κ)
denote the output of Z.

Definition 3.3. Protocol Πf is said to securely compute Fseq if for every ppt adversary A in the
real model, there exists a ppt adversary S in the ideal model such that for every aux ∈ {0, 1}∗, κ, ρ ∈
N, and non-uniform ppt environment Z that specifies the number of executions as t ∈ poly(κ), it
holds that

{Idealf,S,Z(aux)(1κ)} c≈ {RealΠf ,A,Z(aux)(1κ)}+ 2−ρ.

Remarks. As in the parallel execution case, this definition differs from the definition in the
Universal Composability (UC) framework [Can01], since in our setting we restrict Z to interact
with A only between stages of the protocol Πf , but never within a stage.

3.3 The Parallel Execution Setting

Consider a setting where two parties wish to securely evaluate the same function multiple times in
parallel. Let f denote the function of interest, let t denote the number of times the parties wish to
evaluate f , and let P1’s and P2’s input in the kth execution be xk and yk, respectively.

We adapt Lindell’s protocol [Lin13] to support our cut-and-choose technique in the parallel
execution setting. The main difficulty is the design and construction of a generalization of cut-
and-choose oblivious transfer [LP11] which we use to avoid the “selective failure attack” where a
malicious P1 constructs invalid labels for some of P2’s input wires to try to deduce P2’s inputs
based on whether P2 aborts execution or not.

Generalizing Cut-and-Choose Oblivious Transfer

Cut-and-choose oblivious transfer (C&C OT) [LP11] is an extension of standard one-out-of-two
oblivious transfer (OT). The sender inputs n pairs of strings, and the receiver inputs n selection
bits to select one string out of each pair of sender strings. The receiver also inputs a set C of size
n/2 that consists of indices where it wants both the sender’s inputs to be revealed. We denote this
set as the check set, and let E := [ρ] \ C denote the evaluation set. Note that for indices in E , only
those sender inputs that correspond to the receiver’s selection bits are revealed. In applications
to secure computation, and in particular when transferring input-wire labels corresponding to a
particular input wire across all evaluation circuits, one needs single-choice cut-and-choose oblivious
transfer, where the receiver is restricted to inputting the same selection bit in all the n/2 instances
where it receives exactly one of the sender’s strings. Furthermore, when transferring labels for
multiple input wires, it is crucial that the check set C input by the receiver is the same across each
instance of single-choice C&C OT to enforce that the receiver receives only one input-wire label
in each evaluation circuit and both input-wire labels in each check circuit across all input wires.
This variant, called batch single-choice C&C OT, can be realized from the decisional Diffie-Hellman
assumption [LP11].

Lindell [Lin13] presented a variant of batch single-choice C&C OT [LP11] in order to address
settings where the check set C input by the receiver may be of arbitrary size. We denote this variant
by Fccot; see Figure 3.2 for the formal description. In this variant, in addition to obtaining one of

17

Functionality Fccot

P1 inputs n vectors {X0
i,1, X

1
i,1, . . . , X

0
i,ρ, X

1
i,ρ}i∈[n] and ρ “check values” χ1, . . . , χρ, where each string

is in {0, 1}ρ. P2 inputs bits σ1, . . . , σn ∈ {0, 1} and a set C ⊆ [ρ].

P1 receives no output. P2 receives the following:

• For i ∈ [n] and j ∈ C, P2 receives (X0
i,j , X

1
i,j).

• For i ∈ [n], P2 receives (Xσi
i,1, . . . , X

σi
i,ρ), and for j 6∈ C, P2 receives χj .

Figure 3.2: Modified batch single-choice cut-and-choose oblivious transfer functionality Fccot [Lin13].

Functionality Fmcot

P1 inputs n vectors {X0
i,1, X

1
i,1, . . . , X

0
i,νt, X

1
i,νt}i∈[n], and νt2 “check values” {χk1 , . . . , χkνt}k∈[t], where

each string is in {0, 1}ρ. P2 inputs t n-bit vectors {σ1,i, . . . , σn,i}i∈[t] and sets E1, . . . , Et that are disjoint
subsets of [νt].

P1 receives no output. P2 receives the following:

• If E1, . . . , Et are disjoint subsets of [νt], then for k ∈ [t], j ∈ Ek, P2 receives χkj . For all k, k′ such
that j ∈ Ek ∩ Ek′ , P2 receives random strings in {0, 1}κ instead of χkj and χk

′

j .

• Let C := [νt] \ ∪k∈[t]Ek. For i ∈ [n], j ∈ [νt]:

– If j ∈ C, then P2 receives (X0
i,j , X

1
i,j).

– If j ∈ Ek, then P2 receives Xσi,k
i,j .

Figure 3.3: Batch single-choice multi-stage cut-and-choose OT functionality Fmcot.

the two sender inputs for pairs whose indices are not in C, the receiver also obtains a “check value”
for each index in E . These check values are used to confirm that a circuit is indeed an evaluation
circuit.

For our purposes, we introduce a new variant of C&C OT, which we call batch single-choice
multi-stage C&C OT. We denote this primitive by Fmcot and present its formal description in
Figure 3.3. As we use Fmcot to realize our parallel execution protocol, we use the same notation
in our definition of Fmcot; namely, we let the universal set be of size νt rather than ρ.

At a high level, Fmcot differs from Fccot in that the receiver now inputs multiple evaluation
sets E1, . . . , Et (where the check set C is now implicitly defined as C := [νt] \ ∪k∈[t]Ek) and makes
independent selections for each E1, . . . , Et. As in the Fccot functionality, Fmcot (1) does not require
sets E1, . . . , Et to be of a particular size, and (2) delivers “check values” for indices contained in each
of E1, . . . , Et. These check values are used to confirm whether a circuit is an evaluation circuit in
the kth bucket for some k ∈ [t]. Note that we need νt2 check values, rather than just νt, in order to
prove security of our functionality and its use in our protocol. Namely, we need to enforce that the
evaluation sets are disjoint, and we do this by enforcing that a malicious P2 who inputs intersecting
sets is unable to recover an appropriate check value. To do this, we need νt check values for each
k ∈ [t], rather than just νt total check values.

The Fmcot functionality. As in Fccot, the sender P1 inputs n vectors {X0
i,1, X

1
i,1, . . . , X

0
i,νt, X

1
i,νt}i∈[n],

where each value in the vector corresponds to the wire labels for P2’s ith input in our secure com-
putation protocol. In addition, P1 inputs νt2 “check values”. The receiver P2 inputs t vectors

18

~σ1, . . . , ~σt each of length n, corresponding to its input in each of the t runs, and disjoint sets
E1, . . . , Et, corresponding to the t evaluation buckets. Upon receiving these inputs from P1 and P2,
the functionality computes check set C := [νt] \ ∪k∈[t]Ek and delivers the following to P2: (1) for
j ∈ C, both values in the jth pair in each of the n vectors, and (2) for k ∈ [t] and j ∈ Ek, the σi,k
value in the jth pair of each of the n vectors along with the check value χkj . If P2’s evaluation sets
are not disjoint, then it receives no check values for those circuits corresponding to values in the
intersection of two of the evaluation sets.

Realizing Fmcot in the Fccot-hybrid model. We now proceed to construct a protocol for Fmcot.
Our goal is to provide an information-theoretic reduction from Fmcot to Fccot. We first consider a
naive approach which serves as a warm-up to our final construction.

The naive approach. We propose the following natural approach to realizing Fmcot from Fccot.
P1 first performs a t-out-of-t additive secret sharing of its input vectors. Next, P1 and P2 interact
with the Fccot functionality t times. In the kth interaction, P1 provides the kth additive share of
its input vectors plus νt check values χk1, . . . , χkνt, while P2 provides (σ1,k, . . . , σn,k) along with a set
[νt] \ Ek. Let C := [νt] \ ∪k∈[t]Ek. At the end of the interaction, P2 obtains (1) all t additive shares
of P1’s inputs for j ∈ C, and (2) all t additive shares of P1’s inputs corresponding to P2’s selection
bit, along with the check values, for j 6∈ C.

In the context of using Fmcot for our setting, note that for the check circuits (which correspond
to the set C), P2 does not obtain the check values, and for the evaluation circuits (which correspond
to the sets Ek), P2 does not obtain both input labels. Thus, the above protocol seems to successfully
fulfill our requirements from the Fmcot functionality. However, note that there is no mechanism in
place to enforce that P2 supplies disjoint sets Ek. We show that this prevents the above protocol
from realizing Fmcot.

Let t := 2. A malicious P2 may input overlapping sets E1, E2 to Fccot. The consequence of this
is that P2 now possesses check values χ1

j and χ2
j for j ∈ E1 ∩ E2. Clearly, the functionality Fmcot

does not allow this. However, one may wonder why this need be the case. Recall that P1’s inputs
(i.e., the labels corresponding to P2’s inputs when used in our protocol) are all secret shared, and
as a result P2 does not possess valid labels corresponding to its input in garbled circuit Ĉj unless
its input in both executions is identical. At the surface, there does not seem to be any attack due
to this malicious strategy. While P2 can equivocate on assigning Ĉj to either the first or second
evaluation bucket, it either has no corresponding labels, or it has to evaluate both circuits on the
same input, say y (in which case it seems immaterial whether j is revealed as part of E1 or E2).

Unfortunately, the above malicious strategy is not simulatable when used in our secure compu-
tation protocol. In particular, at the end of the interaction with Fccot, the simulator successfully
extracts P2’s input in the first and second execution, but is now unable to decide on how to fake
the garbled circuit Ĉj . On the one hand, if j ∈ E1, then the fake garbled circuit has to out-
put z1 := f(x1, y). On the other hand, if j ∈ E2, then the fake garbled circuit has to output
z2 := f(x2, y). Therefore, the simulator has to choose on how to fake Ĉj “in the dark,” which does
not extend well to the case where t is large.

The discussion above motivates our definition of Fmcot; in particular, it reinforces why we need
disjoint evaluation sets and why Fmcot must deliver at most one check value per circuit.

Our approach. The high level idea behind our protocol is to let P1 perform independent additive
sharings of both the input values and the check values. Then P1 and P2 query the Fccot functionality
t times to transfer the values as required by Fmcot. We detail this below, explaining it in the context

19

of our secure computation protocol.
Let (X0

i,j , X
1
i,j) be the input labels corresponding to P2’s ith input wire in garbled circuit Ĉj .

First, P1 performs a t-out-of-t additive secret sharing of these labels; that is, for i ∈ [n] and j ∈ [νt],
P1 secret shares X0

i,j and X1
i,j into {X0

i,j,k}k∈[t] and {X1
i,j,k}k∈[t], respectively. P1 also chooses νt2

check values {χk1, . . . , χkνt}k∈[t] and performs a (2n(t−1) + 1)-out-of-(2n(t−1) + 1) additive sharing
of each value χkj to obtain shares χ̃kj , {χ

0,k
i,j,k′ , χ

1,k
i,j,k′}k′∈[t]\{k},i∈[n]. Then, instead of creating inputs

to Fccot using the Xb
i,j,k shares alone, P1 creates a share-block Xb

i,j,k := (Xb
i,j,k, χ

b,1
i,j,k, . . . , χ

b,t
i,j,k).

That is, a share-block Xb
i,j,k contains, in addition to a share of the input label, a share of all check

values corresponding to garbled circuit Ĉj .
Next, P1 and P2 run t instances of Fccot. In the kth interaction, in addition to the νt check

value shares χ̃k1, . . . , χ̃kνt, P1 provides its kth share-block while P2 provides its inputs for the kth
execution along with a set [νt] \ Ek. Let C := [νt] \ ∪k∈[t]Ek. At the end of the interaction, P2
obtains (1) for j ∈ C, all t share-blocks of input-wire labels, and therefore all input-wire labels, for
garbled circuit Ĉj , and (2) for j ∈ Ek, all t share-blocks of input-wire labels that correspond to its
actual input in the kth execution, and therefore its input-wire labels, along with a check value χ̃kj
for garbled circuit Ĉj .

Note, in particular, that for each check circuit Ĉj , P2 does not obtain the check value χkj for
any k, because it always misses the check value share χ̃kj . For each evaluation circuit Ĉj with
j ∈ Ek, P2 does not obtain both input labels, and more importantly can obtain at most one check
value (which is χkj). This is because share-blocks contain shares of input labels as well as shares of
check values. For an evaluation circuit, P2 always misses a share block, and consequently shares of
all values χk′j with k′ 6= k. Furthermore, if P2 wants to ensure it receives χkj , then it should never
input Ek′′ such that k′′ 6= k and yet j ∈ Ek′′ . This is because for j ∈ Ek′′ , P2 is guaranteed to miss
a share block that contains an additive share of χkj . Note that the above observations suffice to
deal with a malicious P2 that inputs overlapping sets since in this case P2 fails to obtain any check
values corresponding to indices in the intersection.

As an example, consider the case where n := 1 and t := 2. Then we secret-share χ1
j as

(χ̃1
j , χ

0,1
1,j,2, χ

1,1
1,j,2) and χ2

j as (χ̃2
j , χ

0,2
1,j,1, χ

1,2
1,j,1). Likewise, share-block Xb

1,j,1 equals (Xb
1,j,1, χ

b,2
1,j,1) and

share-block Xb
1,j,2 equals (Xb

1,j,2, χ
b,1
1,j,2). Now, if P2 inputs evaluation sets such that j ∈ E1∩E2, then

it recovers, say, X0
1,j,1 := (X0

1,j,1, χ
0,2
1,j,1) and X0

1,j,2 := (X0
1,j,2, χ

0,1
1,j,2) for input bit 0. Note that it

does not have enough shares of either χ1
j or χ2

j to recover either, and thus does not learn the check
value. However, if E1 and E2 are disjoint, then it would also learn, say, X1

1,j,2 := (X1
1,j,2, χ

1,1
1,j,2), and

thus be able to recover χ1
j .

See below for the formal description.

Inputs:

• P1 inputs n vectors { ~Xi := (X0
i,1, X

1
i,1, . . . , X

0
i,νt, X

1
i,νt)}i∈[n] and νt2 “check values” {χk1 , . . . ,

χkνt}k∈[t], where each string is in {0, 1}κ.

• P2 inputs t n-bit vectors {σ1,i, . . . , σn,i}i∈[t] and sets E1, . . . , Et that are disjoint subsets of [νt].

Protocol:

• For i ∈ [n], P1 performs a t-out-of-t additive secret sharing of ~Xi to obtain shares ~Xi,1, . . . , ~Xi,t.

20

For k ∈ [t], let ~Xi,k = (X0
i,1,k, X

1
i,1,k), . . . , (X0

i,νt,k, X
1
i,νt,k), let X0

i,j,k = (X0
i,j,k, χ

0,1
i,j,k, . . . , χ

0,t
i,j,k),

and let X1
i,j,k = (X1

i,j,k, χ
1,1
i,j,k, . . . , χ

1,t
i,j,k), where χ0,1

i,j,k, . . . , χ
0,t
i,j,k and χ1,1

i,j,k, . . . , χ
1,t
i,j,k are random

independent values in {0, 1}κ. Let ~Xi,k = (X0
i,1,k,X1

i,1,k), . . . , (X0
i,νt,k,X1

i,νt,k).

• For k ∈ [t], j ∈ [νt], P1 sets χ̃kj = χkj ⊕
⊕

k′∈[t]\{k},i∈[n](χ
0,k
i,j,k′ ⊕ χ1,k

i,j,k′).

• P1 and P2 run t instances of Fccot as follows. In the kth instance:

– P1 inputs n vectors {~Xi,k}i∈[n] and νt “check values” χ̃k1 , . . . , χ̃kνt. P2 inputs σi,k, . . . , σn,k
and the set [νt] \ Ek.

– P2 receives {χ̃kj }j∈Ek and {{Xσi,k
i,j,k}j∈Ek ∪ {(X0

i,j,k,X1
i,j,k)}j∈[νt]\Ek}i∈[n].

• For k ∈ [t], j ∈ Ek, P2 reconstructs χkj := χ̃kj ⊕
⊕

k′∈[t]\{k},i∈[n](χ
0,k
i,j,k′ ⊕ χ1,k

i,j,k′).

• Let C = [νt] \ ∪k∈[t]Ek. For i ∈ [n], j ∈ [νt], P2 does the following:

– If j ∈ C: set X0
i,j :=

⊕
k∈[t]X

0
i,j,k, and X1

i,j :=
⊕

k∈[t]X
1
i,j,k.

– If there exists (unique) k ∈ [t] such that j ∈ Ek: set Xσi,k
i,j :=

⊕
k∈[t]X

σi,k
i,j,k.

• P2 outputs sets {χ1
j}j∈E1 , . . . , {χtj}j∈Et and {{X0

i,j , X
1
i,j}j∈C , {X

σi,1
i,j }j∈E1 , . . . , {X

σi,t
i,j }j∈Et}i∈[n].

Theorem 3.1. The above protocol perfectly realizes Fmcot in the Fccot-hybrid model.

Proof. We split the analysis into two cases depending on whether P1 or P2 is corrupted.

P1 is corrupted. The simulation is straightforward since P1 does not receive any output. We
describe it below. Let S be the simulator running an adversary A corrupting P1.

• S initializes A.

• For k ∈ [t], S obtains the following from A:

1. vectors ~Xi,k := (X0
i,1,k,X1

i,1,k), . . . , (X0
i,νt,k,X1

i,νt,k) for i ∈ [n]; and

2. “check values” χ̃k1, . . . , χ̃kνt.

For b ∈ {0, 1}, i ∈ [n], j ∈ [νt], and k ∈ [t], S parses Xb
i,j,k as (Xb

i,j,k, χ
b,1
i,j,k, . . . , χ

b,t
i,j,k).

• For i ∈ [n], S constructs ~Xi := (X0
i,1, X

1
i,1, . . . , X

0
i,νt, X

1
i,νt), where for b ∈ {0, 1} and j ∈ [νt],

Xb
i,j :=

⊕
k∈[t]X

b
i,j,k.

• For j ∈ [νt] and k ∈ [t], S computes χkj := χ̃kj ⊕
⊕

k′∈[t]\{k},i∈[n](χ
0,k
i,j,k′ ⊕ χ

1,k
i,j,k′).

• S sends { ~Xi}i∈[n] and (χ1
1, . . . , χ

1
νt), . . . , (χt1, . . . , χtνt) to Fmcot and halts, outputting whatever

A outputs.

S clearly perfectly simulates A, as the view of A and output of an honest P2 is exactly the same
as in both the real and ideal worlds.

P2 is corrupted. This simulation is slightly tricky, since an adversary A corrupting P2 may
input to Fccot sets E1, . . . , Et that are intersecting. For clarity, we denote the sets input by A as
E ′1, . . . , E ′t. The key observation is that none of the input values or check values are determined

21

until P2 completes its final query to Fccot. Due to symmetry and hence without loss of generality,
in the following we assume P2’s last query to Fccot is its tth query. We describe the simulation
below.

• S initializes A.

• For k ∈ [t− 1], S acts as Fccot and interacts with P2 in the following way:

– S obtains the following from A: (1) ~σk := σ1,k, . . . , σn,k and (2) the set [νt] \ E ′k.
– S chooses uniformly random and independent values X0

i,j,k := (X0
i,j,k, χ

0,1
i,j,k, . . . , χ

0,t
i,j,k)

and X1
i,j,k := (X1

i,j,k, χ
1,1
i,j,k, . . . , χ

1,t
i,j,k) for i ∈ [n] and j ∈ [νt]. In addition, S chooses

uniformly random and independent values χ̃k1, . . . , χ̃kνt.
– S sends {χ̃kj }j∈E ′k , {{Xσi,k

i,j,k}j∈E ′k ∪ {(X
0
i,j,k,X1

i,j,k)}j∈[νt]\E ′
k
}i∈[n] to A.

• Acting as Fccot, S obtains the tth query from A as (1) ~σt := σt,1, . . . , σt,n, and (2) the set
[νt] \ E ′t.

• For k ∈ [t], set Ek := E ′k \ ∪k′ 6=kE ′k′ . Define C = [νt] \ ∪k∈[t]Ek.
S sends ~σ1, . . . , ~σt and sets E1, . . . , Et to Fmcot, and receives back {χ1

j}j∈E1 , . . . , {χtj}j∈Et and
{{(X0

i,j , X
1
i,j)}j∈C , {X

σi,1
i,j }j∈E1 , . . . , {X

σi,t
i,j }j∈Et}i∈[n].

• S chooses values {χ̃tj}j∈[νt] as follows:

– If j ∈ Et, then set χ̃tj := χtj ⊕
⊕

k∈[t−1],i∈[n](χ
0,t
i,j,k ⊕ χ

1,t
i,j,k).

– Else, choose χ̃tj uniformly at random.

• S chooses values {X0
i,j,t, X

1
i,j,t}i∈[n],j∈[νt] as follows:

– If j ∈ C, then for i ∈ [n] set X0
i,j,t := X0

i,j ⊕
⊕

k∈[t−1]X
0
i,j,k and X1

i,j,t := X1
i,j ⊕⊕

k∈[t−1]X
1
i,j,k.

– Else (i.e., j ∈ Ek for some unique k ∈ [t]), for all i ∈ [n] set X
σi,k
i,j,t := X

σi,k
i,j ⊕⊕

k′∈[t−1]X
σi,k
i,j,k′ , and set X1−σi,k

i,j,t to a random value.

• S chooses values {χ0,k
i,j,t, χ

1,k
i,j,t}i∈[n],j∈[νt],k∈[t] as follows:

– If j ∈ Ek for some (unique) k ∈ [t], then for all i ∈ [n] pick χ0,k
i,j,t, χ

1,k
i,j,t uniformly at

random subject to
⊕
i∈[n](χ

0,k
i,j,t ⊕ χ

1,k
i,j,t) = χ̃kj ⊕ χkj ⊕

⊕
k′∈[t−1],i∈[n](χ

0,k
i,j,k′ ⊕ χ

1,k
i,j,k′).

– Else, for i ∈ [n] and k ∈ [t], pick χ0,k
i,j,t, χ

1,k
i,j,t uniformly at random.

• For i ∈ [n] and j ∈ [νt], let X0
i,j,t := (X0

i,j,t, χ
0,1
i,j,t, . . . , χ

0,t
i,j,t) and X1

i,j,t := (X1
i,j,t, χ

1,1
i,j,t, . . . , χ

1,t
i,j,t).

Then, acting as Fccot, S sends {χ̃tj}j∈E ′t , {{X
σi,t
i,j,t}j∈E ′t ∪{(X

0
i,j,t,X1

i,j,t)}j∈[νt]\E ′t}i∈[n] to A and
halts, outputting whatever A outputs.

22

First we show that if A inputs E ′1, . . . , E ′t such that these sets are pairwise non-intersecting, then
its view in the above simulation is identically distributed to its view in the real execution. In this
case, it is easy to see that for all k ∈ [t] the extracted sets Ek in the simulation are identical to
E ′k input by A. Further, C = [νt] \ ∪k∈[t]E ′k also holds. Observe that for j 6= j′ the randomness
used by an honest P1 in the real execution to create values {X0

i,j,k,X1
i,j,k}i,k and the randomness

used to create {X0
i,j′,k,X1

i,j′,k}i,k are independent of each other. Clearly, this is also the case in the
simulated execution. This allows us to split the analysis depending on the value of j.

• For j ∈ Ek, the values {Xσi,k
i,j,k′}k′∈[t] are identically distributed in both executions (i.e., uni-

formly random and independent subject to
⊕
k′∈[t]X

σi,k
i,j,k′ = X

σi,k
i,j). Furthermore, the view of

A is independent of the values X1−σi,k
i,j since these are information-theoretically hidden from

the real execution (as is the case in the ideal execution). This is because in the kth query to
Fccot, A does not receive one of the additive shares of X1−σi,k

i,j , namely, the share X1−σi,k
i,j,k .

Next, it is easy to verify that the check values χkj and their additive shares χ̃kj , {χ
0,k
i,j,k′ ,

χ1,k
i,j,k′}k′∈[t]\{k},i∈[n] are also identically distributed in both executions.

Finally, we claim that the view of A in the real execution is independent of the values
{χk′j }k′ 6=k. This is because in the kth query to Fccot, A did not receive, for every k′ 6= k, at
least one of the additive shares of χk′j , namely, the share χ0,k′

1,j,k.

• For j ∈ C, the values {X0
i,j,k′ , X

1
i,j,k′}i∈[n],k′∈[t] are identically distributed in both executions

(i.e., uniformly random and independent subject to
⊕
k′∈[t]X

0
i,j,k′ = X0

i,j and
⊕

k′∈[t]X
1
i,j,k′ =

X1
i,j). Furthermore, we claim that the view of A in the real execution is independent of the

values {χkj }k∈[t]. This is because in the kth query to Fccot, A does not receive, for every
k ∈ [t], exactly one of the additive shares of χkj , namely, share χ̃kj .

Given the above, it follows that the view of A in the simulated execution is identically distributed
to its view in the real execution.

Now we need to consider the case where A inputs sets E ′1, . . . , E ′t that are not pairwise non-
intersecting. We define sets Ek = E ′k \ ∪k′ 6=kE ′k′ for each k ∈ [t]. Also, define E0 = [νt] \ ∪k∈[t]E ′k,
and C = [νt] \ ∪k∈[t]Ek. As in the case where E ′1, . . . , E ′k were pairwise non-intersecting, we split the
analysis depending on the value of j. It is easy to verify that the analysis in the case where j ∈ Ek
is identical to its counterpart in the case where E ′1, . . . , E ′k were pairwise non-intersecting. Likewise
the analysis in the cases where j ∈ E0 is identical to the analysis in the j ∈ C cases where E ′1, . . . , E ′k
were pairwise non-intersecting.

Thus, we only need to analyze the case where j ∈ E0 \ C. Such a j would exist only when
there exist distinct k, k′ ∈ [t] such that j ∈ E ′k and j ∈ E ′k′ . In this case, note that by con-
struction, the simulated values for {X0

i,j,k′′ , X
1
i,j,k′′}i∈[n],k′′∈[t] are consistent with the actual input

values {X0
i,j , X

1
i,j}i∈[n], and thus the shares obtained by A corresponding to the X0

i,j , X
1
i,j values

are identically distributed.
It remains to show that as in the simulated execution, the view of A in the real execution

is independent of the values {χk′′j }k′′∈[t]. Indeed, we claim that when j ∈ E ′k, the value χkj is
independent of its view if there exists k′ 6= k such that j ∈ E ′k′ . This is because for j ∈ E ′k, the value
χkj can be reconstructed only if all its additive shares χ̃kj , {χ

0,k
i,j,k′′ , χ

1,k
i,j,k′′}k′′∈[t]\{k},i∈[n] are obtained.

23

However, if j ∈ E ′k′ , then in the k′th query to Fccot, A loses its chance to receive at least one of
the additive shares of χkj , namely, the share χ0,k

1,j,k′ . Thus, the claim holds.

Cost of realizing Fmcot. As described, the cost of realizing Fmcot is t times the cost of realizing
Fccot for n vectors of pairs of length νt with each element of size (t+ 1)κ. Thus if we use Lindell’s
Fccot construction [Lin13] in order to implement Fmcot, then for each of the t executions we need
to use 9nνt fixed-base exponentiations and 1.5nνt regular exponentiations, and need to send a total
of 5nνt group elements.

Alternative approaches to realizing Fmcot. As discussed before, Fmcot can be realized using
general secure computation, but this results in extremely poor efficiency. In particular, the circuit
computing Fmcot is of size at least κρnt, and realization by state-of-the-art secure protocols would
further include a multiplicative κρ overhead. We leave a more efficient realization of Fmcot from
either Fccot or directly from some standard assumption as an open question.

In settings where the νt2/ρ multiplicative overhead of realizing Fmcot through our protocol is
expensive relative to the size of the circuit, one may wonder whether it is possible to use an XOR-
tree approach [LP07] to obtain better efficiency. Unfortunately, we do not know if this approach can
be made to work with standard garbled circuits in the parallel setting. Specifically, it is no longer
clear how P1, without any knowledge of the evaluation sets, can batch P2’s input labels together in
a way that lets P2 learn different sets of input labels corresponding to different evaluation circuits
and yet within each evaluation bucket guarantee that P2 can learn only input labels corresponding
to the same set of inputs.

However, if we assume that the garbling scheme is adaptively secure (cf. Section 3.2), then this
lets us perform the oblivious transfer step after P1 commits to its garbled circuits. Now P2 can
reveal its evaluation buckets one-by-one, thereby letting P1 successfully batch P2’s input labels in
the right manner. (See our protocol for sequential executions in Section 3.4 for a full description
of how to do this.)

Full Protocol

We use the Fmcot construction as follows. The input vectors { ~Xi}i∈[`] contain the labels associated
with the ith input wire for P2 in each of the νt circuits. The vector ~σk corresponds to the inputs
used by P2 in the kth execution. An honest P2 chooses sets E1, . . . , Et such that they are disjoint
and each set is of size exactly ν/2. These sets correspond to “evaluation buckets,” namely the set
of circuits that will be used for a given iteration.

The main observation is that in the kth execution P2 obtains check values χkj from Fmcot only
for j ∈ Ek. Therefore, once the parties complete the interaction with Fmcot and P1 sends all
the garbled circuits, we let P1 determine the evaluation circuits based on whether P2 sends the
corresponding check values.

Applying the cheating-punishment technique. Inspired by Lindell’s protocol [Lin13], we
use the knowledge of two different garbled values for a single output wire as a “proof” that P2
received inconsistent outputs in a given execution. P2 can use this proof to obtain P1’s input
in a cheating-punishment phase. This cheating-punishment phase is implemented via a secure
computation protocol, and thus it is important that the second phase functionality has a small
circuit. We employ several optimizations proposed by Lindell [Lin13] to keep the size of this circuit
small.

24

One important difference in our setting is that, unlike in Lindell’s protocol [Lin13], we cannot
have, for a given output wire w, the same output-wire labels Z0

w, Z
1
w across all garbled circuits.

This is because in our setting garbled circuits are assigned to different evaluation buckets, and the
circuits in each bucket can be evaluated with different input values, and thus can produce different
outputs. Thus even in an honest execution P2 could potentially learn, say, output-wire label Z0

w in
one execution and output-wire label Z1

w in another.
We address this by simply removing the requirement that the set of output-wire labels across

different garbled circuits are the same. Thus, the circuit for the cheating-punishment phase for
the kth execution must now take as input from P1 all of the output-wire labels in all of the
evaluation circuits in the kth bucket, and from P2 a pair of output-wire labels that serve as proof of
cheating. Somewhat surprisingly, we show that the size of the circuit (measured as the number of
non-XOR gates) for the cheating-punishment phase is essentially the same as the circuit in Lindell’s
protocol [Lin13].
Other details. We now describe other important details of our protocol.

• Input consistency across multiple executions. It is important to guarantee that P1 pro-
vides consistent inputs across all circuits in the kth execution. Fortunately, existing mech-
anisms [Lin13, LP11] for ensuring input consistency in the single execution setting can be
readily extended to the multiple execution setting as well.

• Encoded translation tables for garbled circuits. As in Lindell’s protocol [Lin13], we modify
the output translation tables used in the garbled circuits. Specifically, for labels Z0

w, Z
1
w on

output wire w, we create an encoded output table [H(Z0
w), H(Z1

w)], where H is some collision-
resistant hash function. We require that the output labels (or more precisely, the output of
H applied to the output labels) corresponding to 0 and 1 are distinct. This encoding gives
us the following two properties: (1) P2 after evaluating a garbled circuit can use the encoded
translation tables to determine whether the output is 0 or 1, and (2) the encoded translation
table does not reveal the other output label (since this is equivalent to inverting the hash
function) to P2.

• Optimizing the cheating-punishment circuit. We can apply similar techniques as shown by
Lindell [Lin13] to optimize the size of the cheating-punishment circuit to contain only n
non-XOR gates; see below.

Formal description. We proceed to the formal description of our protocol.

Inputs: P1 has input (x1, . . . , xt), where xk ∈ {0, 1}n, and P2 has input (y1, . . . , yt), where yk ∈ {0, 1}n.

Auxiliary Inputs: Statistical security parameter ρ, computational security parameter κ, the descrip-
tion of a circuit C where C(x, y) = f(x, y) for some f : {0, 1}n × {0, 1}n → {0, 1}n

′
, the number of

evaluations t of the function f , and (G, q, g) where G is a cyclic group with generator g and prime order
q, where q is of length κ. Let Ext : G → {0, 1}κ be a function mapping group elements to bitstrings
and let H : {0, 1}κ → {0, 1}κ be a preimage-resistant hash function. Let ν, which we call the replica-
tion factor, be defined as being the smallest u ∈ N such that for all m ∈ {u/2, . . . , ut/2} it holds that
t ·
(
ut−m
ut/2

)(
m
u/2
)
/
(
ut
ut/2
)(
ut/2
u/2
)
≤ 2−ρ. Finally, we also assume access to ideal functionalities Fmcot and

Fzk.

Protocol:

25

1. Input/output labels and circuit preparation:

• P1 chooses random values a0
1, a

1
1, . . . , a

0
n, a

1
n ∈R Zq, r1, . . . , rνt ∈R Zq and (Z0

1,1, Z
1
1,1, . . . ,

Z0
n′,1, Z

1
n′,1), . . . , (Z0

1,νt, Z
1
1,νt, . . . , Z

0
n′,νt, Z

1
n′,νt) ∈R {0, 1}

κ.

• Let Xb
i,j denote the label associated with bit b for P1’s ith input bit in the jth garbled circuit.

P1 sets Xb
i,j as follows:

X0
i,j := Ext(ga0

i ·rj) and X1
i,j := Ext(ga1

i ·rj).

• Let Zbi,j denote the label associated with bit b on the ith output wire in the jth garbled
circuit.

• P1 constructs νt garblings, Ĉ1, . . . , Ĉνt, of circuit C, using random labels except for its own
input-wire labels and the output-wire labels, where the labels are set as above.

2. Oblivious transfer: P1 and P2 run Fmcot as follows:

• For i ∈ [n], let ~Yi denote a vector containing the νt pairs of labels associated with P2’s
ith input bit in all the garbled circuits. P1 inputs ~Y1, . . . , ~Yn, as well as random values
χ1

1, . . . , χ
1
νt, . . . , χ

t
1, . . . , χ

t
νt.

• P2 inputs random sets E1, . . . , Et which are pairwise non-intersecting subsets of [νt] such
that for all k ∈ [t] it holds that |Ek| = ν/2. Let C := [νt] \ ∪k∈[t]Ek. P2 also inputs bits
(σ1,1, . . . , σn,1), . . . , (σ1,t, . . . , σn,t) ∈ {0, 1}n, where σi,k := yk[i] for i ∈ [n] and k ∈ [t].

• For j ∈ C, P2 receives both input keys associated with its input wires in garbled circuit Ĉj ,
and for k ∈ [t] and j ∈ Ek, P2 receives the keys associated with its input yk on its input
wires in garbled circuit Ĉj . Also, for k ∈ [t] and j ∈ Ek, P2 receives χkj .

3. Send circuits and commitments: P1 sends P2 the garbled circuits Ĉ1, . . . , Ĉνt, the following
commitment to the labels associated with P1’s input wires:

{(i, 0, ga
0
i), (i, 1, ga

1
i)}i∈[n] and {(j, grj)}j∈[νt]

and the encoded output translation tables:

{[(H(Z0
1,j), H(Z1

1,j)), . . . , (H(Z0
n′,j), H(Z1

n′,j))]}j∈[νt].

If H(Z0
i,j) = H(Z1

i,j) for any i ∈ [n′], j ∈ [νt], then P2 aborts.

4. Cut-and-choose challenge: P2 sends P1 the sets E1, . . . , Et along with values {χ1
j}j∈E1 , . . . ,

{χtj}j∈Et .
If either (1) the check values are not valid (2) the sets E1, . . . , Et are not disjoint, or (4) there
exists some k ∈ [t] such that |Ek| 6= ν/2, then P1 outputs ⊥ and aborts. Garbled circuits Ĉj for
j ∈ C are called check circuits and garbled circuits Ĉj for j ∈ Ek are called evaluation circuits in
the kth bucket.

5. Send labels: For k ∈ [t], P1 sends the labels associated with input xk for the evaluation circuits
in the kth bucket. That is, for j ∈ Ek and i ∈ [n], P1 sends the value X ′i,j := ga

xk[i]
i
·rj and P2 sets

Xi,j := Ext(X ′i,j).

6. Circuit evaluation: For k ∈ [t], P2 does the following:
For j ∈ Ek, i ∈ [n′], P2 learns Z ′i,j by evaluating Ĉj . We call an output-wire label Z ′i,j valid if it
exists in the encoded output translation table sent in Step 3 (note that if Z ′i,j is valid then P2 can

26

map it to its associated bit using the translation table). If P2 receives exactly one bit per output
wire, then let zk denote the output. In this case, P2 chooses random values Z0

k , Z
1
k ∈R {0, 1}

κ. If
P2 receives two valid outputs on any output wire then it sets Z0

k := Z ′i,j1
and Z1

k := Z ′i,j2
, where

j1, j2 ∈ Ek denote the conflicting circuit indices. If P2 receives no valid output values on any
output wire, then P2 aborts.

7. Cheating detection: For k ∈ [t], P1 and P2 do the following:
P1 defines a circuit Csc with the values {Z0

1,j , Z
1
1,j , . . . , Z

0
n′,j , Z

1
n′,j}j∈Ek hardcoded. The circuit

computes the following function:

• P1 inputs xk ∈ {0, 1}n and has no output.
• P2 inputs a pair of values Z0

k , Z
1
k .

• If there exist values i ∈ [n′] and j1, j2 ∈ Ek such that Z0
k = Z0

i,j1
and Z1

k = Z1
i,j2

, then P2’s
output is xk; otherwise it receives no output.

P1 and P2 run the protocol of Lindell and Pinkas [LP11] on Csc as follows:

• P1 inputs xk; P2 inputs Z0
k and Z1

k as computed in Step 6.
• The garbled circuits constructed by P1 use the same a0

i , a
1
i values as were chosen in Step 1,

and the parties use 3ρ copies of the circuit for the cut-and-choose.

If this computation results in an abort, then both parties halt.

8. Check circuits for computing Fpar:

• For j ∈ C, P1 sends rj to P2, and P2 checks that these values are consistent with the pairs
{(j, grj)}j∈C received in Step 3. If not, P2 aborts.

• For j ∈ C, P2 uses the ga0
i , ga

1
i values received in Step 3 and the rj values received above to

compute the keys for P1’s input wires as X0
i,j := Ext(ga0

i ·rj), X1
i,j := Ext(ga1

i ·rj). In addition,
P2 uses the keys obtained from Fmcot in Step 2 for its own input wires. P2 verifies that
Ĉj is a correct garbling of C. If there exists a circuit for which this does not hold, then P2
aborts.

9. Verify consistency of P1’s input: For k ∈ [t], let Êk be the set of evaluation circuits used in
the 2PC computation in Step 7, let r̂j,k be the analogous value of rj used in that computation,
and let X̂i,j be the analogous value of X ′i,j used in that computation. For k ∈ [t], P1 and P2 do
the following:

• For i ∈ [n], P1 uses Fzk to proves that there exists some σi,k such that for j ∈ Ek and j′ ∈ Êk,
it holds that X ′i,j = ga

σi,k
i
·rj and X̂i,j = ga

σi,k
i
·̂rj′,k .

If any of the t proofs fail, then P2 aborts.

10. Output evaluation: For k ∈ [t], P2 does the following:
If P2 received no inconsistent outputs in Step 6, then it uses the encoded translation tables to
decode the outputs it received, and sets zk to that value. If P2 received inconsistent output, then
let xk be the output that P2 received from the circuit in Step 7. Let zk := f(xk, yk) be the output
in this case.
P2 outputs (z1, . . . , zt).

Theorem 3.2. Let ρ (resp., κ) be the statistical (resp., computational) security parameter. If the

27

decisional Diffie-Hellman assumption holds in (G, g, q), H is a collision-resistant function, and the
underlying circuit garbling procedure is private, then for all t ∈ poly(κ), the protocol described above
securely computes Fpar in the presence of a malicious adversary with error at most 2−ρ + negl(κ)
in the (Fmcot,Fzk)-hybrid model.

Proof. We prove security in a hybrid model where we have access to Fmcot and the zero-knowledge
proof-of-knowledge functionality Fzk in Step 9. We split the analysis into two cases depending on
whether P1 or P2 is corrupted.

P1 is corrupted. The intuition is that P1 can cheat only if it can construct incorrect circuits. To
do this, P1 needs to construct a small enough number of incorrect circuits such that it will not get
caught in the first cut-and-choose stage; however, it need also construct a large enough number
such that one of the buckets contains all incorrect circuits. This is due to the fact that P2 aborts
if it finds an invalid check circuit, and learns P1’s input (and thus the correct output) if a given
bucket contains at least one correctly constructed circuit. This implies that the number of corrupt
circuits m constructed by a malicious P1 must be such that ν/2 ≤ m ≤ νt/2. We stress that m is
fixed once P1 sends the circuits in Step 3; that is, P1 cannot further “corrupt” circuits after this
step. Now observe that the probability with which m bad circuits escape detection in the first
stage cut-and-choose is

(νt−m
νt/2

)
/
(νt
νt/2

)
. Conditioned on this event happening, the probability that a

particular bucket contains all bad circuits is
(m
ρ/2
)
/
(ρt/2
ρ/2
)
. Applying the union bound, we conclude

that the probability that P1 succeeds in cheating is bounded by

t

(
ρt−m
ρt/2

)(
m

ρ/2

)/(
ρt

ρt/2

)(
ρt/2
ρ/2

)
.

Since it is given that the maximum value of this expression is less than 2−ρ for parameter ν chosen
in the protocol, we have that the probability of cheating is at most 2−ρ. We now proceed to the
formal proof.

Let A be an adversary controlling P1 with input (x1, . . . , xt). Since A receives no output, we
need only show that the difference in probability that P2 aborts in the real world versus the ideal
world is negligible. We construct a simulator S with access to functionality Fpar as follows:

1. S acts as an honest P2 would for the entire protocol execution, using input (0n, . . . , 0n)
throughout.

2. For k ∈ [t], let xk = σ1,k, . . . , σn,k be P1’s witness to the zero-knowledge proof-of-knowledge
in Step 9. S extracts these values through the ideal functionality interface.

3. If P2 would abort at any point in the protocol, then S sends ⊥ to Fpar and halts, outputting
whatever A outputs. Otherwise, it sends (x1, . . . , xt) to Fpar.

4. S halts and outputs whatever A outputs.

We now claim that the distributions from A interacting with P2 in the hybrid world versus A
interacting with S in the ideal world are indistinguishable. We show this by a series of hybrids.

H1. The hybrid-world execution.

28

H2. We extract A’s input (x1, . . . , xt) from its query to Fzk in Step 9. Instead of outputting P2’s
output from the execution of the protocol, we instead pass (x1, . . . , xt) to Fpar and output
whatever Fpar outputs.

These two hybrids differ if the output of P2 differs from the output computed by Fpar. Note
that whether a garbled circuit is “correct” or not is fixed after Step 2. That is, P1 cannot
change the correctness of a garbled circuit after Step 3. We now argue that the only case
in which these two hybrids differ is if one of the evaluation buckets contains all maliciously
constructed circuits.
Suppose a bucket, say the kth, has at least one correct garbled circuit. In this case, P2
evaluated this garbled circuit to f(xk, yk) as intended. If there exists another incorrect garbled
circuit within this bucket producing a different output, then P2 receives two different output-
wire labels and can use the cheating recovery to learn xk and thus compute f(xk, yk) itself.
(Note that by the security of the second stage 2PC protocol in Step 7, P2 either learns xk or
aborts.) Alternatively, the incorrect garbled circuit can produce garbage output-wire labels,
in which case P2 ignores this circuit. Thus, for P2 to not learn f(xk, yk), it must be the case
that all garbled circuits in a bucket are incorrect. As was shown above, this happens with
probability ≤ 2−ρ, and thus we conclude that these hybrids are statistically indistinguishable.

H3. P2 uses input (0n, . . . , 0n) throughout.

As P2 only uses its input as input to the Fmcot functionality in Step 2, we conclude that
these two hybrids are perfectly indistinguishable.

As H3 is the same as the simulator S given above, we conclude that the protocol is statistically
indistinguishable.

P2 is corrupted. The intuition for security in the case that P2 is corrupt is standard: for the
evaluation circuits, P2 learns nothing, and in each bucket, P2 learns the correct output. We utilize
a simulator for the garbled circuit generation to “fix” the output of the evaluation circuits to be
the expected output for the given bucket.

Let A be an adversary controlling P2 with input (y1, . . . , yt). We assume the existence of a
simulator Sgc which constructs garbled circuits with fixed outputs which are indistinguishable from
correctly garbled circuits. Such a simulator is known to exist [LP09, LP07]. Also, we use the
simulator for the maliciously secure 2PC protocol of Lindell and Pinkas [LP11], which we denote
as SLP11.

We construct a simulator S with access to functionality Fpar. S runs the protocol as an honest
P1 would, except as follows:

1. S extracts A’s input (y1, . . . , yt) and evaluation sets E1, . . . , Et from its call to Fmcot. S sets
C := [νt] \ ∪kEk.

2. S sends (y1, . . . , yt) to Fpar, receiving back either (z1, . . . , zt) or ⊥.

3. For every j ∈ C, S constructs a valid garbled circuit. For k ∈ [t] and j ∈ Ek, S uses Sgc to
construct a garbled circuit that outputs the fixed string zk irrespective of the input.

4. S uses SLP11 to simulate the 2PC protocol in Step 7.

29

5. Upon protocol termination, S outputs whatever A outputs and halts.

We now claim that the distributions from A interacting with P1 in the hybrid world versus A
interacting with S in the ideal world are indistinguishable. To do so, we again construct a series of
hybrids.

H1. The hybrid-world execution.

H2. We extract A’s input (y1, . . . , yt) and the sets E1, . . . , Et from the call to Fmcot in Step 2.
Let (z1, . . . , zt) be the output of Fpar, and let C = [νt] \ ∪kEk. For j ∈ C, we construct
correctly garbled circuits, and for j ∈ Ek for all k, we use Sgc to construct a circuit which
always outputs zk.

We claim that these two hybrids are computationally indistinguishable. Note that A can
distinguish if either it can open one of the simulated garbled circuits, or it can evaluate a
simulated garbled circuit in bucket k on something other than yk. The only way for one of
the above situations to occur is if (1) A can guess either the check values or the input-wire
labels for the garbled circuits in Step 4, or (2) A can distinguish the use of Sgc. In the former
case, as these values are random, this happens with probability ≤ 2−κ, and in the latter case,
by the security of Sgc this happens with negligible probability.

H3. We replace the real 2PC execution in Step 7 with a simulated execution using SLP11.

Due to the security of SLP11 [LP11], we conclude that these two hybrids are indistinguishable.

H4. We use (0n, . . . , 0n) as P1’s input throughout.

Note that this affects Step 5, where A receives P1’s inputs ga
xk[i]
i ·rj ; however, by the decisional

Diffie-Hellman assumption, A cannot extract axk[i]
i from this expression, and thus cannot

deduce that P1’s input is as defined above. Thus, the two hybrids are computationally
indistinguishable.

As H4 is the same as the simulator S given above, we conclude that the protocol is computationally
indistinguishable.

Optimizing the Circuit in Step 7

We use an optimization inspired by Lindell [Lin13] to construct an alternate circuit that minimizes
the number of non-XOR gates. Specifically, Lindell [Lin13] shows how to efficiently construct a
garbled circuit that checks if a given κ-bit string is contained in a set S of size |S|. The garbled
circuit has the property that it only requires n non-XOR gates, and thus can be essentially computed
for free using the free-XOR technique [KS08] (cf. Chapter 2). This optimization relies on the fact
that to take a κ-wise AND of two κ-bit strings, it suffices to encrypt the output 1-label with the
1-labels on the input wires. Therefore, to compare two κ-bit strings, we first XOR the two strings
bit-by-bit, take the NOT of these bits, and finally output the κ-wise AND of the resulting bits
using the trick described above. Next, to check that a κ-bit string equals any of the strings in S, we
need to evaluate the |S|-wise OR of each of these comparisons. Instead of using |S| − 1 OR gates,
we can set the 1-label on all of the output wires from the κ-wise ANDs above to be the 1-label on
the output wire of the OR. Since XOR and NOT gates can be evaluated for free [KS08], it follows
that the above circuit can essentially be securely evaluated for free.

30

We now adapt these optimizations to our setting, while still minimizing the number of non-
XOR gates. For string b and set S, we use the notation b ∈? S to denote a boolean expression that
evaluates to 1 if and only if b ∈ S. In our protocol we require a circuit that takes, in addition to
an n-bit string x (representing P1’s actual input), a pair of κ-bit strings, say b0, b1, and two sets
S0, S1 of κ-bit strings, each set of size νn′/2, and outputs x if and only if ((b0 ∈? S0) ∧ (b1 ∈?
S1)) ∨ ((b0 ∈? S1) ∧ (b1 ∈? S0)) = 1, an additional cost of 3 non-XOR gates. Alternatively, we
may instead evaluate the expression b0 ⊕ b1 ∈? S, where S = {b ⊕ b′ : b ∈ S0, b

′ ∈ S1}. (Note
that a cheating P2 can guess a value in S only with negligible probability.) This has the additional
advantage of reducing P2’s input length from 2κ to κ (and the resulting gains from performing
a lesser number of cut-and-choose oblivious transfers). In summary, it is possible to design the
circuit in Step 7 using exactly n non-XOR gates (i.e., n AND gates to select P1’s input depending
on whether the relevant conditions are satisfied). It follows from the protocol description that the
total number of garbled gates sent in Step 7 is 3nρ in each of the t executions.

3.4 The Sequential Execution Setting

We now consider the setting where the parties securely evaluate the same function f multiple times
sequentially. Again, we let t denote the number of times the parties wish to evaluate f and let P1’s
and P2’s input in the kth execution be denoted by xk and yk, respectively. We let Fseq denote the
functionality that computes f a total of t times sequentially.

The main difference between this setting and the parallel setting discussed in Section 3.3 is that
in the sequential setting the parties may not know their inputs to all executions at the start of the
protocol. In particular, inputs may depend on outputs from previous executions. Thus, the parallel
execution protocol does not immediately carry over to the sequential setting. To see why, observe
for instance that Fmcot requires P2 to submit all its inputs at once. This is not possible since in
the sequential setting we cannot assume that P2 has all its inputs at the beginning of the protocol.

Instead, we take a different approach. Namely, we use the “XOR-tree” [LP07] to protect against
the so-called “selective failure attack” [KS06, MF06, sS11]. (In the parallel execution setting, this
attack was implicitly avoided due to the use of Fmcot.) In this approach, the circuit C to be
evaluated is first modified into an equivalent circuit CXT, where each of P2’s input bits is now
secret-shared into ρ shares, thus expanding P2’s input length from n to ρn (although this expansion
factor can be reduced using known techniques [LP07, Woo07]). Then, P1 sends commitments to
the input labels corresponding to P2’s input wires in CXT. The corresponding decommitments
are revealed to P2 via a standard one-out-of-two oblivious transfer4. In order to prevent P2 from
using different inputs across evaluation circuits within the same bucket, P1 batches together the
decommitments corresponding to a particular input wire across all evaluation circuits in a given
bucket.

Note that herein lies an opportunity for a malicious P1 to force P2 to abort the protocol
depending on its input. (This can be done for instance by sending incorrect decommitments for say
only the 0-label on a particular wire.) However, the modified circuit CXT is such that the success of
any such “selective failure attack” is statistically independent of P2’s actual input value. Therefore,
if an honest P2 receives an invalid decommitment and is unable to decrypt the evaluation circuit,
then it simply aborts knowing that its privacy is not compromised.

4We note that since we use one-out-of-two oblivious transfer (as opposed to Fmcot), we can leverage oblivious
transfer extension techniques [IKNP03, IPS08, NNOB12] to obtain better efficiency.

31

We stress that the oblivious transfer step happens after P1 sends all the garbled circuits to P2.
This is because P2’s inputs to all t executions are not available at the beginning of the protocol.
Further, P2’s inputs may depend on previous outputs, which can be obtained only by decrypting
evaluation circuits, i.e., after the evaluation bucket for the current execution is fully determined.
Note that our cut-and-choose technique guarantees that there is at least one good evaluation circuit
in every bucket under the assumption that P1 has already committed to all its (good and bad)
garbled circuits before the check sets and the evaluation sets are determined.

Unfortunately, the above ordering of the oblivious transfer step and the garbled circuit send-
ing step now allows a malicious P2 to choose its input as a function of the garbled circuits it
receives, which is not simulatable. To counter this, we need to use adaptively secure garbling
schemes [BHR12a] (cf. Section 3.2) instead of standard garbled circuits; adaptively secure garbling
schemes can be constructed efficiently in the programmable random oracle model [BHR12a]. Note
that we do not need the use of adaptively secure garbling schemes for implementing the cheating-
punishment phase. Indeed, all the inputs for that subprotocol are known before the phase begins,
and therefore, the oblivious transfer step can be carried out before P1 sends its garbled circuits for
that phase.

Formal description. We now proceed to the formal description of the protocol.

Auxiliary Input: Statistical security parameter ρ, computational security parameter κ, the description
of a circuit C where C(x, y) = f(x, y) for some f : {0, 1}n×{0, 1}n → {0, 1}n

′
, the number of evaluations

t of the function f , and (G, q, g) where G is a cyclic group with generator g and prime order q, where
q is of length κ. Let Ext : G → {0, 1}κ be a function mapping group elements to bitstrings and let
H : {0, 1}κ → {0, 1}κ be a preimage-resistant hash function. Let ν, which we call the replication
factor, be defined as being the smallest u ∈ N such that for all m ∈ {u/2, . . . , ut/2} it holds that
t ·
(
ut−m
ut/2

)(
m
u/2
)
/
(
ut
ut/2
)(
ut/2
u/2
)
≤ 2−ρ. Finally, we also assume access to ideal functionalities Fct, Fot, and

Fzk.
Additional Notation: Let CXT denote the circuit C enhanced with the XOR-tree, and let n, nXT,
and n′ denote the length of P1’s input, P2’s (XOR-tree expanded) input, and the output, respectively,
of CXT(x, y).

Offline Phase:

1. Input/output labels and circuit preparation:

• P1 chooses random values a0
1, a

1
1, . . . , a

0
n, a

1
n, r1, . . . , rνt ∈R Zq and

(Z0
1,1, Z

1
1,1, . . . , Z

0
n′,1, Z

1
n′,1), . . . , (Z0

1,νt, Z
1
1,νt, . . . , Z

0
n′,νt, Z

1
n′,νt) ∈R {0, 1}

κ.

• Let Xb
i,j denote the label associated with bit b for P1’s ith input bit in the jth circuit. P1

sets Xb
i,j as follows:

X0
i,j := Ext(ga0

i ·rj) and X1
i,j := Ext(ga1

i ·rj).

• Let Y bi,j denote the label associated with bit b for P2’s ith input bit in the jth circuit. P1 picks
the labels for P2’s input wires uniformly at random, and computes (standard) commitments

e0
i,j ← com(Y 0

i,j) and e1
i,j ← com(Y 1

i,j).

Let d0
i,j and d1

i,j denote the corresponding decommitments.

• Let Zbi,j denote the label associated with bit b on the ith output bit in the jth circuit.

32

• P1 constructs νt independent adaptively secure garblings of circuit CXT, denoted Ĉ1, . . . , Ĉνt,
using random labels except the input wires, where the labels are set as above.

2. Send circuits and commitments: P1 sends P2 the garbled circuits, the commitments to the
garbled values associated with P1’s input wires:

{(i, 0, ga0
i), (i, 1, ga1

i)}i∈[n] and {(j, grj)}j∈[νt],

the encoded output translation tables:

{[(H(Z0
1,j), H(Z1

1,j)), . . . , (H(Z0
n′,j), H(Z1

n′,j))]}j∈[νt],

and the commitments to the garbled values associated with P2’s input wires:

{e0
i,j , e

1
i,j}i∈[nXT],j∈[νt].

If H(Z0
i,j) = H(Z1

i,j) for any i ∈ [n′], j ∈ [νt], then P2 aborts.
3. Cut-and-choose challenge: P1 and P2 run Fct to compute a set C ⊂ [νt] such that |C| = νt/2.

Garbled circuits Ĉj for j ∈ C are called check circuits.
4. Check circuits for computing Fseq:

• Send labels: For every check circuit Ĉj , P1 sends the value rj to P2, and P2 checks that
these are consistent with the pairs {(j, grj)}j∈C received in Step 2. If not, P2 aborts.

• Send decommitments: For every check circuit Ĉj , P1 sends the decommitments
{d0
i,j , d

1
i,j}i∈[nXT] for commitments {e0

i,j , e
1
i,j}i∈[nXT], and P2 checks that these are valid de-

commitments, and computes the corresponding labels {Y 0
i,j , Y

1
i,j}i∈[nXT]. If not, P2 aborts.

• Check correctness: For j ∈ C, P2 uses the ga
0
i , ga

1
i values received in Step 2 and the

rj values received above to compute the labels X0
i,j := Ext(ga0

i ·rj) and X1
i,j := Ext(ga1

i ·rj)
associated with P1’s input.
Given labels for all input wires in Ĉj , P2 verifies that the circuit is a garbling of CXT, using
the encoded translation tables for the output values. If there exists a circuit for which this
does not hold, then P2 aborts.

Online Phase: For k ∈ [t], execute the following sequentially:

5. Receive inputs: P1 and P2 obtain inputs xk and yk, respectively. P2 transforms its input yk for
circuit C into an equivalent “secret-shared” input ỹk for circuit CXT.

6. Second-stage cut-and-choose: P2 picks Ek ⊆ [νt]\C of size ν/2 such that E1, . . . , Ek are disjoint.
P2 sends Ek to P1, who aborts the protocol if |Ek| 6= ν/2 or Ek intersects with a previously sent
subset. We call Ek the kth evaluation bucket.

7. Oblivious transfer: For i ∈ [nXT], let D0
i,k := {d0

i,j}j∈Ek and D1
i,k := {d1

i,j}j∈Ek . P1 and P2
engage in nXT invocations of Fot where in the ith invocation:

• Acting as the sender, P1 inputs (D0
i,k, D

1
i,k).

• Acting as the receiver, P2 inputs ỹk[i], and receives Dỹk[i]
i,k .

If there exists j ∈ Ek and i ∈ [nXT] such that dỹk[i]
i,j is not a valid decommitment to e

ỹk[i]
i,j , then

P2 aborts and outputs ⊥. Otherwise, P2 computes the labels {Y ỹk[i]
i,j }i∈[nXT],j∈Ek corresponding

to the decommitments it received. Let Yi,j := Y
ỹk[i]
i,j

33

8. Send labels: P1 sends the input labels associated with its input xk for the evaluation circuits
in the kth bucket. That is, for j ∈ Ek and i ∈ [n], P1 sends X ′i,j := ga

xk[i]
i
·rj and P2 sets

Xi,j := Ext(X ′i,j).

9. Circuit evaluation: For j ∈ Ek, i ∈ [n′], P2 learns Z ′i,j by evaluating Ĉj . We call an output-wire
label Z ′i,j valid if it exists in the encoded output translation table sent in Step 2. If P2 receives
exactly one valid output-wire label per output wire, then let zk denote the output. In this case,
P2 chooses random values Z0

k , Z
1
k ∈R {0, 1}

κ. If P2 receives two valid outputs on any output wire
then it sets Z0

k := Z ′i,j1
and Z1

k := Z ′i,j2
, where j1, j2 ∈ Ek denote the conflicting circuit indices. If

P2 receives no valid output values on any output wire, then P2 aborts.

10. Cheating detection: P1 defines a circuit Csc with the values {Z0
1,j , Z

1
1,j , . . . , Z

0
n′,j , Z

1
n′,j}j∈Ek

hardcoded. The circuit computes the following function:

• P1 inputs xk ∈ {0, 1}n and has no output.
• P2 inputs a pair of values Z0

k , Z
1
k .

• If there exist values i ∈ [n′] and j1, j2 ∈ Ek such that Z0
k = Z0

i,j1
and Z1

k = Z1
i,j2

, then P2’s
output is xk; otherwise it receives no output.

P1 and P2 run the protocol of Lindell and Pinkas [LP11] on Csc as follows:

• P1 inputs xk; P2 inputs Z0
k and Z1

k as computed in Step 9.
• The garbled circuits constructed by P1 use the same a0

i , a
1
i values as were chosen in Step 1,

and the parties use 3ρ copies of the circuit for the cut-and-choose.

If this computation results in an abort, then both parties halt.

11. Verify consistency of P1’s input: Let Êk be the set of evaluation circuits used in the 2PC
computation in Step 10, let r̂j,k be the analogous value of rj used in that computation, and let
X̂i,j be the analogous value of X ′i,j used in that computation. P1 and P2 do the following:

• For i ∈ [n′], P1 uses Fzk to proves that there exists some σi,k such that for j ∈ Ek and
j′ ∈ Êk, it holds that X ′i,j = ga

σi,k
i
·rj and X̂i,j = ga

σi,k
i
·̂rj′,k .

If any of the proofs fail, then P2 aborts.

12. Output evaluation: If P2 received no inconsistent outputs in Step 10, then it outputs zk. If
P2 did receive inconsistent output, then let xk be the output that P2 received from the 2PC
computation in Step 10; P2 outputs zk := f(xk, yk).

Theorem 3.3. Let ρ (resp., κ) be the statistical (resp., computational) security parameter. If the
decisional Diffie-Hellman assumption holds in (G, g, q), H is a preimage-resistant hash function,
and the circuit is garbled using an adaptively secure garbling scheme, then for all t ∈ poly(κ), the
protocol described above securely computes Fseq in the presence of a malicious adversary with error
at most 2−ρ + negl(κ) in the (Fct,Fot,Fzk)-hybrid model.

Proof. The proof is very similar to the parallel case. The two major changes are the use of the
XOR-tree to avoid the selective failure attack (in place of Fmcot), and the use of adaptively secure
garbling.

Malicious P1. The intuition here is the same as for the parallel execution setting, and thus we

34

jump straight to the simulator. Let A be an adversary controlling P1. We construct a simulator S
as follows:

1. S acts as an honest P2 would for the entire offline phase of the protocol.

2. S acts as an honest P2 would for each of the t executions of the online phase, using yk := 0`
as its input for each iteration, except that S extracts A’s input xk from its query to Fzk in
Step 11 and sends it to Fseq.

3. S halts and outputs whatever A outputs.

We now claim that the probability that A aborts when interacting with P2 is negligibly different
from the probability that A aborts when interacting with S. We show this by a series of hybrids.

H1. The hybrid-world execution.

H2. S extracts A’s input xk from its query to Fzk in Step 11 and sends it to Fseq.

These two hybrids differ if the output of Fseq differs from what P2 receives in H1. The
argument is very similar to the one made in the parallel case. Note that after Step 2, whether
a garbled circuit is “correct” or not is fixed. We now need to argue that for P2’s outputs
to differ in these two hybrids it must be the case that all of the circuits in a given bucket
are incorrect, which happens with probability ≤ 2−ρ. This follows directly as is done in the
parallel case, and thus we do not repeat the details here.

H3. S uses input yk := 0`.

These two hybrids differ if the probability of S aborting based on its real input yk and its fake
input 0` differs. This happens if A is able to “guess” the secret-sharing of one of S’s input
bits in the XOR-tree construction. However, by the security of the XOR-tree, this happens
with probability ≤ 2−ρ.

As H3 is the same as the simulator S given above, we conclude that the two worlds are statistically
indistinguishable.

Malicious P2. Let A be an adversary controlling P2. Again, the intuition here is similar to the
parallel execution setting. However, we cannot use the standard simulator for garbled circuits
anymore, as we need adaptively secure garbled circuits. Instead, we make use of an adaptively
secure garbling simulator [BHR12a]. In particular, we need to use a simulator for the all2 definition
of security, which provides fine-grained adaptive security in terms of privacy, obliviousness, and
authenticity. Bellare, Hoang, and Rogaway [BHR12a] show the existence of such a simulator,
which we denote by Sgc = (Sgc1 ,Sgc2), in the random oracle model. This simulator has two
“stages”: Sgc1 constructs a simulated garbled circuit, and Sgc2 , given input y, constructs simulated
input labels for y. We also utilize the simulator for the maliciously secure 2PC protocol of Lindell
and Pinkas [LP11], which we denote by SLP11. We construct our simulator S as follows:

1. S acts exactly as an honest P1 would for the entire offline phase of the protocol, except for
the following:

35

• Prior to Step 1, S chooses a random string r ∈ {0, 1}νt such that half of the bits in r
are set to one. For i ∈ [νt], if r[i] = 1 then S constructs a correctly garbled circuit and
otherwise S uses Sgc1 to construct a simulated adaptively-secure garbled circuit. Now,
for those circuits with r[i] = 1, S uses the input-wire labels generated by Sgc1 , and
otherwise S constructs the input-wire labels as specified in the protocol.
• In Step 3, S sets the output of Fct to r.

2. In the online phase, S runs exactly as an honest P1 would except as follows:

• S uses xk := 0` as its input for each iteration.
• In Step 7, S receives P2’s input ỹk in its call to Fot, computes yk from ỹk, and sends
yk to Fseq, receiving back zk. It then runs Sgc2 on zk, receiving back encoded values
(D0

i,k, D
1
i,k), and sends Dỹk[i]

i,k to P2 as the response from Fot.
• In Step 10, S uses SLP11 to simulate the execution of Csc.

We now claim that the distributions from A interacting with P2 in the hybrid world versus A
interacting with S in the ideal world are indistinguishable. We do so by constructing a series of
hybrids.

H1. The hybrid-world protocol.

H2. S fixes the output of Fct to be some random string r ∈ {0, 1}νt as described above, and uses
Sgc1 to construct simulated adaptively-secure garbled circuits for those cases where r[i] = 1.
It then extracts A’s input yk from the call to Fot in Step 7 and sends yk to Fseq, receiving
back zk. It then runs Sgc2 as specified in the simulator description.

These two hybrids are computationally indistinguishable by the security of the adaptively-
secure garbled circuit simulator [BHR12a].

H3. S replaces the real 2PC execution in Step 10 with a simulated execution using SLP11.

These two hybrids are indistinguishable by the security of SLP11 [LP11].

H4. S uses xk = 0` throughout.

As in the parallel case, computational indistinguishability holds by the decisional Diffie-
Hellman assumption.

As H4 is the same as the simulator S given above, we conclude that the protocol is computationally
indistinguishable.

36

Chapter 4

The Publicly Verifiable Covert Setting

As mentioned in Chapter 1, Aumann and Lindell [AL10] introduced a very practical compromise
between the semi-honest and malicious security models, that of covert security. In the covert
security model, a party can deviate arbitrarily from the protocol description but is caught with a
fixed probability ε, called the deterrence factor. In many practical scenarios, this guaranteed risk
of being caught (likely resulting in loss of business and/or embarrassment) is sufficient to deter
would-be cheaters. Importantly, covert protocols are much more efficient and simpler than their
malicious counterparts.

At the same time, the cheating deterrent introduced by the covert model is relatively weak.
Indeed, a party catching a cheater certainly knows what happened and can respond accordingly,
for example by taking their business elsewhere. However, the impact is largely limited to this,
since the honest player cannot credibly accuse the cheater publicly. If, however, credible public
accusation were possible, the deterrent for the cheater would be immeasurably greater: suddenly,
all the cheater’s customers would be aware of the cheating and thus any cheating may affect the
cheater’s global customer base.

The addition of credible accusation greatly improves the covert model even in scenarios with
a small number of players, such as those involving the government. Consider, for example, the
setting where two agencies are engaged in secure computation on their respective classified data.
The covert model may often be insufficient here. Indeed, consider the case where one of the two
players deviates from the protocol, perhaps due to an insider attack. The honest player detects
this, but we are now faced with the problem of identifying the culprit across two domains, where
the communication is greatly restricted due to trust, policy, data privacy legislation, or all of
the above. On the other hand, credible accusation immediately provides the ability to exclude the
honest player from the suspect list, and focus on tracking the problem within one organization/trust
domain, which is dramatically simpler.

PVC definition and protocol. Asharov and Orlandi [AO12] proposed a security model, covert
with public verifiability, and an associated protocol, addressing these concerns. At a high level,
they proposed that when cheating is detected, the honest player is able to publish a “certificate
of cheating” which can be checked by any third party. In this work, we abbreviate their model as
PVC: publicly verifiable covert. Their proposed protocol (which we call the “AO protocol”) has per-
formance similar to the original covert protocol of Aumann and Lindell [AL10], with the exception
of requiring signed-OT, a special form of oblivious transfer (OT). Their signed-OT construction
is based on the OT of Peikert et al. [PVW08], and thus requires several expensive public-key

37

operations.
In this work, we propose several critical performance improvements to the AO protocol. Our

most technically involved contribution is a novel signed-OT extension protocol which eliminates
per-instance public-key operations. Before discussing our contributions and technical approach in
Section 4.1, we review the AO protocol.

The Asharov-Orlandi (AO) PVC protocol [AO12]. The AO protocol is based on the covert
construction of Aumann and Lindell [AL10]. Let P1 be the circuit generator, P2 be the evaluator,
and C(·, ·) be the circuit to be computed. Recall the standard garbled circuit construction in the
semi-honest model: P1 constructs a garbling of C and sends it to P2 along with the wire labels
associated with its input. The parties then run OT, with P1 acting as the sender and inputting
the wire labels associated with P2’s input, and P2 acting as the receiver and inputting as its choice
bits the associated bits of its input.

We now adapt this protocol to the PVC setting. Recall the “selective failure” attack on P2’s
input wires, where P1 can send P2 via OT an invalid wire label for one P2’s two inputs and learn one
of P2’s input bits based on whether P2 aborts. To protect against this attack, the parties construct
C′(x1, x

1
2, . . . , x

ν
2) = C(x1,

⊕
i∈[ν] x

i
2), where ν is the XOR-tree replication factor, and compute C′

instead of C. P1 then constructs λ (the garbled circuit replication factor) garblings of C′ and P2
checks that λ−1 of the garbled circuits are correctly constructed, evaluating the remaining garbled
circuit to derive the output. The main difficulty of satisfying the PVC model is ensuring that
neither party can improve its odds by aborting (e.g., based on the other party’s challenge). For
example, if P1 could abort whenever P2’s challenge would reveal P1’s cheating, this would enable
P1 to cheat without the risk of generating a proof of cheating. Thus, P1 sends the garbled circuits
to P2 through a 1-out-of-λ OT; namely, in the ith input to the OT P1 provides openings for all
the garbled circuits but the ith, as well as the input-wire labels needed to evaluate Ĉi. Party P2
inputs a random γ, checks that all garbled circuits besides Ĉγ are constructed correctly, and if so,
evaluates Ĉγ .

Finally, it is necessary for P1 to operate in a verifiable manner, so that an honest P2 has proof
if P1 tries to cheat and gets caught. (Note that garbled circuits guarantee that P2 cannot cheat in
the evaluation step at all, so we only worry about catching P1.) The AO protocol addresses this
by having P1 sign all its messages and the parties using signed-OT in place of all standard OTs
(including wire label transfers and garbled circuit openings). Informally, the signed-OT function-
ality proceeds as follows: rather than the receiver P2 getting message mb from the sender P1 for
choice bit b, P2 receives ((b,mb), σ), where σ is P1’s signature of (b,mb). This guarantees that if P2
detects any cheating by P1, it has P1’s signature on an inconsistent set of messages, which can be
used as proof of this cheating. Asharov and Orlandi show that this construction is ε-PVC-secure
for ε = (1− 1/λ)(1− 2−ν+1).

4.1 Our Contribution

Our main contribution is a signed-OT extension protocol built on the recent malicious OT extension
of Asharov et al. [ALSZ15]. Informally, signed-OT extension ensures that (1) a cheating sender P1 is
held accountable in the form of a “certificate of cheating” that the honest receiver P2 can generate,
and (2) a malicious P2 cannot defame an honest P1 by presenting a false “certificate of cheating”.
Achieving the first goal is fairly straightforward by having P1 simply sign all its messages. The
challenge is in simultaneously protecting against a malicious P2. In particular, we need to commit

38

Security κ FCC ECC

Short 80 1024 160
Long 128 3072 256

Figure 4.1: Settings for (computational) security parameter κ and field size τ for various security settings
as recommended by NIST [BBB+12]. FCC denotes the setting of τ when using finite field cryptography and
ECC denotes the setting of τ when using elliptic curve cryptography.

P2 to its particular choices throughout the OT extension protocol to prevent it from defaming
an honest P1, while maintaining that those commitments do not leak any information about P2’s
choices.

In the standard OT extension protocol of Ishai et al. [IKNP03] (cf. Figure 4.3), P2 constructs
a random matrix M , and P1 obtains a matrix M ′ derived from M , P1’s random string s and P2’s
vector of OT inputs r. The key challenge of adapting this protocol to the signed variant is to
efficiently prevent P2 from submitting a malleated M as part of the proof without it ever explicitly
revealing M to P1 (as this would leak P2’s choice bits). We achieve this by observing that P1 does
in fact learn some of M , as in the OT extension construction some of the columns of M and M ′

are the same (i.e., those corresponding to zero bits of P1’s string s). We prevent P2 from cheating
by having P1 include in its signature carefully selected information from the columns in M which
P1 sees. Finally, we require that P2 generates each row of M from a seed, and that P2’s proof of
cheating includes this seed such that the row rebuilt from the seed is consistent with the columns
included in P1’s signature. We show that this makes it infeasible for P2 to successfully present an
invalid row in the proof of cheating. We describe this approach in greater detail in Section 4.3.1

As another contribution, we present a more communication efficient PVC protocol, building off
the AO protocol; see Section 4.4. Our main (simple) trick there is a careful amendment allowing
us to send garbled circuit hashes instead of the garbled circuits themselves; this is based on an idea
from Goyal et al. [GMS08].

All of our results are in the random oracle model, a slight strengthening of the assumptions
needed for standard OT extension and free-XOR, two standard secure computation tools.

Comparison with existing approaches. The cost of our protocol is almost the same as that
of the covert protocol of Goyal et al. [GMS08]; the only extra cost is essentially a ≈ 67% wider
OT extension matrix and four signatures. This often negligible additional overhead (versus covert
protocols) provides us with dramatically stronger (than covert) deterrent. We believe that our
PVC protocol could be used in many applications where covert security is insufficient at the order-
of-magnitude cost advantage over previously-needed malicious protocols or the PVC protocol of
Asharov and Orlandi [AO12]. See Section 4.5 for more details.

4.2 Preliminaries

Let τ denote the field size. When considering concrete costs, we utilize the security parameter and
field size settings for key lengths recommended by NIST [BBB+12]; see Figure 4.1.

1Our construction is also interesting from a theoretical perspective in that we construct signed-OT from any
maliciously secure OT protocol, whereas Asharov and Orlandi [AO12] build a specific construction based on the
decisional Diffie-Hellman assumption.

39

Our constructions are in the FPKI model, where each party Pi can register a verification key,
and other parties can retrieve Pi’s verification key by querying FPKI on idi. We use the notation
SignPi(·) to denote a signature signed by Pi’s secret key, and we assume that this signature can be
verified by any third party. We often leave off the subscript if the identity of the signing party is
clear.

4.2.1 Covert Security

We review the definition of covert security by Aumann and Lindell [AL10], and in particular, their
“strong explicit cheat” formulation. The main idea with covert security is that a malicious party is
allowed to cheat with some probability 1− ε, but gets caught with probability ε. In the following,
we give the definition for the specific case of two-parties, although the definition can be easily
generalized to the multi-party setting.

Ideal model execution. In the ideal model, we have parties P1 and P2, and an adversary A with
auxiliary input aux who can corrupt one of the two parties. Let F define the ideal functionality
implementing f(·, ·).

• P1 obtains input x and P2 obtains input y.

• An honest party sends its given input to the ideal functionality F, whereas a corrupted party
can send an arbitrary input. Denote the inputs send to F as x′ and y′.

• A corrupted party may send one of the following messages to F:

– abort: In this case, F sends abort to the honest party and halts.
– corrupted: In this case, F sends corrupted to the honest party and halts.
– cheat: In this case, there are two possibilities:
∗ With probability ε, F sends corrupted to both parties and halts;
∗ With probability 1 − ε, F sends undetected and the honest party’s input to the

corrupted party, waits for an output value z from the corrupted party, and sends z
to the honest party.

– continue: In this case, F continues.

• F computes z := f(x′, y′) and sends z to the corrupted party.

• The corrupted party sends either abort or continue to F. If F receives continue it sends z to
the honest party, and if F receives abort it sends abort to the honest party and halts.

• The honest party outputs the given output from F, whereas the corrupted party outputs an
arbitrary function of its view of the protocol execution.

Let IdealCε
F,A(aux)(x, y, 1κ) denote the joint output of the adversary A and the honest party with

inputs x and y when interacting with ideal functionality F.

Real model execution. This is the same as the real model execution as described in Chapter 2
for malicious security.

40

Definition 4.1. Protocol Πf secure computes F in the presence of covert adversaries with ε-deterrent
if for every ppt adversary A in the real model, there exists a ppt simulator S in the ideal model
such that for all x and y it holds that

{IdealCε
F,S(aux)(x, y, 1

κ)} c≈ {RealΠf ,A(aux)(x, y, 1κ)}.

4.2.2 Publicly Verifiable Covert Security

We now review the publicly verifiable covert (PVC) security model of Asharov and Orlandi [AO12].
When we say a protocol is “secure in the covert model” we assume it is secure under Definition 4.1.

Let π be a two-party protocol between parties P1 and P2 implementing function f . Follow-
ing Aumann and Lindell [AL10], we call π non-halting if for honest Pi and fail-stop adversary2

P-i, the probability that Pi outputs corrupted is negligible. Consider the triple of algorithms
(π′,Blame, Judgment) defined as follows:

• Protocol π′ is the same as π except that if an honest party P-i∗ outputs corrupted when
executing π, it computes Cert ← Blame(idi∗ , key,View-i∗), where key denotes the type of
cheating detected, and sends Cert to Pi∗ .

• Algorithm Blame is a deterministic algorithm which takes as input a cheating identity id, a
cheating type key, and a view View of a protocol execution, and outputs a certificate Cert.

• Algorithm Judgment is a deterministic algorithm which takes as input a certificate Cert and
outputs either an identity id or ⊥.

Before proceeding to the definition, we first introduce some notation. Let Execπ,A(z)(x1, x2; 1κ)
denote the transcript (i.e., messages and output) produced by P1 with input x1 and P2 with input x2
running protocol π, where adversary A with auxiliary input z can corrupt parties before execution
begins. Let OutputPi(Execπ,A(z)(x1, x2; 1κ)) denote the output of Pi on the input transcript.

Definition 4.2. We say that (π′,Blame, Judgment) securely computes f in the presence of a publicly
verifiable covert adversary with ε-deterrent (or, is ε-PVC-secure) if the following conditions hold:

1. The protocol π′ is a non-halting and secure realization of f in the covert model with ε-deterrent.

2. (Accountability) For every ppt adversary A corrupting party Pi∗, there exists a negligible
function negl(·) such that if OutputP-i∗

(Execπ,A(z)(x1, x2; 1κ)) = corrupted then

Pr [Judgment(Cert) = idi∗] > 1− negl(κ),

where Cert← Blame(idi∗ , key,View-i∗) and the probability is over the randomness used in the
protocol execution.

3. (Defamation-free) For every ppt adversary A corrupting party Pi∗ and outputting a certificate
Cert, there exists a negligible function negl(·) such that Pr [Judgment(Cert) = id-i∗] < negl(κ),
where the probability is over the randomness used by A.

Note that, in particular, the PVC definition implicitly disallows Blame to reveal P-i∗ ’s input.
This is because π′ specifies that Cert is sent to Pi∗ .

2A fail-stop adversary is one which acts semi-honestly but may halt at any time.

41

4.2.3 Signed Oblivious Transfer

A central functionality for constructing PVC protocols is signed oblivious transfer (signed-OT),
introduced by Asharov and Orlandi [AO12]. We can define the basic signed-OT functionality F as

(⊥, (mb,Signsk(b,mb)))←$F((m0,m1, sk), (b, vk)),

where the signature scheme is assumed to be existentially unforgeable under adaptive chosen mes-
sage attack (EU-CMA). Namely, the sender P1 inputs two messages m0 and m1 along with a signing
key sk; the receiver P2 inputs a choice bit b and a verification key vk; P1 receives no output whereas
P2 receives mb alongside a signature on (b,mb).

However, as in prior work [AO12], this definition is too strong for our signed-OT extension
construction to satisfy. We introduce a relaxed signed-OT variant (slightly different from Asharov
and Orlandi’s variant [AO12]) which is tailored for OT extension and is sufficient for obtaining
PVC-security. Essentially, we need a signature scheme that satisfies a weaker notion than EU-
CMA in which the signing algorithm takes randomness, a portion of which can be controlled by
the adversary.3 This is because in our signed-OT extension construction, a malicious party can
influence the randomness used in the signing algorithm. In addition, we introduce an associated data
parameter to the signing algorithm which allows the signer to specify some additional information
unrelated to the message being signed but used in the signature. In our construction, we use the
associated data to tie the signature to a specific counter (such as a session ID or message ID),
preventing a malicious receiver from “mixing” properly signed values to defame an honest sender.

Let Π = (Gen, Sign,Verify) be a tuple of ppt algorithms over message spaceM, associated data
space D, and randomness spaces R1 and R2, defined as follows:

1. Gen(1κ): On input security parameter 1κ, output key pair (vk, sk).

2. Signsk(m, a; (r1, r2)): On input secret key sk, message m ∈ M, associated data a ∈ D, and
randomness r1 ∈ R1 and r2 ∈ R2, output signature σ = (a, σ′).

3. Verifyvk(m,σ): On input verification key vk, message m ∈M, and signature σ, output 1 if σ
is a valid signature for m and 0 otherwise.

For security, we need the condition that unforgeability remains even if the adversary inputs some
arbitrary r1 or r2. However, the adversary is prevented from inputting values for both r1 and r2.
This reflects the fact that in our signed-OT extension construction, a malicious sender can control
only r1 and a malicious receiver can control only r2. We place a further restriction that the choice
of r1 must be consistent; namely, all queries to Sign must use the same value for r1. Looking ahead,
this property exactly captures the condition we need (r1 corresponds to the zero bits in the sender’s
column selection string in the OT extension), where the choice of r1 is made once and then fixed
throughout the protocol execution.

Towards our definition, we define an oracle Osk(·, ·, ·, ·) as follows. Let ⊥ be a special symbol.
On input (m, a, r1, r2), proceed as follows. If neither r1 nor r2 equal ⊥, output ⊥. Otherwise,
proceed as follows. If r1 = ⊥ and r′1 has not been set, set r′1 uniformly at random; if r1 6= ⊥ and r′1

3Our notion is similar to the ρ-EU-CMRA notion introduced by Asharov and Orlandi [AO12]. It differs in that we
allow different portions of the randomness to be corrupted, but not both portions at once. Looking forward, this is
needed because the sender in our signed-OT functionality is only allowed to control some of the randomness.

42

Functionality FΠ
signedOT

The functionality is parameterized by an EU-CMPRA signature scheme Π = (Gen, Sign,Verify).

Input: The sender inputs messages m0 and m1 such that |m0| = |m1|, secret key sk, associated data
a, randomness r∗1 , and signatures σ∗0 and σ∗1 . The receiver inputs choice bit b, verification key vk, and
randomness r∗2 . If the sender (resp., the receiver) is honest, then r∗1 = σ∗0 = σ∗1 = ⊥ (resp., r∗2 = ⊥).

Output: The functionality computes σb = Signsk((b,mb), a; (r∗1 , r∗2)) for b ∈ {0, 1}. The sender receives
no output. The receiver receives the following output based on if the sender is corrupt or not:

• If σ∗0 6= ⊥ or σ∗1 6= ⊥, the functionality outputs ((b,mb), σ∗b) if and only if Verifyvk((0,m0), σ∗0)
= Verifyvk((1,m1), σ∗1) = 1, where σ∗b ← σb if σ∗b = ⊥; otherwise it outputs abort.

• If σ∗0 = σ∗1 = ⊥, the functionality outputs ((b,mb), σb).

Figure 4.2: Signed oblivious transfer functionality.

has not been set, set r′1 = r1; if r2 = ⊥, set r′2 uniformly at random; otherwise, set r′2 = r2. Finally,
output Signsk(m, a; (r′1, r′2)).

Now, consider the following game Sig-forgeCMPRA
A,Π (κ) for signature scheme Π between ppt ad-

versary A and ppt challenger C.

1. C runs (vk, sk)←$ Gen(1κ) and sends vk to A.

2. A, who has oracle access to Osk(·, ·, ·, ·), outputs a tuple (m, (a, σ′)). Let Q be the set of
messages and associated data pairs input to Osk(·, ·, ·, ·).

3. A succeeds if and only if (1) Verifyvk(m, (a, σ′)) = 1 and (2) (m, a) 6∈ Q.

Definition 4.3. Signature scheme Π = (Gen,Sign,Verify) is existentially unforgeable under adaptive
chosen message and partial randomness attack (EU-CMPRA) if for all ppt adversaries A there exists
a negligible function negl(·) such that Pr[Sig-forgeCMPRA

A,Π (κ)] < negl(κ).

Signed-OT functionality. We are now ready to introduce our relaxed signed-OT functionality.
As is our EU-CMPRA signature, it is tailored for OT extension, and is sufficient for building PVC
protocols. This functionality, denoted by FΠ

signedOT, is parameterized by an EU-CMPRA signature
scheme Π and is defined in Figure 4.2. As in standard OT, the sender inputs two messages (of equal
length) and the receiver inputs a choice bit. However, in this formulation we allow a malicious sender
to specify some random value r∗1 as well as signatures σ∗0 and σ∗1. Likewise, a malicious receiver
can specify some random value r∗2. (Honest players input ⊥ for these values.) If both players are
honest, the functionality computes σ ← Sign((b,mb); (r1, r2)) with uniformly random values r1 and
r2 and outputs ((b,mb), σ) to the receiver. However, if either party is malicious and specifies some
random value, this is fed into the Sign algorithm. Likewise, if the sender is malicious and specifies
some signature σ∗b 6= ⊥, this value is used as the signature sent to the receiver.

Note that FΠ
signedOT is nearly identical to the signed-OT functionality presented by Asharov

and Orlandi [AO12, Functionality 2]; it differs in the use of EU-CMPRA signature schemes instead
of ρ-EU-CMRA schemes. We also note that it is straightforward to adapt FΠ

signedOT to realize OTs
with more than two inputs from the sender. We let

(λ
1
)
-FΠ

signedOT denote a 1-out-of-λ variant of
FΠ

signedOT.

43

A compatible commitment scheme. Our construction of an EU-CMPRA signature scheme uses
a non-interactive commitment scheme, which we define here. Our definition follows the standard
commitment definition, except we tweak the Com algorithm to take an additional associated data
value.

Let ΠCom = (ComGen,Com) be a tuple of ppt algorithms over message spaceM and associated
data space D, defined as follows:

1. ComGen(1κ): On input security parameter 1κ, compute parameters params.

2. Com(m, a; r): On input message m ∈ M, associated data a ∈ D, and randomness r, output
commitment com.

A commitment can be opened by revealing the randomness r used to construct that commitment.
We now define security for our commitment scheme. We only consider the binding property;

namely, the inability for a ppt adversary to open a commitment to some other value than that
committed to. Security is the same as for standard commitment schemes, except we allow the
adversary to control the randomness used in ComGen.

Consider the game Com-bindA,ΠCom(κ) for commitment scheme ΠCom between a ppt adversary
A and a ppt challenger C, defined as follows.

1. A sends randomness r to C.

2. C computes params← ComGen(1κ; r) and sends params to A.

3. A outputs (com,m1, a1, r1,m2, a2, r2) and wins if and only if (1) m1 6= m2, and (2) com =
Com(params,m1, a1; r1) = Com(params,m2, a2; r2).

Definition 4.4. A commitment scheme ΠCom = (ComGen,Com) is (computationally) binding if for
all ppt adversaries A, there exists a negligible function negl(·) such that Pr[Com-bindA,ΠCom(κ)] <
negl(κ).

4.3 Signed Oblivious Transfer Extension

We now present our main contribution: an efficient instantiation of signed oblivious transfer (signed-
OT) extension. We begin by describing in detail the logic of the construction, iteratively building
it up from the passively secure protocol of Ishai et al. [IKNP03]. We then motivate the need for
EU-CMPRA signature schemes and present a compatible such scheme.

Intuition for the Construction

Consider the OT extension protocol of Ishai et al. [IKNP03] in Figure 4.3, run between sender P1
and receiver P2. This protocol is secure against a semi-honest P2 and malicious P1. We show how
to convert this protocol into one which satisfies the FΠ

signedOT functionality defined in Figure 4.2.
For clarity of presentation, we build on the protocol of Figure 4.3 and later discuss how to support
a malicious P2 as well, based on the malicious OT extension protocol of Asharov et al. [ALSZ15].

As a first attempt, suppose P1 simply signs all its messages in Step 3. Recall that we will use
this construction to have P1 send the appropriate input wire labels to P2; namely, P1 acts as P1
in the OT extension and inputs the wire labels for P2’s input wires whereas P2 acts as P2 and

44

P1’s inputs: Message pairs {(X0
j , X

1
j)}

j∈[m], where each X0
j , X

1
j ∈ {0, 1}

n.
P2’s inputs: Selection bit vector r ∈ {0, 1}m.
Common inputs: Security parameter κ; number of base OTs ` (= κ); hash function H : N×{0, 1}` →
{0, 1}n; ideal functionality Fot.

1. Initial OT Phase:

• P1 computes s ∈R {0, 1}`.
• P2 generates a random m × ` matrix T , where the jth row is tj and the ith column is ti.

Likewise, P2 generates a random m×` matrix V , where the jth row is vj and the ith column
is vi.

• P1 and P2 run Fot ` times in parallel, where P1 acts as the receiver with input si in the ith
OT and P2 acts as the sender with input (ti, vi) in the ith OT.

2. OT Extension Phase (Part I):

• For i ∈ [m], P2 sets ui := ti ⊕ vi ⊕ r, and sends ui to P1.

3. OT Extension Phase (Part II):

• Let Q be the m× ` matrix where each column qi = (si · (ui⊕ vi))⊕ ((1− si) · ti). Note that
qi = (si · r)⊕ ti and qj = (r[j] · s)⊕ tj .

• For j ∈ [m], P1 computes X̂0
j := X0

j ⊕H(j, qj) and X̂i
j := Xi

j ⊕H(j, qj ⊕ s), and sends X̂0
j

and X̂1
j to P2.

• For j ∈ [m], P2 computes Xj := X̂
r[j]
j ⊕H(j, tj).

4. Output:

• P1 outputs ⊥ and P2 outputs {Xj}j∈[m].

Figure 4.3: Protocol implementing passively secure OT extension [ALSZ13, IKNP03].

inputs its input bits. Thus, our first step is to enhance the protocol in Figure 4.3 to have P1 send
σ′ ← Sign(j, X̂0

j) and σ′′ ← Sign(j, X̂1
j) in Step 3.

Now, if P2 gets an invalid (with respect to a signed garbled circuit sent in the PVC protocol
of Section 4.4) wire label Xj , it can easily construct a certificate Cert which demonstrates P1’s
cheating. Namely, it outputs as its certificate the tuple

(
b, j, X̂0

j , X̂
1
j , σ

′, σ′′, tj
)

along with the
(signed by P1 and opened) garbled circuit containing the invalid wire label. A third party can (1)
check that σ′ and σ′′ are valid signatures and (2) compute Xb

j := H(j, tj)⊕ X̂b
j and check that Xb

j

is indeed an invalid wire label for the given garbled circuit.
This works for protecting against a malicious P1; however, note that P2 can easily defame an

honest P1 by outputting t∗j 6= tj as part of its certificate (in which case Xb
j := H(j, t∗j) ⊕ X̂b

j will
very likely be an invalid wire label). Thus, the main difficulty in constructing signed-OT extension
is tying P2 to its choice of the matrix T generated in Step 1 of the protocol so it cannot blame an
honest P1 by using invalid rows t∗j in its certificate.

Towards this end, consider the following modification. In Step 1, P2 now additionally sends
commitments to each tj to P1, and P1 signs these and sends them as part of its messages in Step 3.

45

This prevents P2 from later changing tj to blame P1. This does not quite work, however, as P2
could simply commit to an incorrect t∗j in the first place! Clearly, P2 cannot send T to P1, as this
would leak P2’s selection bits, yet we still need P2 to somehow be committed to its choice of the
matrix T . The key insight is noting that P1 does in fact know some of the bits of T ; namely, it
knows those columns at which si = 0 (as it learns ti in the base OT). We can use this information
to tie P2 to its choice of T such that it cannot later construct some matrix T ∗ 6= T to defame P1.

We do this by enhancing Step 3 as follows. Let I0 be the set of indices i such that si = 0 (recall
that s is the random selection bits of P1 input to the base OTs in Step 1). Let tj,i denote the ith
bit in row tj . Note that P1 knows the values of tj,i for i ∈ I0, and could thus compute {(i, tj,i)}i∈I0

as a “binding” of P2’s choice of tj . By including this information in its signature, P1 enforces that
any t∗j that P2 tries to use to blame P1 must match in the given positions. This brings us closer to
our goal; however, there are still two issues that we need to resolve:

1. Sending {(i, tj,i)}i∈I to P2 leaks s, which allows P2 to learn both of P1’s inputs. We address
this by increasing the number of base OTs in Step 1 and having P1 only send some subset
I ⊆ I0 such that |I| = κ. Thus, while P2 learns that si = 0 for i ∈ I, by increasing the
number of base OTs enough, P2 does not have enough information to recover s.

2. P2 can still flip one bit in tj and pass the check with high probability. We fix this by having
each tj be generated by a seed kj . Namely, P2 computes tj ← G(kj) in Step 1, where G
is a random oracle4. Then, when blaming P1, P2 must reveal kj instead of tj . Thus, with
high probability a malicious P2 cannot find some k∗j 6= kj such that the Hamming distance
between G(k∗j) and G(kj) is small enough that the above check succeeds.

Finally, note that we have thus far considered the passively secure OT extension protocol, which
is insecure against a malicious P2. We thus utilize the maliciously secure OT extension protocol of
Asharov et al. [ALSZ15]. The only way P2 can cheat in passively secure OT extension is by using
different r values in Step 2. Asharov et al. add a “consistency check” phase between Steps 2 and 3
to enforce that r is consistent. This does not affect our construction, and thus we can include this
step to complete the protocol.5 We refer the reader to Asharov et al. [ALSZ15] for the justification
and intuition of this step; as far as this work is concerned we can treat this consistency check as a
“black box”.

We make two key observations regarding our construction:

1. OT extension matrix size: We set `, the number of base OTs, so that leaking κ bits to
P2 does not allow it to recover s and thus both messages. We do this as follows. Let `′ be
the number of base OTs required in malicious OT extension [ALSZ15]. We set ` = `′+κ and
require that when P1 chooses s, it first fixes κ randomly selected bits to zero before randomly
setting the rest of the bits. Now, when P1 reveals I to P2, the number of unknown bits in s
is equal to `′ and thus the security of the Asharov et al. scheme carries over to our setting.
Asharov et al. set `′ ≈ 1.6κ, and thus us using κ extra columns results in an ≈ 67% matrix
size increase.

4Note that G cannot be a pseudorandom generator because the input to G is not necessarily uniform as the inputs
may be adversarially chosen by P2.

5The reason this does not affect our construction is because the consistency check phase only involves P2 sending
messages to P1. A malicious P2 cannot defame P1 because we are only enforcing that P2’s value r is consistent.

46

2. Batching signatures: The main computational cost of our protocol is the signatures sent by
P1 in Step 4. This cost can easily be brought to negligible, as follows. Recall that when using
our protocol for transferring the input wire labels of a garbled circuit using free-XOR we can
optimize the communication slightly by settingX0

j := H(j, qj) and X̂1
j := X0

j⊕∆⊕H(j, qj⊕s),
where ∆ is the free-XOR global offset. Thus, P1 only needs to send (and sign) X̂1

j .
The most important idea, however, is to batch messages across OT executions and have
P1 sign (and send) only one signature which includes all the necessary information across
many OTs. Namely, using the free-XOR optimization above, P1 signs and sends the tuple
(I, {X̂1

j , {tj,i}i∈I}j∈[m]) to P2. We note that the j values need not be sent as they are implied
by the protocol execution.

Figure 4.4 gives the full protocol for signed-OT extension. For clarity of presentation, this de-
scription, and the following proof of security, does not take into account the batching signatures
optimization described above.

Towards a Proof of Security

Before presenting the security proof, we first motivate the need for EU-CMPRA signature schemes.
Ideally we could just have P1 sign everything using an EU-CMA signature scheme; however, this
presents opportunities for P2 to defame P1. Thus, we need to enforce that P2 cannot output an
xbj value different from the one sent by P1. We do so by using a binding commitment scheme
ΠCom = (ComGen,Com), and show that the messages sent by P1 in Step 4 are essentially binding
commitments to the underlying Xb

j values.
We define ΠCom as follows, where G : {0, 1}κ → {0, 1}` and H : N × {0, 1}` → {0, 1}κ are

random oracles, and ` ≥ κ.
1. ComGen(1κ): choose set I ⊆ [`] uniformly at random subject to |I| = κ; output params := I.

2. Com(params,m, j; r): On input parameters I := params, message m, counter j, and random-
ness r ∈ {0, 1}κ, proceed as follows. Compute t := G(r), set com := (j,m⊕H(j, t), I, {ti}i∈I),
and output com.

We make the assumption that given I, one can derive the randomness input to ComGen. (We
use this when defining our EU-CMPRA signature scheme below, which uses a generic binding com-
mitment scheme). We can satisfy this by simply letting the randomness input to ComGen be the
set I.

In our signed-OT extension protocol, the set I chosen by P1 is used as params and the kj values
chosen by P2 are used as the randomness to Com. The commitment value com is exactly the
message signed and sent by P1 in Step 4. Thus, ignoring the signatures for now, we have an OT
extension protocol that binds P1 to its Xb

j values, and thus prevents a malicious P2 from defaming
an honest P1. Adding in the signatures gives us an EU-CMPRA signature scheme. Namely, P1 is
tied to its messages due to the signatures and P2 is prevented from “changing” the messages to
defame P1 due to the binding property of the commitment scheme.

We now prove that the commitment scheme described above is binding. We actually prove
something stronger than what is required in our protocol. Namely, we prove that an adversary who
can control both random values still cannot win, whereas when we use this commitment scheme in
our signed-OT extension protocol, only one of the two random values can be controlled by any one
party.

47

P1’s inputs: Messages {(X0
j , X

1
j)}

j∈[m] where X0
j , X

1
j ∈ {0, 1}

n; signing key sk.
P2’s inputs: Selection bit vector r ∈ {0, 1}m; verification key vk.
Common inputs: Security parameter κ; statistical security parameter ρ; number of base OTs `;
number of check functions µ; random oracle G : {0, 1}κ → {0, 1}`; random oracle H : N × {0, 1}` →
{0, 1}n; random oracle H ′ : {0, 1}m → {0, 1}κ; EU-CMA signature scheme Π = (KeyGen′, Sign′,Verify′);
ideal functionality Fot.

1. Initial OT Phase:

• P1 computes s ∈ {0, 1}` as follows. Let I be a set of indices, where |I| = κ. For i ∈ I, P1
sets si = 0. Then, P1 fills the remaining bits at random.

• For j ∈ [m], P2 chooses kj ∈R {0, 1}κ and sets tj := G(kj).
• Let T be an m × ` matrix, where the jth row is tj and the ith column is ti. Let V be an
m× ` matrix, where the jth row is vj and the ith column is vi. P1 and P2 run Fot ` times
in parallel, where P1 acts as the receiver with input si and P2 acts as the sender with input
(ti, vi).

2. OT Extension Phase (Part I):

• For i ∈ [`], P2 sets ui := ti ⊕ vi ⊕ r, and sends ui to P1.

3. Consistency check of r:

• For i ∈ [µ], P1 chooses function φi : [`]→ [`] uniformly at random, and sends φi to P2.

• For α ∈ [`], i ∈ [µ], let β := φi(α). P2 computes hb,b
′

α,β := H ′(wαb ⊕ w
β
b′) for b ∈ {0, 1}, b′ ∈

{0, 1}, where wα0 = tα and wα1 = vα. P2 sends {hb,b
′

α,β}b∈{0,1},b′∈{0,1}
to P1.

• For α ∈ [`], i ∈ [µ], P1 defines β := φi(α) and checks that hsα,sβα,β = H ′(wαsα ⊕ wβsβ),
h
s̄α,s̄β
α,β = H ′(wαsα ⊕ w

β
sβ
⊕ uα ⊕ uβ), and uα 6= uβ . If any check fails, P1 outputs abort.

4. OT Extension Phase (Part II):

• Let Q be the m× ` matrix where each column qi = (si · (ui⊕ vi))⊕ ((1− si) · ti). Note that
qi = (si · r)⊕ ti and qj = (r[j] · s)⊕ tj .

• Let I be the set defined in Step 1, and let tj,i denote the ith bit in row tj . P1 sends I to
P2, who checks that |I| = κ and otherwise aborts.

• For j ∈ [m], P1 computes X̂0
j := X0

j ⊕ H(j, qj) and X̂1
j := X1

j ⊕ H(j, qj ⊕ s) and signa-
tures σ′j ← Sign′sk

(
(I, j, X̂0

j , {tj,i}i∈I)
)

, and σ′′j ← Sign′sk
(

(I, j, X̂1
j , {tj,i}i∈I)

)
, and sends(

j, X̂0
j , X̂

1
j , {tj,i}i∈I , σ

′
j , σ
′′
j

)
to P2.

• For j ∈ [m], P2 computes Xj := X̂
r[j]
j ⊕H(j, tj).

5. Output:

• P1 outputs ⊥; P2 outputs
{
Xj ,

(
j, r[j], kj , I, X̂0

j , X̂
1
j , {tj,i}i∈I , σ

′
j , σ
′′
j

)}
j∈[m]

.

Figure 4.4: Signed-OT extension, based on the OT extension protocol of Asharov et al. [ALSZ15].

48

Theorem 4.1. Protocol ΠCom is binding according to Definition 4.4.

Proof. Adversary A needs to come up with choices of I, m, m′, j, j′, r, and r′ such that (j,m ⊕
H(j, t), I, {ti}i∈I) = (j′,m′ ⊕H(j′, t′), I, {t′i}i∈I′), where t := G(r) and t′ := G(r′). Clearly, j = j′.
Thus, A must find t and t′ such that ti = t′i for all i ∈ I. However, by the property that G is
a random oracle, the values t and t′ are distributed uniformly at random in {0, 1}`. Thus, the
probability that A finds two bitstrings t and t′ that match in κ bits is negligible, regardless of the
choice of I.

An EU-CMPRA Signature Scheme

We now show that the messages sent by P1 in Step 4 form an EU-CMPRA signature scheme.
Let Π′ = (Gen′,Sign′,Verify′) be an EU-CMA signature scheme and ΠCom = (ComGen,Com) be a
commitment scheme satisfying Definition 4.4. Consider the scheme Π = (Gen,Sign,Verify) defined
as follows.

1. Gen(1κ): On input 1κ, run (vk, sk)← Gen′(1κ) and output (vk, sk).

2. Signsk(m, j; (r∗1, r∗2)): On input message m ∈ {0, 1}κ, counter j ∈ N, and randomness r∗1 and
r∗2, proceed as follows. Compute params := ComGen(1κ; r∗1) and com := Com(params,m, j; r∗2).
Next, choose m′ ∈R {0, 1}κ and compute com′ := Com(params,m′, j; r∗2).6 Output σ :=
(j, params, r∗2, com, com′, Sign′sk((params, com)),Sign′sk((params, com′))).

3. Verifypk(m,σ): On input message m and signature σ, parse σ as (j, params, r, com′, com′′, σ′,
σ′′), and output 1 if and only if (1) Com(params,m; r) = com′, (2) Verify′vk((params, com′), σ′) =
1, and (3) Verify′vk((params, com′′), σ′′) = 1; otherwise output 0.

As will be clear later, this signature scheme exactly captures the behavior of P1 in our signed-OT
extension protocol. We now prove that this is indeed an EU-CMPRA signature scheme.

Theorem 4.2. Given an EU-CMA signature scheme Π′ = (Gen′,Sign′,Verify′) and a commitment
scheme ΠCom = (ComGen,Com) secure according to Definition 4.4, then Π = (Gen,Sign,Verify)
described above is an EU-CMPRA signature scheme.

Proof. LetA be a ppt adversary attacking Π. We construct an adversary B attacking Π′. Adversary
B receives vk from the challenger and initializes A with vk as input. Let (m, j, r∗1, r∗2) be the input
of A to its signing oracle. Adversary B emulates the execution of A’s signing oracle as follows:
it computes params := ComGen(1κ; r∗1) and com := Com(params,m, j; r∗2), chooses m′ uniformly
at random and computes com′ := Com(params,m′, j; r∗2), constructs σ := (j, params, r∗2, com, com′,
Sign′sk((params, com)), Sign′sk((params, com′))), and sends σ to A. After each of A’s queries, B stores
(m, j) in set QA and stores all the messages it sent to its signing oracle in set QB.

Eventually, A outputs (m, (j, σ′)) as its forgery. Adversary B checks that Verifyvk(m, (j, σ′)) = 1
and that (m, j) 6∈ QA . If not, B outputs 0. Otherwise, B parses σ′ as (params, r, com′, com′′, σ′, σ′′)
and checks that com′ 6∈ QB. If so, it outputs (com′, σ′); otherwise it outputs 0.

Note that Sig-forgeCMPRA
A,Π (κ) = 1 and Sig-forgeCMA

B,Π′ (κ) = 0 if and only if Verifyvk(m, (j, params, r,
com′, com′′, σ′, σ′′)) = 1 and (m, j) 6∈ QA but com′ ∈ QB. Fix some (m, (j, params, r, com1, com1′ , σ1,
σ1′)) such that this is the case. Thus it holds that com1 ∈ QB. This implies that B queried Sign′

6This extra commitment on a random message is needed for our signed-OT extension proof.

49

on com1, which means that A queried its signing oracle on some (m′, j′, r∗1, r∗2), where m′ 6= m, and
received back (j′, params, r′, com1, com2′ , σ1′′ , σ2′). However, this implies that Com(params, com1;
r) = m and Com(params, com1; r′) = m′. Thus, Pr[Sig-forgeCMPRA

A,Π (κ)] = Pr[Sig-forgeCMA
B,Π (κ)] +

Pr[Com-bindB′,ΠCom
(κ)] for some ppt adversary B′. We now bound Pr[Com-bindB′,ΠCom

(κ)].
Adversary B′ runs almost exactly like B. On the first query (m, j, r∗1, r2) by A, it sets r = r∗1 if

r∗1 6= ⊥ and otherwise it sets r uniformly at random; B′ then sends r to C, receiving back params.
Let (m1, j1, r

∗
1, r
∗
2) and (m2, j2, r

∗
1, r
∗′
2) be the two queries made by A resulting in a common com-

mitment value, and let (j1, params, r1, com1, com′1, σ1, σ1′) and (j2, params, r2, com1, com′2, σ1′′ , σ2′)
be the respective signatures resulting from A’s queries. Then B′ sends (com1,m1, j1, r

∗
2,m2, j2, r

∗′
2)

to its challenger and wins with probability one, contradicting the security of the commitment
scheme. Thus, we have that Pr[Com-bindB′,ΠCom

(κ)] < negl(κ), completing the proof.

Proof of Security

We are now ready to prove the security of our signed-OT extension protocol. Most of the proof
complexity is hidden in the proofs of the associated EU-CMPRA signature scheme and commitment
scheme. Thus, the signed-OT extension simulator is relatively straightforward, and mostly involves
parsing the output of FΠ

signedOT and passing the correct values to the adversary. The analysis
follows almost exactly that of Asharov et al. [ALSZ15] and thus we elide most of the details.

Theorem 4.3. Let Π = (Gen, Sign,Verify) be the EU-CMPRA signature scheme presented above.
Then the protocol in Figure 4.4 is a secure realization of FΠ

signedOT in the Fot-hybrid model.

Proof. We separately consider the case where P1 is malicious and P2 is malicious. The case where
the parties are either both honest or both malicious is straightforward.

Malicious P1. Let A be a ppt adversary corrupting P1. We construct a simulator S as follows.

1. The simulator S acts as an honest P2 would in Step 1, extracting s from A’s input to Fot.

2. The simulator S acts as an honest P2 would in Steps 2 and 3, using a random choice for r.

3. Let I and
(
j, X̂0

j , X̂
1
j , {tj,i}i∈I , σ

′
j,0, σ

′
j,1

)
, for j ∈ [m], be the messages sent by A in Step 4. If

any of these form invalid signatures, S sends abort to FΠ
signedOT and simulates P2 aborting,

outputting whatever A outputs.

4. For j ∈ [m], proceed as follows. The simulator S extracts X0
j := X̂0

j ⊕H(j, qj) and X1
j := X̂1

j ⊕
H(j, qj ⊕ s), constructs σ∗j,b := (j, I, kj , (I, (j, X̂b

j , I, {tj,i}i∈I)), (I, (j, X̂
1−b
j , I, {tj,i}i∈I)), σ

′
j,b,

σ′j,1−b) for b ∈ {0, 1}, and sends X0
j , X1

j , σ∗j,0, and σ∗j,1 to FΠ
signedOT.

5. For j ∈ [m], S parses σj,b as (j, I, kj , (I, (j, X̂b
j , I, {tj,i}i∈I)), (I, (j, X̂

1−b
j , I, {tj,i}i∈I)), σ

′
j,b, σ

′
j,1−b),

constructs message σj := (j, X̂0
j , y

1
j , {tj,i}i∈I , σ

′
j,0, σ

′
j,1), and acts as an honest P2 would when

receiving messages I and {σj}j∈[m].

6. The simulator S outputs whatever A outputs.

It is easy to see that this protocol perfectly simulates a malicious sender since S acts exactly as an
honest P2 would (beyond feeding the appropriate messages to FΠ

signedOT).

Malicious P2. Let A be a ppt adversary corrupting P2. We construct a simulator S as follows.

50

1. The simulator S acts as an honest P1 would in Step 1, extracting matrices T and V through
P1’s Fot inputs, and thus the values {kj}j∈[m] through the calls to the random oracle.

2. The simulator S uses the values extracted above to extract selection bits r after receiving the
ui values from A in Step 2.

3. The simulator S acts as an honest P1 would in Step 3.

4. Let I0 be the indices at which s (generated in Step 1) is zero, and let I ⊆ I0 be a set of size
κ. For j ∈ [m], S sends r[j], vk, and I to FΠ

signedOT, receiving back ((r[j], Xr[j]
j), σj,r[j]); S

parses σj,r[j] as (j, I, r, (I, (j, cr[j], I, {tj,i}i∈I)), (I, (j, c1−r[j], I, {tj,i}i∈I)), σ
′
j,r[j], σ

′
j,1−r[j]).

5. In Step 4, S sends I and (j, c0, c1, {tj,i′}i′∈I′ , σ
′
j,0, σ

′
j,1), for j ∈ [m], to A.

6. The simulator S outputs whatever A outputs.

The analysis is almost exactly that of the malicious receiver proof in the construction of Asharov
et al. [ALSZ15]; we thus give an informal security argument here and refer the reader to the
aforementioned work for the full details.

A malicious P2 has two main attacks: using inconsistent choices of its selection bits r and trying
to cheat in the signature creation in Step 4. This latter attack is prevented by the security of our
EU-CMPRA signature scheme. The former is prevented by the consistency check in Step 3. Namely,
Asharov et al. show that the consistency check guarantees that: (1) most inputs are consistent with
some string r, and (2) the number of inconsistent inputs is small and thus allow P2 to only learn
a small number of bits of s. Thus, for specific choices of ` and µ, the probability of a malicious
P2 cheating is negligible. Asharov et al. provide concrete parameters for various settings of the
security parameter [ALSZ15, §3.2]; let `′ denote the number of base OTs used in their protocol.
Now, in our protocol we set ` = `′ + κ; P1 leaks κ bits of s when revealing the set I in Step 4,
and so is left with `′ unknown bits of s. Thus, the security argument presented by Asharov et al.
carries over into our setting.

4.4 Our Protocol

As noted above, the main technical challenge of the PVC model is in the signed-OT construction and
model definitions. The AO protocol in the FΠ

signedOT-hybrid model is relatively straightforward:
the natural (but careful) combination of taking a non-halting covert protocol, having the GC
generator P1 sign appropriate messages, and replacing OTs with signed-OTs works. In particular,
our signed-OT extension can be naturally modified and used in place of the signed-OT primitive
in the AO protocol.

In this section we present a new PVC protocol based on signed-OT extension. Our protocol is
similar to the AO protocol in the FΠ

signedOT-hybrid model, but with applying several simple yet
very effective optimizations, resulting in a much lower communication cost.

We present our protocol by starting off with the AO protocol and pointing out the differences.
We presented the AO protocol intuition at the beginning of this Chapter; see Figure 4.5 for its
formal description. In presenting our changes, we sketch the improvement each of them brings.
Thus, we start by reviewing the communication cost of the AO protocol.

51

Private inputs: P1 has input x1 ∈ {0, 1}n and P2 has input x2 ∈ {0, 1}n.
Common inputs: Security parameter κ; XOR-tree replication factor ν; garbled circuit replication
factor λ; circuit C(·, ·); commitment scheme ΠCom = (Com,Open); ideal functionalities FΠ

signedOT and(
λ
1
)
-FΠ

signedOT for EU-CMPRA signature scheme Π.

1. P1 and P2 define a new circuit C ′(x1, x
1
2, . . . , x

ν
2) = C(x1,

⊕
i∈[ν] x

i
2). Let w1, . . . , wn denote the

input wires of x1 and let wn+(i−1)ν , . . . , wn+iν denote the input wires of xi2.

2. For i ∈ [ν − 1], P2 chooses xi2 ∈R {0, 1}
n. P2 sets xν2 := (

⊕
i∈[ν−1] x

i
2)⊕ x2.

3. For j ∈ [λ], i ∈ [n+ νn], and b ∈ {0, 1}, P1 chooses Xj
wn+i,b

∈R {0, 1}κ.

4. P1 and P2 run FΠ
signedOT, where in the ith execution P1 acts as the sender with in-

put (X1
wn+i,0‖ . . . ‖X

λ
wn+i,0, X

1
wn+i,1‖ . . . ‖X

λ
wn+i,1) and P2 acts as the receiver with input

x
di/ne
2 [i mod ν]. If P2’s output is abort, it outputs abort.

5. For j ∈ [λ], P1 constructs garbled circuit Ĉj of circuit C ′, where for i ∈ [n + νn] the labels for
input wire wi are Xj

wi,0 and Xj
wi,1. P1 sends (Ĉj ,Sign(Ĉj)) to P2, who checks that the signature

is valid; if not, P2 outputs abort.

6. For i ∈ [n] and j ∈ [λ], P1 chooses b ∈R {0, 1}, computes commitments (cjwi,0, o
j
wi,0) ←

Com(Xj
wi,0) and (cjwi,1, o

j
wi,0)← Com(Xj

wi,1), and sends (cwi,b, Sign(cwi,b)) and (cwi,b̄, Sign(cwi,b̄))
to P2, who checks that the signatures are valid; if not, P2 outputs abort.

7. P1 and P2 run
(
λ
1
)
-FΠ

signedOT with P1 as the sender inputting
({Xi

wp,b
}
i∈[λ]\{j},p∈[n+νn],b∈{0,1}

, {oiwp,b}i∈[λ]\{j},p∈[n],b∈{0,1}
, {Xj

wi,x1[i]}i∈[n]
) as its jth in-

put and P2 as the receiver inputting γ ∈R [λ] as its input; if P2’s output is abort, it outputs
abort.

8. P2 does the following:

• For j ∈ [λ]\{γ}, i ∈ [n], and b ∈ {0, 1}, P2 checks that Open(cjwi,b, o
j
wi,b

) = Xj
wi,b

. If not, P2
sets key := InvalidDecommitment and moves to Step 9.

• For j ∈ [λ]\{γ}, P2 uses the input wire keys received from the signed-OT in Step 7 to check
that Ĉj is a correctly garbled circuit. If not, P2 sets key := InvalidCircuit and moves to
Step 9.

• For j ∈ [λ]\{γ}, P2 checks that the keys received in the signed-OT in Step 4 match the keys
sent by P1 in Step 7. If not, P2 sets key := SelectiveOTAttack and moves to Step 9.

9. If any of the above checks fail, P2 computes Cert := Blame(id1, key,View2), publishes Cert, and
outputs corrupted1. Otherwise, P2 uses the keys to compute C ′(x1, x

1
2, . . . , x

ν
2) and outputs the

result.

Figure 4.5: The AO PVC protocol [AO12, Protocol 3].

Communication cost of the AO protocol. Using state-of-the-art optimizations [KS08, PSSW09,
ZRE15], the size of each GC sent in Step 5 is 2κ|GC |, where |GC | is the number of non-XOR gates
in circuit C (note that |GC | = |GC′ | for circuit C ′ generated in Step 1 since the XOR-tree only adds
XOR gates to the circuit, which are “free” [KS08]). Let τ be the field size (in bits), ν the XOR-tree
replication factor, λ the GC replication factor, and n the length of the inputs, and assume that
each signature is of length τ and the commitment and decommitment values are of length κ. Using
the signed-OT instantiations of Asharov and Orlandi [AO12, Protocols 1 and 2], we get a total

52

communication cost of

τ(7νn+ 11) + 2λκνn (Step 4)
+ `(2κ|GC |+ τ) (Step 5)
+ 2nλ(κ+ τ) (Step 6)
+ τ(3 + 2λ+ 11(λ− 1)) + λκ(2(n+ νn)(λ− 1) + 2n(λ− 1) + n). (Step 7)

As an example, consider the secure computation of AES(m, k), where P1 inputs message m ∈
{0, 1}128 and P2 inputs key k ∈ {0, 1}128, and suppose we set both the GC replication factor λ and
the XOR-tree replication factor ν to 3, giving a cheating probability of ε = 1/2. Letting κ = 128
and τ = 256, we have a total communication cost of 9.3 Mb (where we assume that the AES circuit
has 9,100 non-XOR gates [KsS12]).

Our modifications. We make the following modifications to the AO protocol:

• In Step 6, instead of using a commitment scheme we can use a hash function. This saves
on communication in Step 7 as P1 no longer needs to send the openings {oiwp,b} to the
commitments in the signed-OT, and is secure when treating H as a random oracle since
the labels are generated uniformly at random and thus it is infeasible for P2 to guess the
committed values. The total savings are 2n(λ− 1)κλ bits; in our example, this saves us 196
Kb.

• In Step 3, we use a random seed to generate the input-wire labels. Namely, for all j ∈ [λ] we
compute sj ∈R {0, 1}κ, and compute the input-wire labels for circuit j as Xj

w1,0‖X
j
w1,1‖ · · ·

‖Xj
wn+νn,0‖X

j
wn+νn,1 := G(sj), where G is a pseudorandom generator. Now, in the 1-out-of-

λ signed-OT in Step 7 we can just send the seeds to the input-wire labels rather than the
input-wire labels themselves. The total savings are 2(n+ νn)(λ− 1)λκ− n(λ− 1)λκ bits; in
our example, this saves us 688 Kb.

• In Step 5, P1 generates each Ĉj from a seed sj
Ĉ

. (This idea was first put forward by Goyal
et al. [GMS08].) That is, sj

Ĉ
specifies the randomness used to construct all wire labels except

for the input-wire labels which were set in Step 3. Instead of P1 sending each GC to P2
in Step 5, P1 instead sends a commitment cj

Ĉ
:= H(Ĉj). Now, in Step 7, P1 can send the

appropriate seeds {sj
Ĉ
}j∈[λ]\{j} in the jth input of the 1-out-of-λ signed-OT to allow P2 to

check the correctness of the check GCs. We then add an additional step where, if the checks
pass, P1 sends Ĉγ (along with a signature on Ĉγ) to P2, who can check whether H(Ĉγ) = cγ

Ĉ
.

Note that this does not violate the security conditions required by the PVC model because
P2 catches any cheating of P1 before the evaluation circuit is sent. If P1 tries to cheat here,
P2 already has a commitment to the circuit so can detect any cheating. The total savings are
(λ− 1)2κ|GC | − λτ − λκ(λ− 1) bits; in our example, this saves us 4.6 Mb.

Our PVC protocol and its cost. Below we present our optimized protocol. For simplicity, we
sign each message in Steps 5 and 6 separately; however, we note that we can group all the messages
in a given step into a single signature.

53

Private inputs: P1 has input x1 ∈ {0, 1}n; P2 has input x2 ∈ {0, 1}n.
Common inputs: Security parameter κ; XOR-tree replication factor ν; garbled circuit replication
factor λ; circuit C(·, ·); hash function H : {0, 1}∗ → {0, 1}κ; pseudorandom generator G : {0, 1}κ →
{0, 1}2(n+νn)κ; ideal functionalities FΠ

signedOT and
(
λ
1
)
-FΠ

signedOT for EU-CMPRA signature scheme Π.

1. P1 and P2 define a new circuit C ′(x1, x
1
2, . . . , x

ν
2) = C(x1,

⊕
i∈[ν] x

i
2). Let w1, . . . , wn denote the

input wires of x1 and let wn+(i−1)ν , . . . , wn+iν denote the input wires of xi2.

2. For i ∈ [ν − 1], P2 chooses xi2 ∈R {0, 1}
n and sets xν2 := (

⊕
i∈[ν−1] x

i
2)⊕ x2.

3. For j ∈ [λ], P1 chooses sj ∈R {0, 1}κ and computes Xj
w1,0‖X

j
w1,1‖ · · · ‖X

j
wn+νn,0‖X

j
wn+νn,1 :=

G(sj).

4. P1 and P2 run FΠ
signedOT, where in the ith execution P1 acts as the sender with input (X1

wn+i,0‖ · · ·
‖Xλ

wn+i,0, X
1
wn+i,1‖ · · · ‖X

λ
wn+i,1) and P2 acts as the receiver with input xdi/ne2 [i mod ν]. If Pi’s

output is abort, it outputs abort.

5. For j ∈ [λ], P1 computes sj
Ĉ
∈R {0, 1}κ and uses sj

Ĉ
as the randomness used to generate garbled

circuit Ĉj , where for i ∈ [n+ νn] the labels for input wire wi are Xj
wi,0 and Xj

wi,1. P1 computes
cj
Ĉ

:= H(GCj) and sends (cj
Ĉ
, Sign(cj

Ĉ
)) to P2, who checks that the signature is valid; if not, P2

outputs abort.

6. For i ∈ [n] and j ∈ [λ], P1 computes cjwi,0 := H(Xj
wi,0) and cjwi,1 := H(Xj

wi,1), and sends
(cwi,b, Sign(cwi,b)), (cwi,b̄, Sign(cwi,b̄)) to P2, where b ∈R {0, 1}. P2 checks that the signatures are
valid; if not, P2 outputs abort.

7. P1 and P2 run
(
λ
1
)
-FΠ

signedOT with P1 as the sender and P2 as the receiver. P2 uses γ ∈R [λ] as
its input and P1 uses ({si, si

Ĉ
}i∈[λ]\{j}, {Xj

wi,x1[i]}i∈[n]) as its jth input. If Pi’s output is abort, it
outputs abort.

8. P2 does the following:

• For j ∈ [λ]\{γ}, i ∈ [n], and b ∈ {0, 1}, P2 checks that H(Xj
wi,b

) = cjwi,b. If not, P2 sets
key := InvalidDecommitment and moves to Step 12.

• For j ∈ [λ]\{γ}, P2 uses sj and sj
Ĉ

received from
(
λ
1
)
-FΠ

signedOT to check that Ĉj is a
correctly garbled circuit and that H(Ĉj) = cj

Ĉ
. If not, P2 sets key := InvalidCircuit and

moves to Step 12.
• For j ∈ [λ]\{γ}, P2 checks that the labels received in FΠ

signedOT match the labels generated
by sj received in Step 7. If not, P2 sets key := SelectiveOTAttack and moves to Step 12.

9. Let ((γ,mγ), σ) be P2’s output of
(
λ
1
)
-FΠ

signedOT. P2 sends (γ, σ) to P1, who checks that the
signature is valid and otherwise outputs abort.

10. P1 sends (Ĉγ , Sign(Ĉγ)) to P2, who checks that the signature is valid; if not, P2 outputs abort.

11. P2 checks that H(Ĉγ) = cγ
Ĉ

. If not, P2 sets key := InvalidCircuitHash and moves to Step 12.

12. If any of the above checks fail, P2 computes Cert := Blame(id1, key,View2), publishes Cert, and
outputs corrupted1. Otherwise, P2 uses the labels to compute C ′(x1, x

1
2, . . . , x

ν
2) and outputs the

result.

The Blame and Judgment algorithms described below are straightforward. Blame outputs the
relevant parts of the view, including the cheater’s signatures:

54

Input: Cheating identity id, error key key, and view View.
Output: A certificate of cheating Cert = (id, key,msg).

• If key = InvalidDecommitment, set msg := (c, o,X, σ, σ′), where (c, o) is the invalid commitment-
decommitment pair of label X (i.e., X 6= Open(c, o)), σ is the signature of c obtained in Step 6,
and σ′ is the signature obtained in the signed-OT in Step 7. Output (id, key,msg).

• If key = InvalidCircuit, set msg := (Ĉ, {X}, σ1, σ2), where Ĉ is the invalid garbled circuit received
in Step 5, {X} are the labels received in Step 7, σ1 is the signature of the invalid garbled circuit
received in Step 5, and σ2 is the signature of the labels received in Step 7. Output (id, key,msg).

• If key := SelectiveOTAttack, set msg = (m, {X}, σ1, {σ}), where m is the bitstring received in
the signed-OT in Step 4 and σ1 is the associated signature, and {X} and {σ} are the labels and
associated signatures sent in Step 7. Output (id, key,msg).

• If key = InvalidCircuitHash, set msg := (cγ
Ĉ
, Ĉγ , σ, σ

′), where (cγ
Ĉ
, σ) is the commitment to Ĉγ

and associated signature sent in Step 5, and (Ĉγ , σ′) is the circuit and signature sent in Step 10.
Output (id, key,msg).

• Otherwise, output ⊥.

Judgment checks that the signatures output by Blame are valid:

Input: A certificate of cheating Cert = (id, key,msg).
Output: The cheating identity id, or ⊥.

• If key = InvalidDecommitment, parse msg as (c, o,X, σ, σ′), and check that X 6= Open(c, o), σ is
a valid and appropriate signature of c signed by id, and σ′ is a valid and appropriate signature
containing o and signed by id. If so, output id; otherwise output ⊥.

• If key = InvalidCircuit, parse msg as (Ĉ, {X}, σ1, σ2), and check that Ĉ is indeed an invalid garbled
circuit using input-wire labels {X}, and σ1, σ2 are valid and appropriate signatures signed by id.
If so, output id; otherwise output ⊥.

• If key = SelectiveOTAttack, parse msg as (m, {X}, σ1, {σ}), check that the signatures are valid,
and check that there is indeed a mismatch between the labels in m and {X}. If so, output id;
otherwise output ⊥.

• If key = InvalidCircuitHash, parse msg as (c, Ĉ, σ, σ′), check that the signatures are valid, and
check that H(Ĉ) 6= c. If so, output id; otherwise output ⊥.

• Otherwise, output ⊥.

Theorem 4.4. Let λ ∈ poly(κ) and ν ∈ poly(κ) be parameters to the protocol, and set ε :=
(1−1/λ)(1−2−ν+1). Let f be a polynomial sized function, let H be a random oracle, let FΠ

signedOT
and

(λ
1
)
-FΠ

signedOT be the
(2
1
)
-signed-OT and

(λ
1
)
-signed-OT ideal functionalities, respectively, where

Π is an EU-CMPRA signature scheme. Then the protocol above securely computes f in the presence
of (1) an ε-PVC adversary corrupting P1 and (2) a malicious adversary corrupting P2.

Proof. The proof closely follows that of Aumann and Lindell [AL10, §6.2]. Let S
Ĉ

(1κ, y,Φ(C)) be a
garbled circuit simulator, which takes as input the security parameter 1κ, an output bitstring y, and
circuit leakage Φ(C), and outputs a garbled circuit Ĉ which is indistinguishable from a correctly
garbled circuit with output y [BHR12b]. We use S

Ĉ
in the proof for a corrupted P2 below.

55

Clearly, the protocol is non-halting by inspection: an honest party only outputs corrupted if
it detects deviation from the protocol by the other party; this only happens if the other party is
malicious.

The rest of the proof involves four steps. We first demonstrate a simulator for a corrupted P2
and prove that this simulator produces a transcript indistinguishable from an adversary running
the real protocol. We then proceed to show a simulator for a corrupted P1. We then prove the
accountability and defamation-free properties required by the PVC security model.

P2 is corrupted. Let A be a ppt malicious adversary corrupting P2. We construct a simulator S
as follows:

1. S acts like P1 up through Step 3.

2. In Step 4, S receives A’s inputs to FΠ
signedOT and proceeds as follows:

(a) If A’s input is abort, then S sends abort to the trusted party and simulates P1 aborting,
outputting whatever A outputs.

(b) If the input is a bit b, then S sends A the appropriate labels generated in Step 3.

3. S constructs x2 based on A’s inputs to FΠ
signedOT extracted above and sends x2 to the trusted

party, receiving back output y2.

4. S chooses ρ ∈R [λ]. For j ∈ [λ]\{ρ}, S acts like P1 in Step 5. For j = ρ, S computes
Ĉρ ← SĈ(1κ, y2, φ(C)). It then computes c := H(Ĉρ) and sends (c,SignP1(c)) to A.

5. S acts as P1 in Step 6.

6. In Step 7, S receives A’s input to
(λ

1
)
-FΠ

signedOT and proceeds as follows:

• If A’s input is abort, then S sends abort to the trusted party and simulates P1 aborting,
outputting whatever A outputs.
• If the input is a choice bit γ, S does the following. If γ 6= ρ, S rewinds to Step 4 above,

unless S has rewound κλ times, it which case it outputs fail and halts. Otherwise,
S inputs ({si, sj

Ĉ
}
i∈[λ]\{ρ}

, {Xj
wi,r[i]}i∈[n]

) as the jth input to
(λ

1
)
-FΠ

signedOT, and then
proceeds as an honest P1 would.

7. S acts like P1 for the rest of the protocol, outputting whatever A outputs.

The proof that S correctly simulates a malicious P2 follows closely to the proof by Aumann and
Lindell [AL10] and thus we do not repeat it here.

P1 is corrupted. Let A be a ppt covert adversary corrupting P1. We construct a simulator S as
follows:

1. S acts as P2 up through Step 3.

2. In Step 4, S receives A’s inputs to FΠ
signedOT and proceeds as follows:

(a) If A inputs abort in any iteration, S sends abort to the trusted party and simulates P2
aborting, outputting whatever A outputs.

56

(b) Otherwise, S parses the inputs as mn tuples where the i tuple is

(X1
wn+i,0‖ · · · ‖X

λ
wn+i,0, X

1
wn+i,1‖ · · · ‖X

λ
wn+i,1).

3. S acts as P2 through Step 6.

4. In Step 7, S receives A’s input to
(λ

1
)
-FΠ

signedOT and proceeds as follows:

(a) If A inputs abort, S sends abort to the trusted party and simulates P2 aborting, out-
putting whatever A outputs.

(b) Otherwise, S parses the input as λ tuples, where the jth tuple is constructed as(
{si, sj

Ĉ
}
i∈[λ]\{j}

, {Xj
wi,x1[i]}i∈[n]

)
.

5. For γ ∈ [λ], S sends γ to
(λ

1
)
-FΠ

signedOT, receiving back(
(γ, {si, sγ

Ĉ
}
i∈[λ]\{γ}

, {Xγ
wi,x1[i]}i∈[n]

), σ
)
.

If σ is not a valid signature, S aborts as an honest P2 would, outputting whatever A outputs.
Otherwise, S rewinds to before it sent γ to

(λ
1
)
-FΠ

signedOT.
At this stage, S has (possibly invalid) openings of all circuits as well as (possibly invalid)
labels associated with A’s input. There exist four cases to consider. We follow similar
terminology to that of Aumann and Lindell [AL10, §6.2]. We call a legitimate circuit one that
can be correctly opened; an illegitimate circuit is one that cannot be correctly opened. An
inconsistent label is one that differs from the label committed to by P1. An inconsistent wire
is a wire such that for some garbled circuit either the 0-label or the 1-label is inconsistent.
Finally, a totally inconsistent input is one where all of the wires associated with the share of
that input are inconsistent.

(a) There exists an illegitimate circuit. Let Ĉj0 be the first such circuit. S sends cheat1 to
the trusted party. There are two cases to consider.

i. S receives corrupted1 from the trusted party. Then it chooses γ 6= j0 uniformly at
random, and inputs γ to

(λ
1
)
-FΠ

signedOT, receiving back the appropriate output. S
then simulates P2 aborting due to the detected cheating, outputting whatever A
outputs.

ii. S receives undetected and P2’s input x2 from the trusted party. With probability
p = 1

λ(1−ε) , S chooses γ = j0 and with probability 1− p it chooses γ 6= j0 uniformly
at random, inputting γ to

(λ
1
)
-FΠ

signedOT and receiving back the appropriate output.
S then emulates an honest P2 with input x2 for the rest of the protocol execution.
Let z be the resulting output. S sends z to the trusted party and outputs whatever
A outputs.

(b) There exists a totally inconsistent input. Assume without loss of generality that the ith
input bit x2[i] is totally inconsistent and that all the inconsistent labels are 0-labels. S
sends cheat1 to the trusted party. There are two cases to consider.

57

i. S receives corrupted1 from the trusted party. S chooses bits for the wires wn+(i−1)ν+1,
. . . , wn+iν−1 uniformly at random subject to all wires not being one. Let wire wk be
the first zero wire and let Ĉj0 be the first garbled circuit with inconsistent labels for
wk. S chooses γ 6= j0 uniformly at random and inputs γ to

(λ
1
)
-FΠ

signedOT, receiving
back the appropriate output. S then emulates an honest P2 aborting and outputs
whatever A outputs.

ii. S receives undetected and P2’s input x2 from the trusted party. S sets the shares of
the ith input and the OT choice γ as follows:
• With probability p = 2−m+1/(1− ε), S sets the wires wn+(i−1)ν+1, . . . , wn+iν−1

to one and sets wn+iν := x2[i]⊕
⊕
t∈[m−1]wn+(i−1)ν+t. S sets γ ∈R {0, 1}λ.

• With probability 1−p, S sets the wires wn+(i−1)ν+1, . . . , wn+iν−1 to a uniformly
random value subject to all wires not being one, and sets wn+iν := x2[i] ⊕⊕
t∈[m−1]wn+(i−1)ν+t. Let wk be the first wire that is set to zero, and let j0 be

the first circuit such that the label of wk is inconsistent. S sets γ := j0.
S inputs γ to

(λ
1
)
-FΠ

signedOT, receiving back the appropriate output. S then continues
by emulating an honest P2 using the shares chosen above, and outputs whatever A
outputs.

(c) S reaches this case if all circuits are legitimate and there exist no totally inconsistent
inputs. However, there may still be inconsistent wires. S proceeds as follows. It chooses
a random value for each inconsistent wire and checks if the given value corresponds to
an inconsistent label. There are two cases to consider.

i. S chooses bits with inconsistent labels. Let wk be the first wire with an inconsistent
label, and let Ĉj0 be the first circuit with said inconsistent label. S sends cheat1 to
the trusted party. Again, we have two cases.
A. S receives corrupted1 from the trusted party. It chooses γ 6= j0 uniformly at

random and inputs γ to
(λ

1
)
-FΠ

signedOT, receiving back the appropriate output.
S then simulates P2 aborting, outputting whatever A outputs.

B. S receives undetected and x2 from the trusted party. S chooses bits for the
consistent wires at random subject to the shares equaling x2[i]. With probability
p = 1/λ

1−ε the simulator S sets γ := j0 and with probability 1 − p the simulator
S chooses γ 6= j0 uniformly at random. S inputs γ to

(λ
1
)
-FΠ

signedOT, receiving
back the appropriate output, and continues by emulating an honest P2 using
the shares chosen above, and outputs whatever A outputs.

ii. S chooses bits with consistent labels. Thus, the circuits and labels S receives from
A are equivalent to those sent by an honest P1, and thus S proceeds as follows.
S chooses γ ∈R [λ] and sends γ to

(λ
1
)
-FΠ

signedOT, receiving back the appropriate
output. If the signatures output by

(λ
1
)
-FΠ

signedOT are invalid, then S sends abort
to the trusted party and simulates P2 aborting, outputting whatever A outputs.
Otherwise, if there is any other inconsistency, S sends corrupted1 to the trusted
party and simulates P2 aborting, outputting whatever A outputs.

6. S acts as P2 in Steps 9 through 11.

7. S uses the circuit openings retrieved during the rewinding to open the circuit Ĉγ and extracts

58

A’s input x′1. S then sends x′1 to the trusted party, along with the continue message, and
outputs whatever A outputs.

The proof that S correctly simulates a covert P1 follows closely to the proof by Aumann and
Lindell [AL10], and thus we do not repeat it here.

Accountability. Let A be a ppt covert adversary corrupting party P1 and fix inputs x1, x2
such that Output(Execπ,A(z)(x1, x2; 1κ)) = corrupted1. The fact that Pr[Judgment(Cert) = id1] >
1−negl(κ) follows directly from the construction and the Blame and Judgment algorithms. Namely,
at any point that A is detected cheating, P2 has proof of such cheating by way of A’s signatures
on the messages it sent.

Defamation-free. Let A be a ppt adversary corrupting P2 (the case where A corrupts P1 is
similar). We show that Pr[Judgment(Cert) = id1 : Cert ← A] < negl(κ). This follows from the
security of the underlying EU-CMA signature scheme. Namely, if there exists an adversary that
succeeds with non-negligible probability, we can convert this directly into an adversary B which
breaks the signature scheme. We construct B as follows.

On input verification key vk, B proceeds by emulating A, playing the role of an honest P1 with
verification key vk and using the signing oracle to compute the required signatures. If A outputs
Cert such that Judgment(Cert) = id1, it must have constructed a signature on some message not
queried by P1. Thus, B outputs this message and the associated signature, succeeding with the
same probability as A.

The total communication cost of our optimized protocol is

Cost(signed-OT/signed-OT extension) (Step 4)
+ λκ+ τ (Step 5)
+ 2nλκ+ τ (Step 6)
+ τ(3 + 2λ+ 11(λ− 1)) + λ(2κ(λ− 1) + nκ) (Step 7)
+ log(λ) + τ (Step 9)
+ 2κ|GC |+ τ. (Step 10)

Using our AES circuit example, we find that the total communication cost is now 2.5 Mb, plus the
cost of signed-OT/signed-OT extension. In this particular example, signed-OT requires around 1
Mb and signed-OT extension requires around 1.4 Mb. However, as we show below, as the number of
OTs required grows, signed-OT extension quickly outperforms signed-OT, both in communication
and computation.

4.5 Evaluation

We now compare our signed-OT extension construction (including optimizations, and in particular,
the signature batching optimization) with the signed-OT protocol of Asharov and Orlandi [AO12],
along with a comparison of existing covert and malicious protocols and our PVC protocol using both
signed-OT and signed-OT extension. All comparisons are done through calculating the number
of bits transferred and estimated running times based on the relative cost of public key versus
symmetric operations. We use a very conservative (low-end) estimate on the public/symmetric

59

1,000 OTs 10,000 OTs

Security sOT sOT-ext Improvement sOT sOT-ext Improvement

Short (FFC) 7,179 2,539 2.8× 71,691 11,305 6.3×
Short (ECC) 1,602 1,398 1.1× 16,002 10,164 1.6×

Long (FFC) 21,538 7,694 2.8× 215,074 20,888 10.3×
Long (ECC) 2,563 2,288 1.1× 25,603 15,482 1.7×

Figure 4.6: Communication cost (in kbits) of transferring the input wire labels for P2 when using signed-OT
(sOT) versus signed-OT extension (sOT-ext) for 1,000 and 10,000 OTs.

speed ratio. We note that this ratio does vary greatly across platforms, being much higher on low
power mobile devices, which often employ a weak CPU but have hardware AES support. For such
platforms our numbers would be even better.7

Recall that τ is the field size (in bits), ν is the XOR-tree replication factor, λ is the GC
replication factor, n is the input length, and we assume that each signature is of length τ .

Communication cost. We first look at the communication cost of the two protocols. The signed-
OT protocol of Asharov and Orlandi [AO12] is based on the maliciously secure OT protocol of
Peikert et al. [PVW08], and inherits similar costs. Namely, the communication cost of executing `
OTs each of length n is (6`+ 11)τ if n ≤ τ , and (6`+ 11)τ + 2n` if n > τ . Signed-OT requires the
additional communication of a signature per OT, adding an additional τ` bits. In the underlying
secure computation protocol we have that n = λκ, where λ is the garbled circuit replication factor.
For simplicity, we set λ = 3 (which along with an XOR-tree replication factor of three equates to
a deterrence factor of ε = 1/2) and thus n = 3κ. Thus, the total communication cost of executing
t signed-OTs is τ (7t + 11) bits if 3κ ≤ τ and τ (7t + 11) + 6κt bits otherwise.

On the other hand, the cost of signed-OT extension for t OTs is

(6`+ 11)τ + 2`t (Step 1)
+ `t (Step 2)
+ µ` log `+ 4µ`κ (Step 3)
+ κ log `+ (n+ κ)t+ τ. (Step 4)

Asharov et al. [ALSZ15, §3.2] present concrete choices of µ and ` for various security parameters.
However, in our setting we need to increase ` by κ bits. Thus, let `′ be the particular choice of
` specified by Asharov et al.; we set ` = `′ + κ. Thus, for the short security parameter we set
` = 133 + 80 = 213 and µ = 3, and for the long security parameter we set ` = 190 + 128 = 318
and µ = 2. Thus, the total communication cost of executing t signed-OTs when using signed-OT
extension is (6`+ 12)τ + (3`+ n + κ)t + µ`log`+ 4µ`κ+ κlog` bits.

Figure 4.6 presents a comparison of the communication cost of both approaches when executing
1,000 and 10,000 OTs, for various keylength settings and underlying public key cryptosystems. We
see improvements from 1.1–10.3×, depending on the number of OTs, the underlying public key
cryptosystem, and the size of the security parameter. Note that for a smaller number of OTs (such
as 100), signed-OT is more efficient, which makes sense due to the overhead of OT extension and

7The code for computing the numbers in the subsequent figures can be found at https://gist.github.com/
amaloz/82367afc83ff4c41d6df.

60

https://gist.github.com/amaloz/82367afc83ff4c41d6df
https://gist.github.com/amaloz/82367afc83ff4c41d6df

1,000 OTs 10,000 OTs

Security sOT sOT-ext Improvement sOT sOT-ext Improvement

Short (FFC) 16.0 3.1 5.1× 160.0 3.8 42.4×
Short (ECC) 5.3 1.1 4.9× 53.3 1.7 30.9×

Long (FFC) 144.1 40.2 3.6× 1440.1 40.7 35.4×
Long (ECC) 14.4 4.1 3.5× 144.1 4.5 31.9×

Figure 4.7: Computation cost (in millions of “time units”) of transferring the input wire labels for P2
when using signed-OT (sOT) versus signed-OT extension (sOT-ext) for 1,000 and 10,000 OTs. We assume
symmetric-key operations take 1 “time unit”, FFC (resp., ECC) operations take 1000 (resp., 333) “time
units” for the short security parameter, and FFC (resp., ECC) operations take 9000 (resp., 900) “time units”
for the long security parameter [NSA].

the need to compute the base OTs. However, as the number of OTs grows, we see that signed-OT
extension is superior across the board.

Computational cost. We now look at the computational cost of the two protocols. Let ξ denote
the cost of a public key operation (we assume exponentiations and signing take the same amount
of time), and let ζ denote the cost of a symmetric key operation (where we let ζ denote the cost
of operating over κ bits; e.g., hashing a 2κ-bit value costs 2ζ). We assume all other operations are
“free”. This is obviously a very coarse analysis; however, it gives a general idea of the performance
characteristics of the two approaches.

The cost of executing ` OTs on n-bit messages is (14`+12)ξ if n ≤ τ and (14`+12)ξ+2`nκζ if n >
τ . Signed-OT requires an additional 2`ξ operations (for signing and verifying). We again set n = 3κ,
and thus the cost of executing t signed-OTs is (16t + 12)ξ if 3κ ≤ τ and (16t + 12)ξ+ 6tζ
otherwise.

The cost of our signed-OT extension protocol for t OTs (where we assume t > κ and we hash
the input prior to signing in Step 4) is

`

κ
tζ + (14`+ 12)ξ + 2` t

κ
ζ (Step 1)

+ 6`µ t
κ
ζ (Step 3)

+ 2 log `ζ + 2t`+ n+ κ

κ
ζ + 2ξ. (Step 4)

As above, we set ` = 213 and µ = 3 for the short security parameter, ` = 318 and µ = 2 for the
long security parameter, and n = 3κ. Thus, the cost of executing t signed-OTs is (14`+ 14)ξ+
((5 + 6µ) `κ+8)tζ + 2log`ζ.

Figure 4.7 presents a comparison of the computational cost of both approaches when executing
1,000 and 10,000 OTs, for various keylength settings and underlying public key cryptosystems. Here
we see that regardless of the number of OTs and public key cryptosystem used, signed-OT extension
is (often much) more efficient, and as the number of OTs increases so does this improvement. For as
few as 1,000 OTs we already see a 3.5–5.1× improvement, and for 10,000 OTs we see a 30.9–42.4×
improvement.

Comparing covert, PVC, and malicious protocols. We now compare the computation cost
of our optimized PVC protocol, using both signed-OT and signed-OT extension, with the covert

61

f # inputs # gates GMS
OurssOT-ext

OurssOT

OurssOT-ext
AMPR

OurssOT-ext

16384-bit Comp. 16,384 32,229 0.85–0.73 17.1–86.7 103.0–533.4
Hamming 16000 16,000 97,175 0.90–0.79 11.0–67.0 67.4–399.7
16×16 Matrix Mult. 8192 4,186,368 1.00–0.98 1.2–3.1 10.8–21.9
1024-bit Sum 1,024 2,977 0.71–0.61 6.7–10.2 41.0–61.5
1024-bit Mult. 1,024 6,371,746 1.00–0.99 1.0–1.2 9.7–10.5
1024-bit RSA 1,024 15,149,856,895 1.00–1.00 1.0–1.0 9.6–9.6

Figure 4.8: Ratio of computation cost of various secure computation protocols with our signed-OT extension
construction, using a deterrence factor of 1/2 for the covert and PVC protocols. GMS denotes the covert
protocol of Goyal et al. [GMS08], OurssOT denotes the optimized Asharov-Orlandi protocol run using signed-
OT, OurssOT-ext denotes the same protocol using signed-OT extension, and AMPR denotes the protocol of
Afshar et al. [AMPR14]. We let f denote the function being computed, # inputs denote the number of input
bits required as input by P2, and # gates denote the number of non-XOR gates in the resulting circuit. All
circuit information is taken from the PCF compiler [KMsB13, Table 5]. We report each ratio as a range; the
first number uses ξ = 125 as the cost of public-key operations and the second number uses ξ = 1250, where
we assume a symmetric-key operation costs ζ = 1.

protocol of Goyal et al. [GMS08] and the malicious protocol of Afshar et al. [AMPR14], which are
the most efficient protocols for their respective security models that we are aware of.

The cost of Goyal et al.’s protocol is λ10|GC |ζ+λ4(νn+n)ζ+λ(2νn+ 2n)ζ+ (λ−1)10|GC |ζ+
(λ − 1)4(νn + n)ζ + (4|GC | + n + νn)ζ + Cost(OT extension), where we use the malicious OT
extension of Asharov et al. [ALSZ15].8

The cost of Afshar et al.’s protocol [AMPR14] is Cost(ρ OTs) + Cost(OT extension) + ξ+ 4nξ+
ρ(6nξ + 9nζ + 8|GC |ζ) + ρ/2(8|GC |ζ) + ρ/2(5nζ + 2nξ + 2|GC |ζ) + nξ.

The cost of our optimized protocol is

2λ(νn+ n)ζ (Step 3)
+ Cost(λn signed-OTs on λκ-bit inputs) (Step 4)
+ 10λ|GC |ζ + 2(λζ + ξ) (Step 5)
+ 2λnζ + 2(2λnζ + ξ) (Step 6)
+ Cost(1-out-of-λ signed-OT on (2(λ− 1) + n)κ-bit inputs) (Step 7)
+ (λ− 1)(2n+ 10|GC |+ 2(νn+ n))ζ (Step 8)
+ 2|GC |ζ + 2ξ (Step 10)
+ 2|GC |ζ, (Step 12)

where we assume that all signed values are first hashed. Using the 1-out-of-λ signed-OT protocol
of Asharov and Orlandi [AO12, Protocol 2], we have a cost of 12(λ− 1)ξ+ 2ξ+ 4λξ+ 2((4λ+2)τ

κ ζ +
ξ) + 2(λ+ 1)(2(λ−1) +n)ζ+ 2ξ in Step 7. For the signed-OTs in Step 4 we use the costs computed
previously.

Figure 4.8 presents a comparison of the computation cost of our protocol using both signed-
OT (OurssOT) and signed-OT extension (OurssOT-ext), as well as comparisons to the Goyal et al.
protocol (GMS) and Afshar et al. protocol (AMPR). We fix κ = 128, λ = ν = 3 (giving a deterrence
factor of ε = 1/2), and assume the use of elliptic curve cryptography (and thus τ = 256). We expect
public key operations to take between 125–1250× more than symmetric key operations, depending

8While one can use the covert OT extension of Asharov et al. [ALSZ15], this decreases the deterrence factor and
thus the GC and/or XOR-tree replication factor must be increased to maintain a deterrence factor of ε = 1/2.

62

on implementation details, whether one uses AES-NI, etc. This range is a very conservative estimate
using the Crypto++ benchmark [Cry], experiments using OpenSSL, and estimated ratios of running
times between finite field and elliptic curve cryptography [NSA].

When comparing against GMS, we find that OurssOT-ext is slightly more expensive, due almost
entirely to the larger number of base OTs in the signed-OT extension. We note that in practice,
however, a deterrence factor of 1/2 may not be sufficient for a covert protocol but may indeed
be sufficient for a PVC protocol, due to the latter’s ability to “name-and-shame” the perpetrator.
When increasing the deterrence factor for the covert protocol to ε ≈ .9, the cost ratios favor
OurssOT-ext. For example, for 16×16 matrix multiplication, the ratio becomes 3.60–3.53× (versus
1.00–0.98×), depending on the cost of public key operations.

Comparing OurssOT-ext with OurssOT, we find that the former is 1.0–86.7× more efficient,
depending largely on the characteristics of the underlying circuit. For circuits with a large number
of inputs but a relatively small number of gates (e.g., 16384-bit Comp., Hamming 16000, and 1024-
bit Sum) this difference is greatest, which makes sense, as the cost of the OT operations dominates.
The circuits for which the ratio is around 1.0 (e.g., 1024-bit RSA) are those that have a huge
number of gates compared to the number of inputs, and thus the cost of processing the GC far
outweighs the cost of signed-OT/signed-OT extension.

Finally, comparing OurssOT-ext with AMPR, the former is 9.6–567.2× more efficient, again
depending in a large part on the characteristics of the circuit. For example, for the Hamming
16000 circuit, we get an improvement of 67.4–399.7×. These results demonstrate that for settings
where public shaming is enough of a deterrent from cheating, OurssOT-ext may present a better
security/efficiency trade-off than existing malicious protocols.

63

Chapter 5

The Input Validity Setting

Even with the significant progress in improving the performance of protocols in the malicious setting
over the last several years, most practical 2PC research still focuses on the semi-honest setting. We
argue that this is due to several reasons. For one, a slowdown of 40× to achieve security 2−40 is
still significant. Moreover, even a protocol that is secure in the malicious model offers no assurance
on its own that the adversarial party uses a “valid” input (for some definition of valid). Finally,
in the semi-honest setting parties can rely on (some) local computation which can greatly reduce
the size of the circuit that needs to be garbled. In contrast, in the malicious setting such local
computation cannot (in general) be relied upon because there is no guarantee that an adversary
correctly computes said computation. Below, we describe these latter two issues in more detail and
describe how they can be addressed (inefficiently) using existing protocols before describing our
solution.
Input validity. One inherent limitation of the malicious security model is that a malicious party
can choose an arbitrary value as its input. This potentially allows a malicious party to learn a
significant amount of information, or violate correctness (at least in an intuitive sense). As an
example of the former, consider a shortest-path computation where one party holds a weighted
graph, the other holds a source-destination pair, and both parties learn the length of the shortest
path. By manipulating edge weights, the first party can ensure that it learns the source-destination
pair of the other party. As an example of the latter, consider computing the average of several
temperature readings, where one party uses a temperature of 1000◦C.

One possible solution to this input-validity problem is to let the two parties verify that the other
party’s input is signed by some trusted party, or satisfies some other predicate. However, verifying
a signature can require more than one hundred billion non-free gates [KMsB13]. Recalling that
malicious security requires an additional O(ρ) multiplicative overhead due to cut-and-choose, this
approach appears impractical, especially if the underlying function to be computed is small.
Local computation. One popular technique to improve efficiency in the semi-honest model
is to utilize local computation. Namely, instead of each party submitting their input directly,
each party first performs some local computation on their input and submits the result of that
local computation as input to some secure computation. (An interactive approach, in which a
secure computation is run to generate intermediate values which are further processed by the
parties locally before further secure computation is done, can also be used.) Some works have
shown that for specific examples this approach improves the running time of (semi-honest) secure
computation by orders of magnitude, including private set intersection [HEK12] and edit-distance

64

estimation [WHZ+15]. One common characteristic shared by these works is that most of the
computation is done locally such that the part of the function requiring secure computation is
significantly, and in many cases asymptotically, smaller. However, in the malicious setting, local
computation is not beneficial at all, since there is no guarantee that the malicious party provides
the correct result of a local computation starting from some input. Thus, all computation must be
integrated into the secure-computation protocol itself.

Abstracting the problem. We observe that the two problems mentioned above relate to a
common problem where the two parties, holding inputs x and y, respectively, wish to compute a
function of the form

f(x, y) := “if f1(x) and f2(y) then g(x, y) else ⊥”,

where f1(·) and f2(·) are (public) predicates on each party’s input and g(·, ·) is the underlying
function the parties would like to compute. Note that this directly captures the input-validity
problem, in that the predicate functions could check validity however the parties choose to define
it. Likewise, for the local-computation problem we can have the predicates verify that the local
computation was done correctly—something which can often be more efficient than re-doing the
computation.

As f(·, ·) is a two-party function, we can compute it securely using any existing malicious 2PC
protocol. We refer to this as the “generic solution.” In this work we show how it is possible
to do much better by using cut-and-choose only on g(·, ·). For the predicate checks, we use the
zero-knowledge-using-garbled-circuits (ZKGC) approach of Jawurek et al. [JKO13] to evaluate f1(·)
and f2(·). This allows us to garble f1(·) and f2(·) only once, while garbling only g(·, ·) a total of ρ
times. Combining these protocols in a naive way, however, does not guarantee that a malicious party
uses consistent inputs between the predicate circuits (namely f1(·) and f2(·)) and the computation
circuit (namely g(·, ·)). In order to solve this consistency problem efficiently, we extend the protocol
of Afshar et al. [AMPR14], the best known cut-and-choose-based 2PC protocol we are aware of, to
support secure composition with the ZKGC approach. See details below.

To understand the performance gains of our protocol versus the generic solution, we present a
detailed cost analysis, comparing the computation and communication costs of our protocol with
that of Afshar et al. We obtain savings of up to ≈ 80× in communication and ≈ 56× in computation
for many realistic examples. We refer to Section 5.4 for more details.

Building Blocks

Because our protocol relies heavily on the existing works of Jawurek et al. [JKO13] and Afshar et
al. [AMPR14], we briefly recap how these constructions work.

Efficient zero-knowledge using garbled circuits [JKO13]. In a zero-knowledge proof-of-
knowledge (ZKPoK), two parties, a prover and a verifier, have some common predicate f(·), and
the prover would like to demonstrate to the verifier that it knows some witness w such that f(w) = 1,
without revealing w to the verifier. Such a protocol is a particular case of 2PC, so any generic secure-
computation protocol, with malicious security, could be used. Jawurek et al. [JKO13] showed,
however, that one can do much better, and devised a ZKPoK protocol with essentially the same
cost as a semi-honest garbled-circuit protocol for the predicate f .

The basic idea is as follows. The verifier sends a garbling of f(·) to the prover, who evaluates
it using the input-wire labels it receives through OT, learning an output-wire label Z. The prover

65

commits to this value, and then asks the verifier to open the garbled circuit so the prover can
verify that the garbled circuit sent by the verifier indeed corresponds to the correct predicate f(·).
If this is the case, the prover decommits to reveal Z to the verifier; if Z is the output-wire label
corresponding to ‘1’ then the verifier learns that the prover supplied a valid witness. Security of
the OT implies that the prover’s input w is hidden from the verifier; security of the garbled circuit
implies that the prover cannot learn the correct output-wire label Z if its witness does not satisfy
the predicate.

Efficient malicious two-party computation [AMPR14]. Afshar et al. [AMPR14] propose
an optimized variant of Lindell’s “fast cut-and-choose with cheating punishment” protocol [Lin13],
which garbles ρ circuits for 2−ρ statistical security (cf. Chapter 2).1 Recall that the basic idea
with Lindell’s protocol is that if any of the evaluation circuits lead to inconsistent outputs, these
inconsistencies can be used to recover the circuit generator’s input x, allowing the evaluator to
locally compute f(x, y). Lindell’s protocol requires running an additional secure computation pro-
tocol for the “cheating punishment” phase; Afshar et al. show how to remove this (computationally
expensive) step. Their idea is as follows.

The circuit generator P1 begins by committing to its input bits using a specific ElGamal
commitment scheme. Namely, for all i ∈ [n1], where n1 is P1’s input length, P1 computes
EGCommith(x[i]; r) = (gr, hrgx[i]), where h = gw for some secret value w known to P1, and sends
these commitments to P2. Note that if the evaluator P2 learns w it can break the commitments
and thus learn x. Party P1 then constructs garbled circuits such that if P2 learns both output-wire
labels in an evaluation circuit, then it learns w. Thus, if P1 tries to cheat, P2 can recover w and thus
learn P1’s input, allowing P2 to compute f(x, y) locally. Party P1’s input consistency is enforced by
having P1 prove that the input-wire labels it provides for the evaluation circuits are commitments
to the bits P1 initially committed to.

Our Contribution

In this work, we combine the works of Jawurek et al. [JKO13] and Afshar et al. [AMPR14] to handle
functions with predicate checks on each party’s input. The parties first prove (in zero-knowledge)
that their inputs satisfy the requisite predicate, and if so, the parties compute the underlying
function. The main technical difficulty is devising a mechanism for tying together the inputs of
the predicate checks with the inputs to the underlying computation function. Namely, we need to
enforce that, for example, the input P1 supplies to f1(·) is the same input used when computing
g(·, ·). We describe how we do this for each party in turn.

Enforcing consistency on P1’s input. Recall that in the protocol of Afshar et al., P1 commits
(using a specific ElGamal commitment scheme) to each individual input bit of its input x at the
beginning of the protocol, and then proves in zero-knowledge that the input-wire labels it provides
to the evaluation circuits are commitments to those same input bits. Thus, in order to support
input consistency across f1(·) and g(·, ·) we need to somehow enforce that P1’s inputs to f1(·)
are the same as those it committed to initially. However, f1 is garbled by P2, and thus it is not
immediate how to enforce this without allowing P1 to equivocate on its input. We solve this by
using a specific ElGamal-based OT protocol which works with the ElGamal commitment scheme
used by P1. Namely, the ElGamal commitments to x[i] sent by P1 are used to construct P2’s OT

1While Afshar et al. also show how their protocol can be used to provide non-interactive secure computation, we
do not utilize this property in our setting.

66

messages encoding the input-wire labels to the garbling of f1(·); P1 can only recover those wire
labels associated with the bit values it committed to.

In more detail, recall that P1 commits to its input bits using the commitment scheme (A,B) =
(gr, hrgb) := EGCommith(b; r). Letting s and t be random elements in Zp, note that if b = 0
then the tuple (g, gr, gsht, AsBt) is a Diffie-Hellman tuple. Likewise, if b = 1 then the tuple
(g, gr, gsht, As(B/g)t) is a Diffie-Hellman tuple. Thus, letting (Ai, Bi) be the ElGamal commitment
of input bit x[i], P2 can encode the ith input-wire labels Xi,0, Xi,1 to the garbling of f1(·) as

(Âi,0, B̂i,0)← (gsi,0hti,0 , (Ai)si,0(Bi)ti,0 ·Xi,0)
(Âi,1, B̂i,1)← (gsi,1hti,1 , (Ai)si,1(Bi/g)ti,1 ·Xi,1),

for random si,0, ti,0, si,1, ti,1, and send Âi,0, B̂i,0, Âi,1, B̂i,1 to P1, who can only recover one of the
two wire labels based on which value x[i] it committed to.

Note that this OT protocol is not maliciously secure in the sense that a simulator cannot extract
P2’s inputs. This is okay in our setting, as the garbling of f1(·) is fully opened later in the protocol,
and thus we can recover the wire labels in that step.

Another issue is that when proving security for a malicious P1, the simulator needs to be able
to extract P1’s input x. In the protocol of Afshar et al., this extraction happens when P1 sends
the garbled circuits to P2: the simulator can learn w and thus break the commitments sent by
P1. However, in our protocol we need to extract x earlier, and in particular, in the phase where
we check whether f1(x) = 1. We do this by having P1 prove in zero-knowledge that it knows the
exponent of h used in the commitments. When simulating, we can extract this exponent and break
the commitments, learning P1’s input.
Enforcing consistency on P2’s input. In this step we need to enforce that P2’s input y is
consistent between f2(·) and g(·, ·). Note that P1 garbles both of these functions: f2(·) is garbled
once and g(·, ·) is garbled ρ times, with around half being used as evaluation circuits and the other
half being checked. Thus, we can use OT to enforce consistency by having P1 input as the sender
P2’s input-wire labels for f2 and the input-wire labels for the ρ garblings of g. However, we have
the added challenge that P1 needs to open various pairs of messages to (1) check that f2 is correctly
garbled and (2) check that the check circuits of g are correctly garbled.

We handle these two issues as follows. All the input-wire labels for each circuit are generated
from some seed: for the f2 garbling we use seed0 and for the jth garbling of g we use seedj . Now,
when opening f2 party P1 can send seed0 to P2, who can check correctness, and likewise for the
jth garbling of g. However, this approach as described has a selective-failure attack in that P1 can
use, for example, an invalid 0-bit input-wire label as input to the OT for the ith input. If P2’s ith
input is zero it aborts (since the input-wire label it receives is invalid) and otherwise it succeeds,
allowing P1 to learn the ith bit of P2’s input. This can be fixed by applying the XOR-tree approach
of Lindell and Pinkas [LP07] (cf. Chapter 2).

5.1 Preliminaries

Besides the notation introduced in Chapter 2, we let n1 denote the length of P1’s input, n2 the
length of P2’s input, and n3 the output length.
Two-party functionality for enforcing predicate checks. We consider a reactive two-party
functionality F2pc of a certain form, where each party’s input must satisfy some predicate function

67

Functionality F2pc

Private inputs: P1 has input x ∈ {0, 1}n1 and P2 has input y ∈ {0, 1}n2 .
Common input: Circuit C0 : {0, 1}n1 × {0, 1}n2 → {0, 1}n3 , where

C0(x, y) := if f1(x) and f2(y) then g(x, y) else ⊥.

1. Upon receiving either (input, x) or (input,⊥) from P1, proceed as follows:

• If x was received and f1(x) = 1, then send (received, ok) to P2 and continue.
• If either ⊥ was received or f1(x) = 0, send (received,⊥) to P2 and halt.

2. Upon receiving either (input, y) or (input,⊥) from P2, proceed as follows:

• If y was received and f2(y) = 1, then send (received, ok) to P1 and continue.
• If ⊥ was received or f2(y) = 0, send (received,⊥) to P1 and halt.

3. Upon receiving either (abort) or (continue) from P1, proceed as follows:

• If abort was received, send (output,⊥) to P2 and halt.
• If continue was received, send (output, g(x, y)) to P2 and halt.

Figure 5.1: Functionality F2pc for two-party secure computation with predicate checks.

Fot On receiver input (choose, i, b) and sender input (transfer, i, {m0
j}, {m1

j}), send (transferred, i, {mb
j})

to the receiver.

Fzkpok On prover input (prove, h, w), if h := gw then send (verified, h) to the verifier, and otherwise
send (verified,⊥).

Figure 5.2: Ideal functionalities for oblivious transfer (Fot) and zero-knowledge proof-of-knowledge
(Fzkpok).

before some underlying function (computed on both parties’ inputs) is run. In case a party’s input
does not satisfy the necessary predicate, the functionality outputs ⊥ to the other party.

The functionality begins by taking either an input x or ⊥ from P1; if the functionality receives
x such that f1(x) = 1 then it sends an ok message to P2 and waits for either an input y or ⊥ from
P2, and otherwise it halts. Likewise, if the functionality receives y such that f2(y) = 1 from P2
then it sends an ok message to P1 and otherwise it halts. If both parties send valid inputs to the
functionality, then it waits for a continue message from P1, at which point it outputs g(x, y) to P2
and halts. See Figure 5.1 for the formal description.
F2pc is slightly weaker than the non-reactive functionality F ′2pc that accepts inputs x and y from

the two parties, and then returns ⊥ to both parties if either f1(x) = 0 or f2(y) = 0, and g(x, y)
otherwise. In particular, F2pc allows P2 to learn whether f1(x) = 1 even if f2(y) = 0—something
that is not possible when interacting with the non-reactive functionality F ′2pc just described. In
most practical scenarios, however, we expect that an honest P1 would only ever use an input for
which f1(x) = 1, and so “leaking” that information to an attacker is insignificant.

Additional ideal functionalities. We make use of two additional (standard) ideal functionalities
for oblivious transfer and zero-knowledge proof-of-knowledge of (h,w) under the relation that h =
gw; see Figure 5.2.

68

5.2 Our Protocol

Our construction carefully combines Jawurek et al.’s ZK-using-garbled-circuits protocol [JKO13]
with the maliciously secure 2PC protocol of Afshar et al. [AMPR14], where the functions we are
interested in are of the form

f(x, y) = “if f1(x) = 1 and f2(y) = 1 then g(x, y) else ⊥”.

We begin by giving a brief intuition before presenting the full protocol description.
P1 begins by choosing some w ∈R Zp which will act as the trapdoor to P1’s input. P1 commits

to its input bits by computing EGCommith(x[i], ri), where h = gw, for some randomness ri, and P2
uses these commitments to form an OT protocol in order to transfer the wire labels associated with
P1’s input for the garbled circuit of f1. P1 can evaluate this garbled circuit, learning the output-
wire label Zf1

, which it commits to. Now, P2 can open the garbled circuit, allowing P1 to check
correctness before it decommits to the label it received, allowing P2 to learn whether f1(x) = 1.

The next step is to check that f2(y) = 1. P1 and P2 run OT, where P2 receives both the
appropriate input-wire label for the garbled circuit of f2 and the appropriate input-wire labels for
the ρ garbled circuits of g. The input-wire labels for the jth garbling of g are generated using some
seed seedj , and likewise the input-wire labels for f2 are generated using some seed seed0. Now, P2
evaluates the garbled circuit of f2, learning output-wire label Zf2

, which it commits to. P1 can now
open the garbled circuit by sending seed0, allowing P2 to check correctness before it decommits to
the label it received, allowing P1 to learn whether f2(y) = 1. Note that as written, this protocol is
subject to a selective-failure attack in that P1 can input invalid labels into the OT; however, this
is easily prevented using the XOR-tree approach.

Finally, the parties need to compute g(x, y). Note that the input-wire labels of both parties
at this point are fixed: P1 needs to use those input-wire labels corresponding to its commitments
at the beginning of the protocol, and P2 needs to use those input-wire labels corresponding to the
labels received in the OT protocol. We enforce that P1 uses the correct input-wire labels as follows.
The input-wire labels for P1’s inputs are derived by computing hashes of the output of EGCommit.
Namely, the ith input-wire label Xb

j,i for circuit j and bit b is set to H(EGCommith(b; rbj,i)) for some
randomness rbj,i, where H is a hash function. In addition, P1 sends a commitment to the output of
EGCommit, and provides decommitments for those values corresponding to its input x, and proves
equality between EGCommith(b; rbj,i) and P1’s originally committed inputs EGCommith(x[i], ri). It
does this as follows. Let (ubj,i, vbj,i) := EGCommith(b; rbj,i), and let (Ai, Bi) := EGCommith(x[i], ri).
P2 can check that (ubj,i, vbj,i) commits to the bit committed by P1 originally by having P1 send
ri − rbj,i and checking whether gri−r

b
j,i · ubj,i = Ai and hri−r

b
j,i · vbj,i = Bi.

The next challenge is to enforce that if P1 cheats by constructing an invalid garbling of g in
one or more of the ρ garbled circuit it produces, then P2 can recover w, learn P1’s input x, and
compute g(x, y) on its own. Here we follow the approach of Afshar et al. [AMPR14]. P1 garbles
g a total of ρ times, where the jth garbled circuit uses randomness based on some seed seedj . In
addition, P1 encrypts information for checking consistency of values using some key kj . Now, the
parties run OT a total of ρ times, where P2 learns either seedj or kj . If it learns seedj , then P2 can
check correctness of the circuit, aborting on any inconsistency. If it learns kj , then P2 can decrypt
the information sent by P1 and use this information to evaluate the garbled circuit and check that
evaluation “succeeded”. The point is that if two or more evaluation circuits “succeed”, then P2
either learns the appropriate output or there is some inconsistency in the output-wire labels. It can

69

then use this inconsistency and the information it decrypted to learn w, and thus decommit the
initial commitments made by P1 to its input x. Thus, on any inconsistency in output-wire labels,
P2 learns x and can thus compute g(x, y) itself.

In more detail, each garbling of g has the same set of output wires {Zbi }. P1 sends output
commitments for each output wire of g, where each output commitment is a secret sharing of
its trapdoor w. More concretely, for i ∈ [n3], P1 sends gw0

i , gw
1
i to P2, where w0

i + w1
i = w.

In addition, it also sends output recovery commitments gw
0
i+K0

j,i , gw
1
i+K1

j,i for each circuit j, their
decommitments w0

i +K0
j,i, w

1
i +K1

j,i, along with encryptions of Kb
j,i under Zbi . Now, for output-wire

label Zbi recovered by P1, it learns Kb
j,i by decrypting the encryption and can thus recover wbi .

Note that if it also learns Z1−b
i , it recovers w1−b

i and can thus recover w by computing wbi + w1−b
i ,

allowing it to learn P1’s input x.

Formal description. We now proceed to the formal description of the protocol.

Private inputs: P1 has input x ∈ {0, 1}n1 and P2 has input y ∈ {0, 1}n2 .
Auxiliary inputs: Computational security parameter κ; statistical security parameter ρ; group G
with (prime) order p and generator g; hash function H : {0, 1}∗ → {0, 1}κ; (extractable and equivo-
cal) commitment scheme (Com,Open); circuit C0 : {0, 1}n1 × {0, 1}n2 → {0, 1}n3 , where C0(x, y) :=
“if f1(x) and f2(y) then g(x, y) else ⊥”; ideal functionalities Fzkpok and Fot.

Protocol:
Check that f1(x) = 1:

1. If f1(x) = 0 then P1 sends ⊥ to P2, who aborts.

2. P1 chooses w ∈R Zp, computes h := gw, and sends h to P2. P1 then sends (prove, h, w) to Fzkpok,
which sends (verified, h) to P2.

3. P2 constructs garbled circuit Ĉf1 of function f1. Let {Xb
i }
b∈{0,1}
i∈[n1] denote the input-wire labels.

4. For i ∈ [n1]: P1 computes (Ai, Bi) := EGCommith(x[i]; ri) for random ri, and sends (Ai, Bi) to
P2. Denote these as P1’s input commitments.

5. For i ∈ [n1]: P2 computes

(Â0
i , B̂

0
i) := (gs

0
i ht

0
i , A

s0
i
i B

t0i
i ·X

0
i)

(Â1
i , B̂

1
i) := (gs

1
i ht

1
i , A

s1
i
i (Bi/g)t

1
i ·X1

i),

for random s0
i , t

0
i , s

1
i , t

1
i , and sends Â0

i , B̂0
i , Â1

i , and B̂1
i to P1.

6. For i ∈ [n1]: P1 computes Xx[i]
i := B̂

x[i]
i /(Âx[i]

i)ri .

7. P2 sends Ĉf1 to P1, who evaluates it using input-wire labels Xx[i]
i , learning output-wire label Zf1 .

P1 computes (cf1 , df1) ← Com(Zf1), where Com is an equivocal and extractable commitment
scheme, and sends cf1 to P2.

8. P2 sends {s0
i , t

0
i , s

1
i , t

1
i }i∈[n1] to P1, who recovers all the input-wire labels {Xb

i }, using the labels to
check that Ĉf1 was constructed correctly and aborting if not. Otherwise, P1 sends df1 to P2, who
computes Zf1 := Open(cf1 , df1). If Zf1 is the 1-bit output-wire label of Ĉf1 then P2 continues.
Otherwise, P2 outputs ⊥.

70

Check that f2(y) = 1:

9. If f2(y) = 0 then P2 sends ⊥ to P1, who aborts.

10. P1 constructs garbled circuit Ĉf2 of function f ′2(y1, . . . , yρn2) = f2(
⊕
yi) using seed seed0 as the

initial randomness. Let {Y bi }
b∈{0,1}
i∈[ρn2] denote the input-wire labels.

11. For j ∈ [ρ]: P1 chooses seed seedj ∈R {0, 1}κ and key kj ∈R {0, 1}κ.

12. For j ∈ [ρ], i ∈ [ρn2]: P1 chooses Y 0
j,i ∈R {0, 1}

κ and Y 1
j,i ∈R {0, 1}

κ using randomness derived
from seedj .

13. For i ∈ [ρn2] the parties run Fot: P2 inputs (choose, i, y[i]) and P1 inputs (transfer, i, (Y 0
i ,

{Y 0
j,i}j∈[ρ]), (Y 1

i , {Y 1
j,i}j∈[ρ])), with P2 receiving (transferred, i, (Y y[i]

i , {Y y[i]
j,i }j∈[ρ])).

14. P1 sends Ĉf2 to P2, who evaluates it using wire labels Y y[i]
i , learning output wire label Zf2

. P2
computes (cf2 , df2)← Com(Zf2

), where Com is an extractable commitment, and sends cf2 to P1.

15. P1 sends seed0 to P2, who uses seed0 to regenerate Ĉf2 and check it was constructed correctly;
if not, or if the input-wire labels generated from seed0 do not match those it received from Fot,
then P2 aborts. Otherwise, P2 sends df2 to P1, who computes Zf2

:= Open(cf2 , df2). If Zf2
is the

1-bit output-wire label of Ĉf2 then P1 continues. Otherwise, P1 outputs ⊥.

Evaluate g(x, y):

16. For i ∈ [n3]: P1 chooses w0
i ∈R Zp, sets w1

i := w − w0
i , computes output commitments h0

i := gw
0
i

and h1
i := gw

1
i , and sends h0

i and h1
i to P2. P2 checks that h0

i · h1
i = h, aborting if not.

17. For j ∈ [ρ]:

(a) The parties run Fot: P2 inputs (choose, j, b) for b ∈R {0, 1} and P1 inputs (transfer, j, kj ,
seedj), with P2 receiving (transferred, j, kj) or (transferred, j, seedj).

(b) For i ∈ [n1], b ∈ {0, 1}: P1 computes (ubj,i, vbj,i) := EGCommith(b; rbj,i), where rbj,i is derived
from seedj .

(c) P1 constructs garbling Ĉj of function g′(x, y1, . . . , yρn2) = g(x,
⊕
yj), where P1’s ith input-

wire labels are defined as (H(u0
j,i, v

0
j,i), H(u1

j,i, v
1
j,i)), P2’s ith input-wire labels are defined

as (Y 0
j,i, Y

1
j,i), and the randomness used to construct Ĉj is derived from seedj . Let {Zbi } be

the output-wire labels, which are the same across each circuit. P1 sends Ĉj to P2.
(d) For i ∈ [n1]: P1 computes (c0j,i, d0

j,i)← Com(u0
j,i, v

0
j,i), (c1j,i, d1

j,i)← Com(u1
j,i, v

1
j,i), and sends

{cπj,i, c
1−π
j,i : π ∈R {0, 1}} to P2.

(e) For i ∈ [n3]: P1 chooses K0
j,i,K

1
j,i ∈R Zp and sends output recovery commitments h0

i · gK
0
j,i

and h1
i · gK

1
j,i and encryptions EncZ0

i
(K0

j,i), EncZ1
i
(K1

j,i) to P2.
(f) Let

Inputsj := {cx[i]
j,i , d

x[i]
j,i }i∈[n1]

InputEqualityj := {ri − rx[i]
j,i }i∈[n1]

OutputDecomj := {(w0
i +K0

j,i, w
1
i +K1

j,i)}i∈[n3].

P1 sends Enckj (Inputsj , InputEqualityj ,OutputDecomj) to P2.

71

18. For all check circuits j (i.e., where P2 received seedj in Step 17a), proceed as follows:

(a) P2 checks that seedj generates Ĉj and the other values constructed using randomness derived
from seedj , and aborts if not.

19. Set cheat := 0. For all evaluation circuits j (i.e., where P2 received key kj in Step 17a), proceed
as follows:

(a) P2 decrypts Enckj (Inputsj , InputEqualityj ,OutputDecomj).

(b) For i ∈ [n1]: P2 computes (ũx[i]
j,i , ṽ

x[i]
j,i) := Open(cx[i]

j,i , d
x[i]
j,i) and checks that (gri−r

x[i]
j,i · ũx[i]

j,i ,

hri−r
x[i]
j,i · ṽx[i]

j,i) = (Ai, Bi); if not set cheat := 1.

(c) For i ∈ [n3], b ∈ {0, 1}: P1 checks that gw
b
i+K

b
j,i equals the output recovery commitments

sent by P1; if not set cheat := 1.

(d) P2 evaluates Ĉj using Y y[i]
j,i as its input-wire labels and learning output-wire labels {Zi}. P2

uses these labels to learn the appropriate Kb
j,i values, and uses these to check that hbj · gK

b
j,i

equals the appropriate output recovery commitment sent by P1; if not set cheat := 1. If this
succeeds, P2 marks the circuit as “semi-trusted”.

20. If cheat = 1 then abort. Otherwise, if all the semi-trusted circuits have the same output-wire
labels, P2 outputs that value. Otherwise, let Zj,i and Zj′,i be two differing output-wire labels
for garbled circuits j and j′ and output wire i. P2 can extract w0

i and w1
i by using the sets

OutputDecomj and OutputDecomj′ , and thus learn w, allowing P2 to decrypt P1’s initial commit-
ments to learn x. P2 then outputs g(x, y).

Theorem 5.1. The protocol above securely realizes F2pc in the (Fot,Fzkpok)-hybrid model.

Proof. We prove security by constructing simulators for the case that either P1 or P2 is corrupted.

Malicious P1. Suppose adversary A corrupts P1. We construct a simulator S as follows.

1. S invokes A on its input.

2. If A sends ⊥ in Step 1, S sends (input,⊥) to F2pc and outputs whatever A outputs.

3. In Step 2, S receives (prove, h, w) from A. If h 6= gw then S sends (input,⊥) to F2pc and
outputs whatever A outputs.

4. In Step 4, S uses w extracted above to extract x ∈ {0, 1}n1 ∪{⊥} from the commitments sent
by A, where x = ⊥ if any of the commitments are invalid.

5. S continues to act as an honest P2 would, where if P2 would abort then S sends ⊥ to F2pc.
In Step 8, S checks if either x = ⊥ or f1(x) = 0; if so, S sends (input,⊥) to F2pc and outputs
whatever A outputs. Otherwise, S sends (input, x) to F2pc.

6. S extracts A’s input to Fot, and uses these values to open the garbled circuit sent by A, thus
learning the one-bit output-wire label Z1. S sends Com(Z1) to A.

7. S receives seed0 from A and checks consistency with the values received in Fot and the garbled
circuit. If anything fails, S sends (abort) to F2pc and outputs whatever A outputs.

72

8. S continues to act as an honest P2 would. If cheat = 0 in Step 20 then S sends (continue) to
F2pc and outputs whatever A outputs. Otherwise, (i.e., cheat = 1), S sends (abort) to F2pc
and outputs whatever A outputs.

We now prove that the view of A is computationally indistinguishable in the hybrid and ideal
worlds. We do so by a series of hybrid experiments.

H1. Same as the hybrid-world execution.

H2. Same as H1, except that P2 extracts w from P1’s message to Fzkpok and uses w to extract
P1’s input x.

These two hybrids are indistinguishable by the use of Fzkpok and the security of the commit-
ment scheme.

H3. Same as H2, except that P2 aborts in Step 8 if f1(x) = 0.

These hybrids are computationally indistinguishable by the hiding property of the ElGamal-
based oblivious transfer and the security of the garbling scheme. Namely, in H2, A cannot
recover the appropriate input-wire label in Step 5 for those input bits which are incorrectly
committed and likewise can only recover one of the two input-wire labels for those input bits
which are correctly committed. Thus, by the authenticity property of the garbling scheme,
A is unable to recover the one-bit output-wire label Z1 with high probability. Thus, if A
can distinguish between H2, where P2 aborts due to A committing to an invalid output-wire
label, and H3, where P2 aborts regardless of what A commits to, then this leads to an attack
on the authenticity property of the garbling scheme.

H4. Same as H3, except that P2 aborts if the input-wire labels derived from seed0 do not match
those it received from A when simulating Fot.

These two hybrids are statistically indistinguishable by the use of the XOR-tree. Namely,
for A to distinguish between these two hybrids it must correctly guess P2’s input to Fot.
However, as this input is secret shared, A only succeeds with probability ≤ 2−ρ.

H5. Same as H4, except that P2 aborts if all the evaluated circuits are not correctly constructed.

These two hybrids are perfectly indistinguishable except that P2 may abort in H5 and not
H4. However, this only happens if A correctly guesses which circuits will end up as check
versus evaluation circuits, which happens with probability 2−ρ.

H6. Same as H5, except that P2 uses P1’s extracted input x to compute and output g(x, y)
instead of evaluating the garbled circuits.

These two hybrids are perfectly indistinguishable because if A tries to cheat in H6 then P2
can extract A’s input and just compute g(x, y) locally and otherwise P2 retrieves g(x, y) by
evaluating the garbled circuits.

As H6 is the same as the ideal world protocol, this completes the proof for a malicious P1.

Malicious P2. Suppose adversary A corrupts P2. We construct a simulator S as follows.

1. S invokes A on its input.

73

2. If S receives (input,⊥) from F2pc, then S sends ⊥ to A and outputs whatever A outputs.

3. S acts as an honest P1 would, using 0n1 as P1’s input, until Step 7, at which point S commits
to a random value.

4. S continues to act as an honest P1 would, where in Step 8 it opens the garbled circuit sent by
A and learns the one-bit output-wire label Z1. If S fails to open the garbled circuit, it sends
⊥ to F2pc and outputs whatever A outputs. Otherwise, it equivocates on its previously sent
commitment to make the committed value equal to Z1.

5. In Step 9, if A sends ⊥ then S sends ⊥ to F2pc and outputs whatever A outputs.

6. S extracts y from Fot and proceeds to act as an honest P1 would until Step 14. Here, if
f2(y) = 0 then S sends (input,⊥) to F2pc, outputting whatever A outputs.

7. S continues to act as an honest P1 would until Step 17a. Here, S extracts A’s choices as
to which circuits are check circuits and which are evaluation circuits. For check circuit j, S
replaces the key kj input to Fot with a random string.

8. In Step 17, S sends (input, ok) to F2pc, receiving (output, z), and proceeds as follows:

• For the check circuits, S constructs them as an honest P1 would.
• For the evaluation circuits, S uses fresh randomness to generate everything related to the

garbling and garbles a circuit with fixed output z. It also replaces Com(u1−y[i]
j,i , v

1−y[i]
j,i)

with commitments to zeros, and Enc
Z

1−z[i]
i

(K1−z[i]
j,i), with encryptions to zeros.

9. S outputs whatever A outputs.

We now prove that the view of A is computationally indistinguishable in the hybrid and ideal
worlds. We do so by a series of hybrid experiments.

H1. Same as the hybrid-world execution.

H2. Same as H1, except P1 equivocates on the commitment it sends to P2 in Step 7 to be the
output of Ĉf1 .

These two hybrids are computationally indistinguishable based on the security of the equivocal
commitment scheme.

H3. Same as H2, except that in Step 15 P1 aborts if f2(y) = 0.

These two hybrids are computationally indistinguishable based on the authenticity property
of the garbled circuit.

H4. Same as H3, except that P1 replaces the kj values for the check circuits with random values
and generates the evaluation circuits using fresh randomness.

These two hybrids are perfectly indistinguishable in the Fot-hybrid model.

H5. Same as H4, except that P1 uses 0n1 as its input to the check circuits.

These two hybrids are computationally indistinguishable by the security of the encryption
scheme.

74

H6. Same as H5, except that P1 replaces the commitments of (u1−y[i]
j,i, , v

1−y[i]
j,i) with commitments

to zeros in the evaluation circuits.

These two hybrids are computationally indistinguishable by the security of the commitment
scheme.

H7. Same as H6, except that P1 uses the output z of F2pc to construct fake garbled circuits with
fixed output z for all evaluation circuits.

These two hybrids are computationally indistinguishable by the security of the garbling
scheme.

H8. Same as H7, except that P1 replaces the output encryptions for all output bits that do not
correspond to z with encryptions of zero.

These two hybrids are computationally indistinguishable by the security of the encryption
scheme.

H9. Same as H8, except that P1 replaces its input with 0n1 in the evaluation circuits and input
commitments.

These two hybrids are computationally indistinguishable by the security of the ElGamal
commitment scheme.

H10. Same as H9, except that P1 replaces the input-wire labels for P2’s input that do not
correspond to y with random strings.

These two hybrids are computationally indistinguishable by the security of the garbling
scheme.

As H10 is the same as the ideal world protocol, this completes the proof for a malicious P2, and
thus the proof of the theorem.

5.3 Protocol Optimizations

We begin by noting a couple of immediate optimizations to our protocol. First off, assuming the
random oracle model, we can instantiate all the commitment operations with a hash function. We
also note that we can use privacy-free garbled circuits [FNO15] with the “half gate” optimiza-
tion [ZRE15] for the garbling of f1 and f2, taking only one ciphertext per non-free gate. Finally, we
can instantiate Fzkpok efficiently using Schnorr’s protocol [Sch90] and Fot using the OT protocol
of Chou and Orlandi [CO15] and malicious OT extension [ALSZ15].

As our protocol requires public key operations for both P1’s and P2’s inputs, we consider
optimizations to reduce the number of exponentiations required. First off, when P1 computes
values of the form gsht in EGCommit, only one exponentiation is needed since P1 knows w such
that h = gw and thus can directly compute gs+wt (= gsht). For P2, gsht can be computed more
efficiently using the “Euclidean method” described by de Rooij [de 95]. The high level idea is to
apply the following observation recursively:

gsht = (ghq)shp, q = b t
s
c, p = t mod s.

75

We also note that for both P1 and P2, most of the exponentiations are fixed-base exponentiations,
which can be computed much more efficiently using pre-computed tables [BGMW93].

We also note that our protocol as written only addresses the situation where all the input bits
are used both in the predicate check stage (i.e., the proofs that f1(x) = 1 and f2(y) = 1) and the
computation stage (i.e., the computation of g(x, y)), which may not always be the case. When only
parts of the input are used in the predicate check or computation stage, we do not need the heavy
machinery we use to ensure input consistency between each party’s input in the two stages.

To be more specific, we consider the input of each party as three parts:

1. Input used only in the predicate check stage (denote these inputs as x1, y1);

2. Inputs used in both the predicate check and computation stages (denote these inputs as
x2, y2);

3. Inputs used only in the computation stage (denote these inputs as x3, y3).

For the first case (i.e., inputs x1 and y1) we can use committed OT which allows us to use OT
extension for input x1 and avoid the XOR-tree for input y1. For the third case (i.e., inputs x3 and
y3), we can handle these as in the work of Afshar et al. [AMPR14]; see below for details.

Denote P1’s input by x = (x1‖x2‖x3), P2’s input by y = (y1‖y2‖y3), and the function to be
computed by:

f(x, y) = “if f1(x1, x2) and f2(y1, y2)then g(x2, x3, y2, y3) else ⊥”.

We can construct a protocol for dealing with this extended case as follows. It is the same as the
protocol described in Section 5.2 except with the following changes:

1. For input x1, we can skip the input commitment steps (Steps 4–6) and checking step (Step 8).
This allows us to use a committed OT which works with OT extension.

2. For input y1, we can skip the XOR-tree (Step 10). Instead, we can use committed OT as
above.

3. For inputs x2 and y2, these are handled as in our original protocol.

4. When computing g(·, ·), we use EGCommit to ensure the consistency of x3 among computation
circuits.

5. For input y3 we do not need the XOR-tree, and can instead use committed OT during the
computation stage.

For several real world examples, these extensions lead to important practical improvements; see
Section 5.4.

5.4 Evaluation

In this section, we compare our protocol with generic malicious two-party computation protocols
for several example functions to showcase the gains in communication and computation that our
approach gives. In particular, we compare our protocol with the protocol of Afshar et al. [AMPR14],

76

the most efficient and practical malicious 2PC construction that we are aware of. We refer to
this protocol as the “generic solution” in contrast to our solution which is specifically designed
for the type of functions we consider. We evaluate the improvement based on the speedup of both
computation and communication. We do so by calculating the number of symmetric key operations,
public key operations, and bytes sent by both our protocol and the generic solution. While obviously
a rough approximation of the actual running time of an implementation, we believe this gives a
good benchmark independent of implementation details, computer/network configuration, etc.

While we are aware of more efficient customized protocols for some of the examples discussed
below, these protocols are not as flexible as our approach. For example, it is usually very difficult,
and sometimes even impossible, to change or even just extend a customized protocol to support
secure pre- or post-computation, which in many real-world settings seems necessary. As an example,
consider the following use-case for private set intersection: a dating application would like to
securely compute the intersection of two peoples’ interests, and then give weights to the matched
items in order to compute some expected match percentage. This requires some post-processing on
the matched items, which existing customized protocols are unable to do as they reveal the items
upon completion of the private set intersection protocol.

We assume a computational security parameter of κ = 128 and a statistical security parameter
of ρ = 40. We utilize all known garbled circuit optimizations, including privacy-free garbled
circuits [FNO15] for computing the predicate checks, the “half-gates” optimization [ZRE15] for
reducing the size of the garbled circuit, elliptic curve cryptography for smaller public key sizes, etc.
If not specified otherwise, we use γ = 1250 as the ratio between the cost of a public key operation
and a symmetric key operation. (As our protocol makes heavy use of public key operations, a smaller
ratio leads directly to better results for our protocol.) This number is derived from estimates using
the Crypto++ benchmark [Cry] and OpenSSL, and while this is of course a rough estimate, we
believe it is reasonably accurate for current systems. Note that we do not separate the cost of,
e.g., fixed-base exponentiations and the exponentiate-and-multiply optimizations as discussed in
Section 5.3, which in a real implementation would further reduce this ratio.

In what follows we show different examples where input checking improves the performance
of realistic functions. To briefly summarize our findings, we find that in many applications our
improvement yields up to about 56× improvement in terms of computation and 80× improvement
in terms of communication. (The exact improvement in concrete running time will of course be a
combination of these two improvements depending on the computational power of the parties and
the network throughput.) Although we discuss signature checks and local computation separately,
they can be used together, which makes the predicate circuit larger and our results better.

5.4.1 Signature Checks on Inputs

One of the main applications of our improved protocol is to efficiently check that the input of each
party is correctly signed by some third party. The motivation here is that the malicious security
model allows an attacker to carefully choose some fake but consistent input that helps it learn extra
information from the other party, such as by supplying the full universe in a private set intersection
computation to learn the other party’s input. A solution to this problem using existing protocols is
to compute a functionality that first checks a pre-signed signature on the input and then computes
the original function if and only if the signature is valid. However, checking a signature within a
garbled circuit is extremely expensive, and often more expensive than the underlying computation
itself. Our protocol is particularly beneficial here, as it reduces the cost of the signature check by

77

106 107 108 109 1010 1011 1012

Size of the Predicate Circuit

0

10

20

30

40

50

60

70

80

S
p

ee
d

u
p

RSA 512 RSA 1024 RSA 2048

Computation,γ = 125

Computation, γ = 1250

Communication

Figure 5.3: Varying the predicate circuit size. We fix the input size of each party to 5000 bits and the
size of computation circuit g(·, ·) to ten million gates, and vary the size of the predicate circuit for party P1.
We use two ratios, γ = 125 and γ = 1250, for the public-key to symmetric-key cost. The curves represent the
communication and computation improvement of our protocol compared to the generic protocol by Afshar
et al., with the vertical lines denoting the sizes of the circuits for RSA 512, RSA 1024 and RSA 2048.

O(ρ) times with only a slight increase in public key operations required.
In the following, we evaluate our protocol using both “small” and “large” inputs. For computing

the signature verification, we follow the hash-and-sign paradigm and first hash the input to a 512-bit
digest which we verify, and use SHA-256 as the underlying hash function.

Signature checks for “small” inputs. Suppose both parties have 5000 bits of input and P1 also
has a signature on its input. The parties would like to compute a circuit with ten million (non-free)
gates if P1’s input is correctly signed.2

In Figure 5.3, we show the improvement of this setting for various sizes of the predicate circuit,
from 106 to 1012. Particularly, we highlight three special cases, where the size of the predicate
circuit corresponds to signature verification using either RSA 512, RSA 1024, or RSA 2048.3 We
obtained the sizes for these circuits using an existing circuit compiler work [KMsB13]. As we can
see in Figure 5.3, for RSA 512 we are able to achieve an improvement of about 40× for computation
and 50× for communication. For a large enough predicate circuit, such as when using RSA 2048,
we are able to achieve up to about 56× speedup in computation and up to about 80× speedup in
communication.

Note that these numbers agree with what we would expect asymptotically. Let |C| be the
size of the predicate circuit. The protocol by Afshar et al. [AMPR14] needs to perform 40 · 4 ·
|C| + 20 · 4 · |C| + 20 · 2 · |C| = 280|C| symmetric key operations (to garble and evaluate the

2We use a computation circuit with ten million gates to be able to cover many practical circuits. Using a
computation circuit with smaller size only benefits our comparison.

3We use an RSA-based signature scheme because this is the only signature scheme with known circuit sizes.

78

103 104 105 106 107 108 109 1010 1011 1012

Number of Input Bits

0

10

20

30

40

50

60

70

80

S
p

ee
d

u
p

Computation, γ = 125

Computation, γ = 1250

Communication

(a) N sized computation circuit

103 104 105 106 107 108 109 1010 1011 1012

Number of Input Bits

0

10

20

30

40

50

60

70

80

S
p

ee
d

u
p

Computation, γ = 125

Computation, γ = 1250

Communication

(b) N logN sized computation circuit

Figure 5.4: Varying the input size. We fix the predicate circuit to be RSA 2048 and vary P1’s input
length N from 103–1012 bits, with the size of the computation circuit based on the input size. The left graph
presents the speedup versus the generic approach for a computation circuit of size N , and the right graph
presents the speedup versus the generic approach for a computation circuit of size N logN . We present
results for both γ = 125 and γ = 1250 for the ratio of public-key to symmetric-key costs.

circuits), and send 40 · 2 · |C| = 80|C|κ bits. On the other hand, our protocol only need to perform
2|C|+2|C|+|C| = 5|C| symmetric key operations and send |C|κ bits when using privacy-free garbled
circuits and the “half-gates” optimization. Thus, the asymptotic improvement is 280/5 = 56 for
computation and 80/1 = 80 for communication when calculating the predicate circuit on its own.
Thus, when the predicate circuit is much larger than the computation circuit, these costs dominate
the overall cost and the asymptotic bound is reached.

Signature checks for “large” inputs. In Figure 5.4, we consider a similar situation as above, but
here we vary the input size of P1’s input, using RSA 2048 as the signature scheme. In Figure 5.4a
the computation circuit is of size N for N bit input, while in Figure 5.4b the computation circuit
size is N logN .

We can see that the improvement is about 80 for communication and about 56 for computation
up to around 105 input bits. When the input size becomes more than 107 bits, the improvement for
computation is less than 10×, and the improvement for communication reduces to about 40× for
the linear computation circuit and about 10× for the N logN computation circuit. Note that the
main reason for such a reduction is that as the number of input bits increase the cost of checking
the signature becomes amortized away, in which case our improvement becomes less significant.

Note however, that (1) in both cases, our protocol never performs worse than that of Afshar et
al. [AMPR14] in terms of computation and improves 10–40× in terms of communication, and (2)
the reduction in the improvement only happens when the number of input bits is huge (about ten
million).

5.4.2 Enforcing Correct Local Computation

Using local computation to reduce the cost of 2PC in the semi-honest model has been used in several
existing works [HEK12, WHZ+15]. Our protocol is able to provide some of these same benefits in
the malicious model. Suppose two parties want to compute f(x, y), which can be represented as
h3(h1(x), h2(y)), for some functions h1(·), h2(·), and h3(·, ·). In the semi-honest setting, we let the

79

parties compute h1(x) and h2(y) locally and then jointly perform a semi-honest secure computation
on h3(·, ·). Here, the bottleneck is now computing h3(·, ·), as the other computations are all local.
However, in the malicious setting, the advantage of local computation is completely lost: the result
of the local computation cannot be trusted in the malicious setting. Therefore, a generic malicious
protocol needs to compute a circuit that contains both local computation (h1(·) and h2(·)) and
joint computation (h3(·, ·)).

However, using our protocol, we can view predicate checking as a way to ensure that local
computation is done honestly. That is, the two parties first locally compute H1 = h1(x) and
H2 = h2(y). Then they use H1‖x and H2‖y as their input to the protocol, using predicate functions
f1(H1‖x) := (H1

?= h1(x)) and f2(H2‖y) := (H2
?= h2(y)) and computation function g(x, y) =

h3(H1, H2). This is particularly beneficial when there are more efficient ways of checking that, say,
H1

?= h1(x), than redoing the local computation itself. For example, checking that a list of N
elements is sorted takes O(N) time whereas sorting a list of N elements takes O(N logN) time.

Thus, using our protocol improves over generic malicious 2PC for the following two reasons:

1. We save a factor of O(ρ) on the predicate circuits used to check the local computation.

2. Since x and y are not used in the underlying computation directly, they do not require
the machinery needed to enforce input consistency. That is, we only need to ensure the
consistency of h1(x) and h2(y), which can be much smaller than the original input (see the
examples below for more details).

We look at three examples of protocols that can be improved using local computation: (1) private
edit distance approximation, (2) solving a linear system, and (3) private set intersection.

Private edit distance approximation. Wang et al. [WHZ+15] designed an algorithm to approx-
imate the edit distance of two genome sequences in the semi-honest setting. They proposed several
optimizations that minimize the circuit for joint computation. Let N be the number of edits in the
genome compared to the reference genome, and let ε be the relative error we want to achieve with
2−δ failure probability. During the local computation, each party hashes each edit to either 1 or
−1 and sums them up, while the joint computation computes the square of the difference between
the two sums. In order to achieve the error mentioned above, we need to compute this O(1

ε2 log 1
δ)

times, each time using a new random hash function. Therefore, local computation is on the order
of O(N/ε2 log 1

δ), while the joint computation has a circuit of size O(logN
ε2 log 1

δ). Thus, whereas
the generic solution in the malicious setting has a complexity of O

(
ρκ
(
N
ε2 log 1

δ + logN
ε2 log 1

δ

))
, our

protocol has only O
(
κN
ε2 + ρκ logN

ε2 log 1
δ

)
complexity.

We compare the two protocols for a varying number of genome edits, based on an error rate
of 1% with 95% confidence; see Figure 5.5. Our protocol achieves about 79× communication
improvements for all combinations we tested, therefore we only show the computation improvement.
We achieve a computation improvement up to about 63×, with the exact improvement increasing
as we increase the input size of P1 or P2. Note that the improvement here is greater than the
asymptotic bound of 56× described in Section 5.4.1 because here both parties do an input check
while in the previous setting only P1 did an input check. Having P2 also do an input check leads
to additional improvements.

Note that our protocol also works for other algorithms with a similar pattern as private edit
distance approximation, such as heavy hitters, quantiles, etc.

80

0.0 0.2 0.4 0.6 0.8 1.0
Number of Edits in P1’s Input ×106

0.0

0.2

0.4

0.6

0.8

1.0

N
u

m
b

er
of

E
d

it
s

in
P

2
’s

In
p

u
t

×106
[59, 63) [54, 59) [47, 54)

Figure 5.5: Computation improvement for private edit distance approximation. We vary the
input size of each party and fix the ratio of public-key to symmetric-key costs to γ = 1250. F represents a
speedup in the range [59, 63), represents a speedup in the range [54, 59), and ◦ represents a speedup in the
range [47, 54).

Solving a linear system. Suppose P1 holds an invertible matrix A and P2 holds a vector
b. The two parties want to securely solve the linear system Ax = b. A naive solution is to
perform Gaussian elimination obliviously within the secure computation, which requires a circuit
with O(N3) multiplications. A better solution in the semi-honest setting is to let P1 compute A−1

locally so that the parties only need to perform O(N2) multiplications in the secure computation
portion of the protocol.

When it comes to the malicious setting, we can check that P1 inputs a correct inverse by checking
that A−1A = I. Applying the generic solution gives us a protocol with complexity O(ρκN3) whereas
our protocol achieves a complexity of O(κN3 + ρκN2).

As shown in Figure 5.6, we achieve an improvement of 10× in terms of communication when the
dimension of the matrix is as small as 10. The improvement reaches the theoretical improvement
calculated in Section 5.4.1 when the dimension increases to about one thousand. The computation
improvement also behaves similarly to the previous example of checking signatures.

Private set intersection. We now evaluate private set intersection following the approach of
Huang et al. [HEK12]. Private set intersection has a predicate circuit of size N and a computation
circuit of size O(N logN). We evaluated our protocol on this with input size up to one million and
found a 1.3× improvement in computation and communication. While these gains are not as great
as the order-of-magnitude gains for other functions, we note that a 30% improvement in running
time is still significant.

The main reason for a smaller improvement than the order-of-magnitude improvements we see
in the previous examples is because the predicate circuit is of size N for N input bits while the
computation circuit size is O(N logN). This means that the cost is dominated by the computation

81

100 101 102 103 104 105 106

Dimension of the Matrix

0

10

20

30

40

50

60

70

80

S
p

ee
d

u
p

Computation, γ = 125

Computation, γ = 1250

Communication

Figure 5.6: Improvement when solving linear systems. This graph shows the speedup in terms of
computation and communication versus the naive approach when solving linear systems, where we vary P1’s
input size and use γ = 125 and γ = 1250 as the ratios of public-key to symmetric-key costs.

circuit and hence we get smaller gains.

82

Chapter 6

The Three Party Setting

Research on secure computation has traditionally been divided into two classes: work focusing
on two-party computation (2PC), and work focusing on multi-party computation (MPC) for an
arbitrary number of parties.1 Yet, in practice, it seems that the most likely scenarios for secure
MPC would involve a small number of parties. In general, as the number of parties increases, the
cost of communication amongst the parties increases as well. In a wide-area network setting, this
may have a huge impact on the running time of the protocol.

6.1 Our Contribution

Motivated by these observations, we initiate the study of efficient three-party computation (3PC) in
the malicious model, tolerating an arbitrary number of corruptions. We construct the first practical,
constant-round protocol for secure three-party computation of Boolean circuits. Our protocol uses
player-simulation techniques in order to compile existing (cut-and-choose-based) 2PC protocols
into three-party protocols. We instantiate our compiler with state-of-the-art 2PC constructions
and show that the addition of a third party comes at the cost of roughly a factor eight overhead
over the underlying 2PC protocol in terms of computation, and a factor sixteen overhead in terms
of communication. This running time appears to be superior to existing state-of-the-art MPC
protocols in terms of start-to-finish running time. Of course, computing the exact overhead requires
implementations of both our protocol and the underlying 2PC protocol, which we leave as future
work. As a further optimization point, our protocol makes only three calls overall to a broadcast
channel (one with each party as sender), as opposed to existing practical MPC solutions (for more
than two parties) which use broadcast for communicating all protocol messages. This may be
important in certain wide-area network settings where communication (and broadcast specifically)
is very expensive. The most efficient instantiation of our protocol requires the random oracle
model. As a downside, our protocol does not currently support free-XOR [KS08] or garbled row
reduction [PSSW09]; we leave such developments as future work.

Overview of our protocol. Denote the three parties by P1, P2, and P3. The high-level idea
of our construction is to execute a two-party protocol π̂, where one of the two parties (say P̂1) is
emulated by P1 and P2 via a two-party protocol π, and the other party is played by P3.

1Here we are interested in protocols tolerating an arbitrary number of corruptions. One could further distinguish
work on MPC that assumes an honest majority.

83

Clearly, naively applying the above idea yields an inefficient construction even when state-of-
the-art 2PC protocols are used for π and π̂. Assume, for example, that the most efficient 2PC
protocol is used for both π and π̂, where π simply computes the circuit of P̂1 among P1 and P2.
The security of the resulting construction follows trivially from the composition theorem. However,
unless the size of the circuit is very small, this approach results in a huge blowup on the overall
runtime; in particular, if t is the time π needs to compute the circuit of P̂1 and t̂ is the time that π̂
needs to compute the three-party circuit, then the runtime of the above naive construction is t · t̂,
yielding at least a quadratic blowup.

Emulating the garbler versus emulating the evaluator. One might be tempted to think
that, because the role of the circuit evaluator in the protocol is more “passive” (in the sense that
the computation is less complicated) than the circuit garbler, the most natural approach would
be to emulate the evaluator among P1 and P2 (and have P3 locally do the heavier work doing
circuit generation and opening over broadcast). This seemingly direct approach fails as one needs
a mechanism for P1 and P2 to include their inputs into the garbled circuits. Clearly, doing so by
having P1 first receive its input-wire labels via oblivious transfer (as in the standard garbled circuit
constructions) and then handing them to P2 yields an insecure protocol; indeed, an adversary
corrupting P2 and P3 can then trivially learn P1’s inputs.

Instead, in this work we have P1 and P2 emulate the sender, and we have P3 play the role of
the receiver. More precisely, we adapt the distributed circuit-garbling technique [BMR90, DI05]
to the two-party setting, allowing P1 and P2 to compute a sharing of a garbled circuit which they
then reconstruct towards P3. By appropriate optimizations, we ensure that distributed garbling
requires P1 and P2 to compute and communicate roughly as much as the garbler in an execution
of a standard two-party garbled circuit protocol (plus some oblivious transfer calls per gate); P3
needs to do nothing during the circuit garbling. Most interestingly, our construction features a
mechanism which allows P3 to receive the labels corresponding to its input bits for evaluating the
garbled circuit by only one invocation of oblivious transfer per input-bit with each of P1 and P2.

Our distributed garbling scheme is secure against malicious adversaries, which ensures that an
adversary corrupting only one of the parties P1 or P2 cannot produce a maliciously constructed
garbled circuit. In order to protect against an adversary who corrupts both P1 and P2, we rely on
the cut-and-choose technique. We give concrete instantiations (in the random oracle model) of our
protocol using a combination of two 2PC protocols by Lindell and Pinkas [LP07, LP11], as well as
a construction based on the more recent protocol by Lindell [Lin13] which drastically reduces the
number of circuit garblings required for cut-and-choose.

Interestingly, the cut-and-choose technique does not only protect against corrupting both P1
and P2, but allows a considerable efficiency improvement. More precisely, it allows us to avoid
using costly authenticated shares (towards P3) for the computed (shared) garbled circuit. Instead,
our distributed garbling scheme outputs, even in the malicious setting, a plain two-out-of-two sum
sharing of the garbled circuit.

Outline. In Section 6.2 we cover preliminary topics. In Section 6.3 we describe our two-party
distributed garbling scheme, and in Section 6.4 we discuss our three party protocol. In Section 6.5
we show how to instantiate the various two-party functionalities we utilize in our protocols and in
Section 6.6 we compare our protocol with prior work.

84

6.2 Preliminaries

Circuit notation. In this Chapter we follow the circuit notation of Bellare et al. [BHR12b]. Let
(n,m, q, L,R,G)← C be a circuit, where n is the number of input wires, m is the number of output
wires, and q is the number of gates, where each gate is indexed by its output wire. Thus, the total
number of wires in the circuit is n+q. The numbering of wires starts with the inputs and ends with
the outputs; i.e., we have inputs {1, . . . , n} and outputs {n + q−m + 1, . . . , n + q}. The function L
(resp., R) takes as input a gate index and returns the left (resp., right) input wire to the gate. We
require L(γ) < R(γ) < γ for any gate index γ. The function G encodes the functionality of a given
gate, e.g., Gγ(0, 1) = 0 if the gate with index γ is an AND gate. Because we consider circuits with
inputs from multiple parties, let {ni−1 + 1, . . . , ni} denote the input wires “controlled” by party Pi,
with n0 = 0.

We denote input gates as those gates with one or more input wires, inner gates as those gates
with no input or output wires, and output gates as those gates with an output wire.

Secret sharing. Our constructions use two-out-of-two secret sharing. In the semi-honest setting,
we use a standard (linear) sharing of strings: the secret x ∈ {0, 1}∗ is split into two random
summands x1 and x2 such that x1 ⊕ x2 = x, with Pi holding the summand xi. We denote the
sharing of x by [x] = ([x](1) , [x](2)), where we refer to each [x](i) = xi as Pi’s share of x. This
sharing is linear: If [x] and [y] are sharings of x and y respectively, then [x] ⊕ [y] is a sharing of
x⊕y; that is, [x⊕ y] = [x]⊕[y] and thus Pi can locally compute its share as [x⊕ y](i) = [x](i)⊕[y](i).
It is straight-forward to verify that the above secret-sharing is private provided that the summands
x1 and x2 are uniformly chosen (restricted only on x1⊕x2 = x); i.e., any single share [x](i) contains
no information about the secret x. Reconstructing a sharing [x] is easily done by having each party
announce its share [x](i) and taking x to be the exclusive-or of the announced shares.

Our protocols use shares of two types of secrets: κ-bit strings x ∈ {0, 1}κ and bits b ∈ {0, 1}. For
clarity in the presentation, we use the bracket notation introduced above for sharings of x ∈ {0, 1}κ,
and use the notation 〈·〉 for sharings of bits; i.e., if b ∈ {0, 1} then a sharing of b is denoted as
〈b〉 = (〈b〉(1), 〈b〉(2)).

In the malicious setting we need the sharings of bits to be authenticated; i.e., in addition to
its summand bi, each party Pi holds an authentication tag ti for a Message Authentication Code
(MAC), with another party Pj holding the corresponding verification key kj . More precisely, in
a sharing 〈b〉 = (〈b〉(1), 〈b〉(2)) of b, each party’s share is now a tuple 〈b〉(i) := (bi, ti, kj), where
b1 ⊕ b2 = b, and ti is a valid MAC on bi with key kj . This ensures that the adversary cannot make
the reconstruction output any value other than the secret b. In particular, to reconstruct some
sharing 〈b〉 = (〈b〉(1), 〈b〉(2)), each party Pi first announces its summand bi and the corresponding
authentication tag ti; subsequently, each party Pi checks that the other party Pj announced a
validly authenticated summand matching its own verification key and if this is not the case it
rejects. The inability of an adversarial Pi to announce a summand other than bi follows from the
unforgeability of the MAC, as Pi does not know the key kj matching its authentication tag.

We also assume this authentication is linear in the following sense: Given 〈b〉 and 〈b′〉, the
parties can compute 〈b〉⊕〈b′〉 locally. Namely, 〈b〉⊕〈b′〉 = (〈b⊕ b′〉(1), 〈b⊕ b′〉(2)), where 〈b⊕ b′〉(i) =
(bi⊕ b′i, ti⊕ t′i, kj ⊕ k′j) is a valid authentication. Such an authenticated sharing can be constructed
using known techniques; see Section 6.5.

85

6.3 Two-Party Distributed Garbling Scheme

In this Section we describe our construction of a two-party distributed garbling scheme. Our
protocol combines garbled circuits (cf. Chapter 2)with distributed garbling ideas from Damg̊ard and
Ishai [DI05]. The main idea is the following: The players jointly compute a garbled circuit, where
the gates are garbled by use of a distributed encryption scheme which takes, for each encryption,
one label from each party.

Distributing the Garbling Scheme Between Two Parties

Consider the garbling scheme in Chapter 2 with the following change: Each label Xw,b consists of
two sub-labels s1

w,b and s2
w,b; that is, Xw,b = (s1

w,b, s
2
w,b). We now show how to emulate this garbling

scheme between two parties in the semi-honest setting. We assume the parties have access to the
following two-party ideal functionalities:

• Gate computation FGgate(〈a〉, 〈b〉): The functionality takes as input sharings 〈a〉 and 〈b〉 of bits
a and b, respectively, and is parameterized by a binary gate G; it outputs a sharing 〈G(a, b)〉
of the output of G on input (a, b).

• One-out-of-two oblivious secret sharing F ioshare(〈b〉,m0,m1): The functionality takes as input
a sharing 〈b〉 of a bit b (i.e., each party inputs its share), along with two messages m0, m1
from Pi, and outputs a random two-out-of-two sharing [mb] of mb.

• Constant bit sharing Fbconst(): The functionality is parameterized by a bit b ∈ {0, 1}, and
outputs a random sharing 〈b〉 of b.

• Random bit sharing Frand(): The functionality chooses a random bit r ∈R {0, 1} and com-
putes and outputs a random sharing 〈r〉 of r.

• Bit secret sharing F iss(b): The functionality takes input bit b ∈ {0, 1} from Pi and outputs a
random two-out-of-two sharing 〈b〉 of b.

Each of these can be instantiated efficiently in the semi-honest setting; see Section 6.5 for details.

Distributed encryption scheme. We utilize the distributed encryption scheme of Damg̊ard
and Ishai [DI05]. Suppose the message and the label for the encryption scheme are distributed as
follows:

• The message m is secret-shared; i.e., P1 and P2 hold [m](1) and [m](2), respectively.

• The label X = (s1, s2) is distributed such that P1 and P2 hold s1 and s2, respectively.

The encryption of the secret-shared message m with tweak T under label X = (s1, s2) is:

EncTX([m]) =
(

Enc1
s1,T

(
[m](1)

)
,Enc2

s2,T

(
[m](2)

))
=
(
[m](1) ⊕ F 1

s1(T), [m](2) ⊕ F 1
s2(T)

)
,

where F 1
k is a PRF keyed by key k. To decrypt a ciphertext c := EncTX(m), each party Pi sends its

sub-label si to the decrypter, who uses them to recover the shares of m and reconstruct m.

86

Double encryption is defined analogously. For labels Xα = (s1
α, s

2
α) and Xβ = (s1

β, s
2
β), where

Pi holds (siα, siβ), encryption with tweak T works as follows:

EncTXα,Xβ ([m]) =
(

[m](1) ⊕ F 1
s1
α
(T)⊕ F 2

s1
β
(T), [m](2) ⊕ F 1

s2
α
(T)⊕ F 2

s2
β
(T)

)
.

Distributed garbling scheme. We now give a high-level description of our two-party distributed
garbling scheme ΠGC(P1, P2). For each wire w in the circuit we associate labels Xw,0 = (s1

w,0, s
2
w,0)

and Xw,1 = (s1
w,1, s

2
w,1) corresponding to bits ‘0’ and ‘1’, respectively. Each sub-label is only known

to one of the two parties; i.e., Pi only knows (siw,0, siw,1). Each wire is also associated with a mask
bit λw which is secret shared between the two parties such that no party knows λw.

Consider gate Gγ in the circuit with input wires indexed by α and β. We construct an array
containing four rows corresponding to a random permutation of the four possible outcomes of
gate Gγ applied to bits bα and bβ. However, in the distributed case neither party should know
what is being encrypted. Recall that for standard garbled circuits, the garbler can easily compute
Gγ(λα⊕bα, λβ⊕bβ) to construct the array. However, in the distributed setting, neither party knows
(and should not know) λα or λβ. Thus, the parties utilize the Fgate functionality, which takes as
input the shares 〈λα〉 ⊕ 〈bα〉 and 〈λβ〉 ⊕ 〈bβ〉, and computes a sharing of Gγ(λα ⊕ bα, λβ ⊕ bβ).
Let 〈σγ,bα,bβ 〉 = FGgate(〈bα〉 ⊕ 〈λα〉, 〈bβ〉 ⊕ 〈λβ〉) ⊕ 〈λγ〉. The value σγ,bα,bβ denotes which label
to encrypt; that is, in row (bα, bβ) we encrypt label Xγ,σγ,bα,bβ

. However, we must still enforce
that neither party knows what label Xγ,σγ,bα,bβ

represents. We handle this by utilizing another
functionality, Foshare. For each of the four σγ,bα,bβ values, and for each party Pi, the parties
compute F ioshare(〈σγ,bα,bβ 〉, siγ,0, siγ,1). This produces a share of the appropriate sub-label for party
Pi, with the crucial fact that Pi does not know which of his sub-labels was shared. The results of
Foshare are used as the shares to be encrypted.

See below for the full description.

Auxiliary Inputs: Security parameter k, circuit (n,m, q, L,R,G) := C.

Parties P1 and P2 generate 〈1〉 ← F1
const, which they use throughout the protocol.

1. Generate mask bits:

• Generate masks for P1’s inputs: For w ∈ {1, . . . , n1}: P1 generates λw ∈R {0, 1} and
computes 〈λw〉 ← F1

ss(λw).
• Generate masks for P2’s inputs: For w ∈ {n1 + 1, . . . , n}: P2 generates λw ∈R {0, 1} and

computes 〈λw〉 ← F2
ss(λw).

• Generate masks for inner wires: For w ∈ {n + 1, . . . , n + q−m}: generate 〈λw〉 ← Frand.
• Generate masks for output wires: For w ∈ {n+q−m+1, . . . , n+q}: generate 〈λw〉 ← F0

const.a

2. Generate sub-labels:

• For w ∈ {1, . . . , n + q} and b ∈ {0, 1}: Pi generates sub-labels siw,b ∈R {0, 1}
κ.

3. Construct garbled circuit:

• For γ ∈ {n + 1, . . . , n + q}:

87

Let α := L(γ) and β := R(γ) be the indices of the left and right input wires, respectively,
of the gate indexed by γ. Compute the following selector bits:

〈σγ,0,0〉 ← F
Gγ
gate(〈λα〉, 〈λβ〉)⊕ 〈λγ〉 〈σγ,0,1〉 ← F

Gγ
gate(〈λα〉, 〈λβ〉 ⊕ 〈1〉)⊕ 〈λγ〉

〈σγ,1,0〉 ← F
Gγ
gate(〈λα〉 ⊕ 〈1〉, 〈λβ〉)⊕ 〈λγ〉 〈σγ,1,1〉 ← F

Gγ
gate(〈λα〉 ⊕ 〈1〉, 〈λβ〉 ⊕ 〈1〉)⊕ 〈λγ〉.

Next, compute sharings of the appropriate sub-labels to use for each row:[
ŝ1
γ,0,0

]
← F1

oshare(〈σγ,0,0〉, s1
γ,0, s

1
γ,1),

[
ŝ2
γ,0,0

]
← F2

oshare(〈σγ,0,0〉, s2
γ,0, s

2
γ,1)[

ŝ1
γ,0,1

]
← F1

oshare(〈σγ,0,1〉, s1
γ,0, s

1
γ,1),

[
ŝ2
γ,0,1

]
← F2

oshare(〈σγ,0,1〉, s2
γ,0, s

2
γ,1)[

ŝ1
γ,1,0

]
← F1

oshare(〈σγ,1,0〉, s1
γ,0, s

1
γ,1),

[
ŝ2
γ,1,0

]
← F2

oshare(〈σγ,1,0〉, s2
γ,0, s

2
γ,1)[

ŝ1
γ,1,1

]
← F1

oshare(〈σγ,1,1〉, s1
γ,0, s

1
γ,1),

[
ŝ2
γ,1,1

]
← F2

oshare(〈σγ,1,1〉, s2
γ,0, s

2
γ,1).

Finally, compute the distributed encryptions of the (permuted) sub-labels and selector bits.
That is, letting Kw,b = (s1

w,b, s
2
w,b), compute:

P [γ, 0, 0] = (P 1[γ, 0, 0], P 2[γ, 0, 0]) := Encγ‖0‖0Kα,0,Kβ,0
(
[
ŝ1
γ,0,0

]
‖
[
ŝ2
γ,0,0

]
‖〈σγ,0,0〉),

P [γ, 0, 1] = (P 1[γ, 0, 1], P 2[γ, 0, 1]) := Encγ‖0‖1Kα,0,Kβ,1
(
[
ŝ1
γ,0,1

]
‖
[
ŝ2
γ,0,1

]
‖〈σγ,0,1〉),

P [γ, 1, 0] = (P 1[γ, 1, 0], P 2[γ, 1, 0]) := Encγ‖1‖0Kα,1,Kβ,0
(
[
ŝ1
γ,1,0

]
‖
[
ŝ2
γ,1,0

]
‖〈σγ,1,0〉),

P [γ, 1, 1] = (P 1[γ, 1, 1], P 2[γ, 1, 1]) := Encγ‖1‖1Kα,1,Kβ,1
(
[
ŝ1
γ,1,1

]
‖
[
ŝ2
γ,1,1

]
‖〈σγ,1,1〉).

4. Output circuit:

• Let Ĉi := (n,m, q, L,R, P i) and let SKi :=
{

(siw,0, siw,1) : w ∈ {1, . . . , n}
}

.

• P1 outputs the tuple
(
Ĉ1, SK1,

{
(〈bw〉(1), 〈λw〉(1), bw, λw) : w ∈ {1, . . . , n1}

})
.

• P2 outputs the tuple
(
Ĉ2, SK2,

{
(〈bw〉(2), 〈λw〉(2), bw, λw) : w ∈ {n1 + 1, . . . , n}

})
.

aNote that we do not in fact need to create ‘zero’ masks for the output wires; we include this step mainly for
ease of presentation.

Achieving Malicious Security

The semi-honest distributed garbling scheme described above can be directly adapted to work
against a malicious adversary by modifying the hybrid functionalities to work in an authenticated
manner; namely, we use authenticated sharings in place of standard secret sharings:

• F1
const() and Frand(): The output share is authenticated.

• FGgate(〈a〉, 〈b〉): The inputs and outputs are all authenticated sharings.

• F ioshare(〈b〉,m0,m1): The selection bit b is an authenticated sharing.

• F iss(b): The output is an authenticated sharing of b.

See Section 6.5 for the detailed functionalities and Section 6.5.2 for their instantiations.
We also need to define a notion of encrypting authenticated shares. Recall that for an authen-

ticated share 〈b〉 = (〈b〉(1), 〈b〉(2)), we have 〈b〉(i) = (bi, ti, kj), where party Pi holds bi and ti and
party Pj holds kj . Thus, letting X = (s1, s2), we define

EncTX(〈b〉) = (Enc1
s1,T (b1‖t1‖k1),Enc2

s2,T (b2‖t2‖k2)).

88

On decryption, each party’s ciphertext is decrypted and the authenticity of b1 and b2 are verified
using the (encrypted) tags and labels. Thus, when evaluating a garbled circuit, the party checks
the authenticity of the share from the decrypted row of each garbled gate; if the check fails, the
party aborts.

Note that we can convert this protocol into a maliciously-secure 2PC protocol, which we denote
as Π2PC(P1, P2), as follows.

Auxiliary Inputs: Security parameter k, circuit (n,m, q, L,R,G) := C.
Inputs: For w ∈ {1, . . . , n1}, P1 has inputs bw; for w ∈ {n1 + 1, . . . , n}, P2 has inputs bw.

1. The parties execute ΠGC(P1, P2).

2. For w ∈ {1, . . . , n1}: The parties execute 〈bw〉 ← F1
ss(bw).

3. For w ∈ {n1 + 1, . . . , n2}: The parties execute 〈bw〉 ← F2
ss(bw).

4. P1 sends GC1 to P2.

5. For w ∈ {1, . . . , n1}: P1 sends (s1
w,bw⊕λw , 〈bw〉

(1)⊕〈λw〉(1)) to P2 who reconstructs bw⊕λw locally.

6. For w ∈ {n1 + 1, . . . , n}: P2 sends 〈bw〉(2) ⊕ 〈λw〉(2) to P1, who reconstructs bw ⊕ λw locally. P1
then sends s1

w,bw⊕λw to P2.

7. P2 evaluates the garbled circuit using the labels (s1
w,bw⊕λw , s

2
w,bw⊕λw) and selector bits bw ⊕ λw,

for w ∈ {1, . . . , n}.

Theorem 6.1. Let C be an arbitrary polynomial-size circuit. Then the protocol Π2PC(P1, P2),
using authenticated hybrids, securely evaluates the circuit C in the presence of a (static) malicious
adversary in the (Fconst,Fgate,Foshare,Frand,Fss)-hybrid world.

Proof. We construct simulators S1 and S2 which simulate an adversary corrupting P1 and P2,
respectively. We note that we can ignore the negligible probability difference due to a direct attack
on the authentication mechanism by a simple hybrid argument.
Malicious P1. We simulate adversary A corrupting party P1 as follows. The simulator S1 chooses
0n−n1 as P2’s input and then runs exactly as P2 would. In addition, S1 extracts A’s input x through
the calls to F1

ss and passes x to the trusted party.
As S1 acts exactly as P2 does (albeit on a different input), and A receives no output, we need

only show that the protocol aborts with equal probability across the two views. Note that A has
three possible places in the protocol in which it can try to force the protocol to abort:

1. Sending an invalid sub-label in Step 5 or Step 6 of Π2PC,

2. Inputting invalid or flipped sub-labels into the calls to Foshare, or

3. Encrypting the incorrect sub-labels shares or using some arbitrary string as encryptions.

We claim that the probability of aborting due to any of the above attacks is independent of P2’s
input. Clearly, if A sends invalid sub-labels for its own input wires, the probability of aborting is
independent of P2’s input. In the case that A sends an invalid sub-label in Step 6 of Π2PC, the
probability of aborting is independent of P2’s input due to the masking by the (uniformly chosen)
mask bit.

89

Now consider the case where A corrupts t rows in a given garbled gate. Note that even though
A can control which rows in the garbled gate table to corrupt, the probability that any given row
is hit during evaluation is exactly 1/4 (by the security of the point-and-permute method). Thus,
the probability that a given bad row is hit is t/4, independent of the bits on the incoming wires
into the gate. Thus, as the probability of aborting is independent of P2’s input, the two views are
perfectly indistinguishable.
Malicious P2. We simulate adversary A corrupting party P2 as follows. The simulator S2 selects
0n1 as the input of P1, and then proceeds to act as P1 in ΠGC. Then, S2 extracts A’s input y
through the calls to F2

ss and passes y to the trusted party, receiving back f(x, y). Now, S2 continues
executing as P1, except it modifies its share for the output of Fgate on the output gates so that
the selector bits for all rows in the output gates contain the appropriate bit from f(x, y). In more
detail, right before sending its share GC1 at Step 4 of the protocol, S2 does the following:

• For each output gate Gγ , let zγ denote the correct output (i.e., the appropriate bit from
f(x, y)) of the gate. Now, for each of the four rows of this gate, S2 modifies the original
authenticated sharing (〈zγ,1〉(1), 〈zγ,2〉(2)) into a new sharing (〈z∗γ,1〉(1), 〈zγ,2〉(2)) that would
be reconstructed to zγ . Note that this is possible, since S2 emulates the Fgate functionality
and has all the information necessary to construct new authenticated shares. In addition, S2
modifies the corresponding encryption in the garbled gate accordingly.

S2 continues executing as P1, and outputs whatever A outputs.
We now prove that the view of the adversary when communicating with S2 versus the view when

communicating with a real P1 is computationally indistinguishable. We show this by constructing
a set of hybrids and proving indistinguishability between them.

H0. The same as the execution with P1.

H1. The same as H0, except the output of Fgate in each output gate is modified to be equal to
an authenticated sharing of the correct output from f(x, y).

Indistinguishability follows from the security of the underlying garbling scheme; the only
difference here is that A can try to force the protocol to abort. However, by the security of
the authenticated bit sharing scheme, the output of Fgate towards A provides no information
about the underlying selector bit’s value, and thus A acts independently of the value σγ,i,j .

H2. The same as H1, except input 0n1 is used instead of P1’s real input.

Indistinguishability holds by the use of Fss.

As H2 is the same as the simulator, the proof is complete.

6.4 Three-Party Computation from Cut-and-Choose

We can directly adapt the distributed garbling scheme to work over multiple parties, and thus
construct a 3PC scheme; however, in this case the underlying functionalities need to support
multiple parties rather than just two parties and are thus unlikely to be efficient in practice. Thus,
in this Section we show how to utilize the maliciously secure two-party distributed garbling scheme
from Section 6.3 to construct a maliciously secure three-party secure computation protocol, using

90

almost entirely two-party constructs (the only three-party functionality needed is that of coin-
tossing).

We first cover preliminary notions, such as the ideal functionalities we need. Then, we show how
to adapt a combination of two existing cut-and-choose protocols [LP07, LP11] to the three-party
setting. Finally, we use this “generic” protocol to show how to adapt Lindell’s “fast cut-and-choose”
protocol [Lin13] to the three-party setting. The cost of each of these three-party protocols is roughly
eight times the computational cost of the underlying two-party protocol they are based on, and
roughly sixteen times the communication cost (plus the cost of a small number of OTs per gate,
which can be efficiently amortized using OT extension [IKNP03, NNOB12]), and thus we show that
we can achieve efficient secure three-party computation at only a small factor of the cost of the
most efficient garbled circuit-based protocol.

Preliminaries

Ideal functionalities. In addition to the ideal functionalities used in the two-party distributed
garbling scheme, we need the following additional (maliciously secure) functionalities:

• Three-party coin-flipping Fcf (): The functionality outputs a random bitstring to each party.

• One-out-of-two oblivious transfer F i,jot (b,m0,m1): The functionality takes as input a choice
bit b from party Pi and messages m0, m1 from Pj , and outputs mb to party Pi.

• ZKPoK of extended Diffie-Hellman tuple F i,jzkpok(a, (g, h0, h1, {ui, vi}i)): The functionality
takes as input a from party Pi, and tuple (g, h0, h1, {ui, vi}i) from party Pj , and outputs 1 to
party Pj if either all tuples in {(g, h0, ui, vi)}i are Diffie-Hellman tuples with h0 = ga or all
tuples in {(g, h1, ui, vi)}i are Diffie-Hellman tuples with h1 = ga, and 0 otherwise.

These can all be efficiently instantiated in a standard fashion. We can implement Fcf in the random
oracle model using three commitments and openings. The Fot functionality can be instantiated us-
ing any maliciously secure OT implementation, such as the construction by Peikert et al. [PVW08].
Likewise, Fzkpok can be efficiently instantiated using existing protocols [LP11, Section B].

Distributed garbled circuits for three parties. Note that the garbling protocol ΠGC described
before only garbles a circuit containing inputs from two parties. We can easily adapt this to support
input from a third (external) party as follows. Let Π′GC(P1, P2) be the same as ΠGC(P1, P2) except
for the following modifications:

• All of the operations over P2’s input now operate over wires w ∈ {n1 + 1, . . . , n2}.

• In Step 1, we add the following sub-step for generating shares for P3’s input wires:

– For w ∈ {n2 + 1, . . . , n}: generate 〈λw〉 ← Frand.

• In Step 4, party Pi outputs
{
〈λw〉(i) : w ∈ {n2 + 1, . . . , n}

}
in addition to his normal outputs.

Achieving Malicious Security for Three Parties

Note that our two-party distributed garbling scheme has the property that if at most one of the
two parties is corrupt, the garbling of circuit C either correctly evaluates C on P1’s and P2’s

91

inputs, or causes the evaluator to abort. That is, a malicious party cannot “alter” the garbling
to evaluate some circuit other than C. Now, if both P1 and P2 are corrupt, they can of course
garble an arbitrary circuit. This suggests the following approach to three-party computation: If
either P1 or P2 are honest, we need only construct a single garbled circuit, which is sent to P3 to be
evaluated. To cover the case where both P1 and P2 are corrupt, we use cut-and-choose to prevent
P3 from evaluating a maliciously constructed circuit. In what follows, we utilize existing cut-and-
choose protocols from the literature [LP07, LP11], and “plug in” our distributed garbling scheme as
necessary. Thus, security mostly follows from the security proofs of the underlying cut-and-choose
protocols. We also show how we can use this protocol in an adaptation of Lindell’s protocol [Lin13]
to the three-party setting.

The basic intuition for security is as follows. Cut-and-choose is used to prevent P3 from eval-
uating maliciously constructed circuits when both P1 and P2 are malicious. For the case where
either P1 or P2 is honest, Π′GC(P1, P2) assures us that the garbled circuit constructed between P1
and P2 is either correctly constructed or causes P3 to abort (independent of any party’s input).

Protocol description. We now give a high-level description of our protocol.

1. The parties first replace the input circuit C0 with a circuit C, where the only difference is
each of P3’s input wires is replaced by an XOR of ρ new input wires, preventing either party
P1 or P2 from launching a selective failure attack on P3’s input choices.

2. P1 and P2 generate the required commitments needed for input consistency, as is done in the
protocol of Lindell and Pinkas [LP11].

3. P1 and P2 construct ρ garbled circuits using Π′GC and the input sub-labels generated as is
done in the protocol of Lindell and Pinkas [LP11].

4. P1 and P2 compute authenticated sharings (between each other; P3 is not involved here) of
their input bits.

5. P1 and P2 both run (separately) an OT protocol with P3 for each of P3’s input wires, where
P1/P2 input their sub-labels and P3 chooses based on his input. (Note that any cheating by
P1/P2 here will be caught with high probability by the cut-and-choose step below.) Thus, P3
now has labels for each of his input bits.

6. P1 and P2 send the (distributed) garbled circuits, along with the input consistency commit-
ments, to P3.

7. All three parties run a coin-tossing protocol to determine which circuits for P3 to open and
which to evaluate.

8. For the evaluation circuits, P1 and P2 send the sub-labels and selector bits for their inputs
to P3. Note that we need to be careful in this step, as we need to enforce that, for example,
P1 uses the same input as was shared in Step 2 above. This is accomplished as follows.
Recall that P1 and P2 have sharings of each other’s inputs and mask bits, all of which are
authenticated. Thus, P1 can send the (authenticated) share of its masked input to P2, who
can verify its authenticity, and thus reconstruct the masked input bit using its own share.
This allows an honest P2 to send the correct sub-label (correct in the sense that it corresponds
to P1’s input shared in Step 2) to P3, even with a malicious P1.

92

9. For the check circuits, P1 and P2 send the required information for P3 to decrypt the check
circuits and verify correctness. If any of these check circuits are incorrectly constructed,
P3 aborts; otherwise, it has high confidence that the majority of the evaluation circuits are
correctly constructed.

10. For the evaluation circuits, P3 checks for input consistency against the sub-labels sent by P1
and P2 in Step 8 using a zero-knowledge proof-of-knowledge protocol [LP11], aborting on any
inconsistency.

11. Finally, P3 evaluates the evaluation circuits, outputting the majority over the circuits’ output.

See below for the full protocol description.

Auxiliary Inputs: Security parameter κ, statistical security parameter ρ, circuit C0, cyclic group G
with (prime) order q and generator g, and randomness extractor Ext.

Inputs: For w ∈ {1, . . . , n1}, P1 has inputs bw; for w ∈ {n1 + 1, . . . , n2}, P1 has inputs bw; for
w ∈ {n2 + 1, . . . , n}, P3 has inputs bw.

1. Each party replaces C0 with a circuit C where each of P3’s input wires is replaced by an exclusive-
or of ρ new input wires. We let (n,m, q, L,R,G) := C, and denote P3’s new inputs by b̂w.

2. For w ∈ {1, . . . , n1}: P1 generates a1
w,0, a

1
w,1 ∈R Zq and constructs set

{
(w, 0, ga

1
w,0), (w, 1, ga

1
w,1)
}

.

For w ∈ {n1+1, . . . , n2}: P2 generates a2
w,0, a

2
w,1 ∈R Zq and constructs set

{
(w, 0, ga

2
w,0), (w, 1, ga

2
w,1)
}

.

For j ∈ {1, . . . , ρ}: Pi, for i ∈ {1, 2}, generates rij ∈R Zq and constructs set
{

(j, gr
i
j)
}

.

For j ∈ {1, . . . , ρ}: P1 and P2 run up to Step 2 (“Generate sub-labels”) of Π3
GC(P1, P2), where

the parties do the following in the jth iteration:
For w ∈ {1, . . . , n1}: P1 generates sub-labels s1

w,b⊕λw,j ,j := Ext(ga
1
w,b·r

1
j) for b ∈ {0, 1}.

For w ∈ {n1 + 1, . . . , n2}: P2 generates sub-labels s2
w,b⊕λw,j ,j := Ext(ga

2
w,b·r

2
j) for b ∈ {0, 1}.

All other sub-labels are generated in the normal fashion.

3. For j ∈ {1, . . . , ρ}: P1 and P2 continue their executions of Π3
GC(P1, P2), producing garbled circuit

Ĉj .

4. For w ∈ {1, . . . , n1}: P1 and P2 compute 〈bw〉 ← F1
ss(bw).

For w ∈ {n1 + 1, . . . , n2}: P1 and P2 compute 〈bw〉 ← F2
ss(bw).

5. For j ∈ {1, . . . , ρ} and w ∈ {n2 + 1, . . . , n}: P1 and P2 exchange 〈λw,j〉 with each other, recon-
structing λw,j locally. Both P1 and P2 send λw,j to P3.
For w ∈ {n2 + 1, . . . , n}: Pi, for i ∈ {1, 2}, and P3 run Fot, with Pi as the sender inputting({

siw,λw,j ,j

}
j∈{1,...,ρ}

,
{
siw,λw,j⊕1,j

}
j∈{1,...,ρ}

)
and P3 as the receiver inputting b̂w.

6. Pi, for i ∈ {1, 2}, sends the sets constructed in Step 2, along with the garbled circuit
{
Ĉij

}ρ
i=1

,
to P3.

7. The parties compute r ← Fcf . Let CC = {i : r[i] = 1}, and let EC = {1, . . . , ρ} \ CC.

8. For j ∈ EC:

93

For w ∈ {1, . . . , n1}: P1 sends 〈bw〉(1) ⊕ 〈λw,j〉(1) to P2, who reconstructs bw ⊕ λw,j locally.
P1 sends (s1

w,bw⊕λw,j ,j , bw ⊕ λw,j) to P3, and P2 sends (s2
w,bw⊕λw,j ,j , bw ⊕ λw,j) to P3.

For w ∈ {n1 +1, . . . , n}: P2 sends 〈bw〉(2)⊕〈λw,j〉(2) to P1, who reconstructs bw⊕λw,j locally.
P1 sends (s1

w,bw⊕λw,j ,j , bw ⊕ λw,j) to P3, and P2 sends (s2
w,bw⊕λw,j ,j , bw ⊕ λw,j) to P3.

9. For j ∈ CC:
Pi, for i ∈ {1, 2}, does the following:

Sends rij to P3, and P3 checks that these values are consistent with the pairs
{

(j, gr
i
j)
}

sent before.
For w ∈ {1, . . . , n}: Sends sub-labels siw,0,j and siw,1,j , mask bit share λ(i)

w,j , and the labels
to the authenticated bits to P3.

Given the above information, P3 reconstructs all input labels and verifies they match with
those labels sent previously. Also, using said labels, P3 verifies that the garbled circuit is
correctly constructed.

10. For j ∈ EC:

For w ∈ {1, . . . , n1}: P1 sends ga
1
w,bw

·r1
j to P3, who computes s1

w,bw⊕λw,j ,j := Ext(ga
1
w,bw

·r1
j).

For w ∈ {n1+1, . . . , n2}: P2 sends ga
2
w,bw

·r2
j to P3, who computes s2

w,bw⊕λw,j ,j := Ext(ga
2
w,bw

·r2
j).

For w ∈ {1, . . . , n1}: P1 and P3 run Fzkpok, with P1 as the prover inputting a1
w,bw

and P3 as the

verifier inputting
(
g, ga

1
w,0 , ga

1
w,1 ,

{
(gr

1
j , ga

1
w,bw

·r1
j)
}
j∈EC

)
.

For w ∈ {n1 + 1, . . . , n2}: P2 and P3 run Fzkpok, with P2 as the prover inputting a2
w,bw

and P3

as the verifier inputting
(
g, ga

2
w,0 , ga

2
w,1 ,

{
(gr

2
j , ga

2
w,bw

·r2
j)
}
j∈EC

)
.

11. For j ∈ EC: P3 evaluates circuit Ĉj using
{

(s1
w,bw⊕λw,j ,j , s

2
w,bw⊕λw,j ,j , bw ⊕ λw,j)

}
w∈{1,...,n}

as
inputs.
P3 outputs the majority output over the evaluated circuits.

Theorem 6.2. Let C be an arbitrary polynomial-size circuit and let G be a cyclic group with
prime order. Given access to ideal functionalities Fconst, Fgate, Foshare, Fot, Frand, and Fss, and
assuming that the decisional Diffie-Hellman problem is hard in G, then Πm

3PC(P1, P2, P3) securely
computes the circuit C in the presence of an adversary corrupting an arbitrary number of parties.

Proof. The proof is similar to prior work in two-party garbling schemes based on cut-and-choose [LP07,
LP11, sS11]. We make use of the following lemma:

Lemma. Consider garbled gate Gγ with input wires α and β, and let Xw,b = (s1
w,b, s

2
w,b, b ⊕ λw),

for w ∈ {α, β} denote the valid labels. Fix a (valid) label Xw,b for some fixed w and b. Let X̄w,b

be equal to Xw,b except that two of the three components (i.e., the sub-labels and selector bit) are
altered arbitrarily. Then using label X̄w,b to decrypt Gγ causes a decryption failure with all but
negligible probability.

Proof. This follows directly from our encryption scheme and garbling scheme.

Informally, what this lemma says is that for a given garbled gate, a sub-label / selector bit
combo can only be used correctly on a single row of the garbled table, and modifying some (but
not all) of the components results in a decryption failure; thus an adversary must change both the

94

sub-label and permutation bit accordingly for the garbled gate to successfully decrypt. Note that
in the two-party secure computation protocol described in Section 6.3 we enforce the above by
authenticating all of the selector bits (thus preventing any malicious party from altering these).
However, the authenticated sharing protocol only works between two parties, namely the parties
doing the distributed garbling. Thus, we need a way for the evaluator to gain confidence in the
sub-label / selector bit combos sent to him by P1 and P2. We do this by utilizing the Diffie-
Hellman pseudorandom synthesizer trick of Lindell and Pinkas [LP11]. This enforces that P1 and
P2 are consistent in the sub-label they send to P3, and because at least one sub-label is correct,
the adversary can at most cause P3 to abort.

There are six possible (interesting) corruption cases. However, due to symmetries, we only need
to consider four of them.
The adversary corrupts parties P1 and P2. We need to construct a simulator S with access
to the adversary A (who controls P1 and P2) and a trusted third party which computes f(x, y, z)
given inputs x, y, and z. The simulator S is constructed as follows: S invokes the adversary A,
and then runs as P3 would until Step 10. Here, S uses the witnesses aiw,bw send by P1 and P2 to
Fzkpok to extract their inputs. S then feeds these inputs to the trusted third party, receiving back
f(x, y, z). S continues to run as P3 would, and halts, outputting whatever A outputs.

We now argue that the adversary’s view in the real and ideal worlds are computationally in-
distinguishable. The proof closely follows existing work [LP11, pp. 17–21], and thus we only give
some intuition here.

Note that if A tries to cheat in Step 5, it gets caught in the cut-and-choose step with high
probability. Similarly, if A tries to send different labels in Step 8 (i.e., the “input inconsistency”
attack), it gets caught in Step 10 when proving the consistency of the sub-labels sent.
The adversary corrupts parties P1 and P3. We again demonstrate a simulator, this time
with A controlling parties P1 and P3. This is similar to the two-party case where P2 is corrupted.
The main challenge is that the simulator needs to construct “fake” garbled circuits in order for
A to output the correct output; however, as shown in the proof of our two-party protocol, such a
simulator exists. Thus, the simulator S is constructed as follows: S invokes the adversary A, and
runs as P2 would up until Step 6. S can extract both P1’s input x and its mask bits λw,j through
P1’s calls to F1

ss in Step 4 and Step 2. Likewise, in Step 5, S extracts P3’s input z through the calls
to Fot. S then passes x and z to the trusted third party, learning f(x, y, z). In Step 6, S chooses
r ∈R {0, 1}3ρ. Then for j ∈ {1, . . . , 3ρ}, S proceeds as follows: If r[j] = 0, S uses the simulator that
is known to exist for the two-party circuit garbling protocol to construct garbled circuits which
output f(x, y, z). Otherwise, S acts as P2 would. S continues to act as P2 would, except that in
Step 7 it sets the output of Fcf to be equal to the ρ chosen above. Finally, S halts, outputting
whatever A outputs.

The main intuition here is that, since P1 learns nothing about the portion of the circuit garbled
by P2, this reduces to the two-party setting where P2 is corrupt. Recall that by the security of
our garbling protocol, P1 can only construct circuits that cause the evaluator to abort. If P1 tries
to cheat in Step 5 by exchanging invalid mask shares, P2 detects this with high probability, and
likewise for Step 8.
The adversary corrupts parties P2 and P3. The analysis here is very similar to the case where
parties P1 and P3 are corrupt.

95

The adversary corrupts party P1. We construct a simulator S with access to an adversary A
controlling P1 as follows: S invokes the adversary A, and runs as P2 and P3 would, extracting P1’s
input x through the calls to F1

ss in Step 4. S passes x to the trusted third party, learning f(x, y, z),
and halts, outputting whatever A outputs.

As S acts exactly as P2 and P3 would, and A gets no output, we need only show that the
probability that A aborts in both the real and ideal world is identical. In fact, this follows from
our maliciously secure two-party protocol and the security of the input-consistency checks.
The adversary corrupts party P2. The analysis here is very similar to the case where party P1
is corrupt.
The adversary corrupts party P3. We construct a simulator S with access to an adversary A
controlling P3 as follows: S invokes the adversary A, and runs as P1 and P2 would, extracting P3’s
input z through the Fot calls in Step 5. S then hands z to the trusted third party, who returns
f(x, y, z). In Step 6, S chooses r←$ {0, 1}3ρ, and then for j ∈ {1, . . . , 3ρ} S proceeds as follows: If
r[j] = 0, S constructs a distributed garbled circuit which outputs f(x, y, z), otherwise S proceeds
as normal. Then, in Step 7, S fixes the output of Fcf to be ρ. For the rest of the protocol, S acts
as P1 and P2 would, and eventually halts, outputting what A outputs.

The analysis is very similar to prior work [LP11, pp. 22–23].

Adapting Lindell’s Protocol to the Three-Party Setting

The 3PC protocol described above has a replication factor of roughly 3×; namely, for statistical
security parameter ρ, the actual probability of cheating is roughly 2−0.32ρ [LP11]. Thus, for a
desired error probability of 2−40 a total of 128 circuits need to be garbled. Recently, Lindell [Lin13]
showed a construction which removes this replication factor in the two-party setting; that is, for a
cheating probability of 2−ρ the sender needs to garble only ρ circuits. In this Section we show how
to adapt this protocol to the three-party setting.

Lindell’s construction works in two phases. In the first phase, the parties do a standard cut-
and-choose, with P1 constructing ρ circuits (for error probability 2−ρ) and P2 opening half of them.
If, during evaluation, P2 finds that two or more circuits have conflicting outputs, it stores these
conflicting outputs as a “proof-of-cheating” φ. In the second phase, the parties run a circuit which
takes as input from P1 its original input x, and from P2 the “proof-of-cheating” φ. If φ is a valid
proof, then the circuit reveals x to P2, who can then compute the output itself; otherwise P2 gets
no output. Thus, this second phase enforces that if P1 cheated in the cut-and-choose then P2 learns
P1’s input.

To adapt this to the three-party setting, we proceed as follows. For the circuit in the first
phase, we essentially just run Πm

3PC(P1, P2, P3), with the same tweaks as are used by Lindell [Lin13]
(namely, the use of encoded output translation tables and doing circuit evaluation before circuit
checking).

For the second phase circuit, we run into some issues, due to Lindell’s scheme being inherently
a “two-party” approach. Recall that this circuit is constructed in such a way that if P2 receives
any conflicting outputs when evaluating, he inputs these outputs as a “proof-of-cheating” in order
to reveal P1’s input. At first glance, it appears this technique would not work in the three-party
setting because in that case P3 needs to learn both P1’s and P2’s inputs to reconstruct the output;
however, it could be the case that only one of these two parties is cheating. Recall, however, that
our distributed garbling scheme enforces that as long as one of the two parties is honest, the garbled

96

circuits are “correct” in the sense that they either correctly compute the desired circuit are cause
a failure independent of any party’s input. Thus, P3 only finds mismatched outputs in the case
where both P1 and P2 cheat, making it okay at this point to reveal both those parties’ inputs in
the second phase circuit.

Another issue arises in how this circuit is constructed. In Lindell’s two-party scheme, P1 hard-
wires the output labels into the circuit. In a naive adaptation to the three-party setting, both P1
and P2 would need to hardwire their output sub-labels into the circuit. However, this would allow
each party to learn the others’ sub-labels for the output, which leads to the following attack by a
colluding P1 and P3: During the construction of the second phase circuit, P1 learns P2’s output
sub-labels, and he sends these, as well as his own output sub-labels, to P3. Now, when P3 evaluates
the circuit, he can input conflicting outputs as his “proof-of-cheating” because he knows all of the
outputs labels, thus allowing P1 and P3 to learn P2’s input. We can fix this by having the output
sub-labels of P1 and P2 be inputs to the circuit, rather than hardcoded. However, this raises an-
other issue, as P3 cannot verify that the sub-labels input by P1 and P2 are the correct ones. Thus,
we modify the circuit to output these sub-labels in the clear, allowing P3 to do this check.

See below for the full protocol description.

Auxiliary Inputs: Security parameter κ, statistical security parameter ρ, circuit C0, cyclic group G
with (prime) order q and generator g, randomness extractor Ext, one-way function H.

Inputs: For w ∈ {1, . . . , n1}, P1 has inputs bw; for w ∈ {n1 + 1, . . . , n2}, P2 has inputs bw; for
w ∈ {n2 + 1, . . . , n}, P3 has inputs bw.

1. Each party replaces C0 with a circuit C where each of P3’s input wires is replaced by an exclusive-
or of ρ new input wires. We let (n,m, q, L,R,G) := C, and denote P3’s new inputs by b̂w.

2. For w ∈ {1, . . . , n1}: P1 generates a1
w,0, a

1
w,1 ∈R Zq and constructs set

{
(w, 0, ga

1
w,0), (w, 1, ga

1
w,1)
}

.

For w ∈ {n1+1, . . . , n2}: P2 generates a2
w,0, a

2
w,1 ∈R Zq and constructs set

{
(w, 0, ga

2
w,0), (w, 1, ga

2
w,1)
}

.

For w ∈ {n + q−m + 1, . . . , n + q}: Pi, for i ∈ {1, 2}, generates oiw,0, oiw,1 ∈R {0, 1}
κ.

For j ∈ {1, . . . , ρ}: Pi, for i ∈ {1, 2}, generates rij ∈R Zq and constructs set
{

(j, gr
i
j)
}

.

For j ∈ {1, . . . , ρ}: P1 and P2 run up to Step 2 (“Generate sub-labels”) of Π′GC(P1, P2), where
the parties do the following:

• For w ∈ {1, . . . , n1}: P1 generates sub-labels s1
w,b⊕λw,j ,j := Ext(ga

1
w,b·r

1
j) for b ∈ {0, 1}.

• For w ∈ {n1 + 1, . . . , n2}: P2 generates sub-labels s2
w,b⊕λw,j ,j := Ext(ga

2
w,b·r

2
j) for b ∈ {0, 1}.

• For w ∈ {n + q−m + 1, . . . , n + q}: Pi sets siw,b⊕λw,j := oiw,b.
• All other sub-labels are generated in the normal fashion.

3. For j ∈ {1, . . . , ρ}: P1 and P2 continue their executions of Π′GC(P1, P2), producing (distributed)
garbled circuit GCj := (GC1

j , GC
2
j).

4. For w ∈ {1, . . . , n1}: P1 and P2 compute 〈bw〉 ← F1
ss(bw).

For w ∈ {n1 + 1, . . . , n2}: P1 and P2 compute 〈bw〉 ← F2
ss(bw).

5. For j ∈ {1, . . . , ρ} and w ∈ {n2 + 1, . . . , n}: P1 and P2 exchange 〈λw,j〉 with each other, recon-
structing λw,j locally. Both P1 and P2 send λw,j to P3.

97

For w ∈ {n2 + 1, . . . , n}: Pi, for i ∈ {1, 2}, and P3 run Fot, with Pi as the sender inputting({
siw,λw,j ,j

}
j∈{1,...,ρ}

,
{
siw,λw,j⊕1,j

}
j∈{1,...,ρ}

)
and P3 as the receiver inputting b̂w.

6. For i ∈ {1, 2}: Pi sends the sets constructed in Step 2, along with the garbled circuit
{
Ĉij

}ρ
j=1

,

to P3. In addition, Pi sends the encoded output translation table
{

(H(oiw,0), H(oiw,1))
}n+q
w=n+q−m+1

to P3.

7. The parties compute r ← Fcf . Let CC = {i : r[i] = 1}, and let EC = {1, . . . , ρ} \ CC.

8. For j ∈ EC (the evaluation circuits):

• For w ∈ {1, . . . , n1}: P1 sends 〈bw〉(1) ⊕ 〈λw,j〉(1) to P2, who reconstructs bw ⊕ λw,j locally.
P1 sends (s1

w,bw⊕λw,j ,j , bw ⊕ λw,j) to P3, and P2 sends (s2
w,bw⊕λw,j ,j , bw ⊕ λw,j) to P3.

• For w ∈ {n1 + 1, . . . , n}: P2 sends 〈bw〉(2) ⊕ 〈λw,j〉(2) to P1, who reconstructs bw ⊕ λw,j
locally. P1 sends (s1

w,bw⊕λw,j ,j , bw ⊕ λw,j) to P3, and P2 sends (s2
w,bw⊕λw,j ,j , bw ⊕ λw,j) to

P3.
• For w ∈ {1, . . . , n1}: P1 sends k1

w,j := ga
1
w,bw

·r1
j to P3, who computes s1

w,bw⊕λw,j ,j :=
Ext(ga

1
w,bw

·r1
j).

• For w ∈ {n1 + 1, . . . , n2}: P2 sends k2
w,j := ga

2
w,bw

·r2
j to P3, who computes s2

w,bw⊕λw,j ,j :=
Ext(ga

2
w,bw

·r2
j).

• P3 evaluates circuit GCj using
{

(s1
w,bw⊕λw,j ,j , s

2
w,bw⊕λw,j ,j , bw ⊕ λw,j)

}
w∈{1,...,n}

as inputs.

P3 uses the encoded output translation tables sent in Step 6 to check if he received exactly one
valid output value for each output wire. If not, he stores these outputs as oj0 and oj1 and continues.

9. P1 and P2 construct a circuit C ′ as follows:

• P1 inputs string x ∈ {0, 1}n1 and strings oiw,0, oiw,1 ∈ {0, 1}
κ, for w ∈ {n+q−m+1, . . . , n+q}.

• P1 inputs string y ∈ {0, 1}n2−n1 and strings o2
w,0, o

2
w,1 ∈ {0, 1}

κ, for w ∈ {n + q − m +
1, . . . , n + q}.

• P3 inputs o0, o1 ∈ {0, 1}κ.
• If there exists some j such that o1

j,0‖o2
j,0 = oj0 and o1

j,1‖o2
j,1 = oj1, then P3’s output is x‖y;

otherwise P3 receives no output.

• The circuit also outputs the values
{
o1
w,0, o

1
w,1, o

2
w,0, o

2
w,1
}n+q
w=n+q−m+1 input by parties P1

and P2 above.

The parties run Πm
3PC(P1, P2, P3) on circuit C ′ as follows:

• P1 inputs her input x = b1 . . . bn1 ; P2 inputs his input y = bn1+1 . . . bn2 .
• If P3 received two conflicting outputs o1

0‖o2
0 and o1

1‖o2
1 for some circuit j ∈ {1, . . . , ρ} in

Step 8, then he inputs these values; otherwise he inputs garbage.
• The garbled circuit uses the same a1

w,0, a
1
w,1, a

2
w,0, a

2
w,1 values as in Step 2.

P3 verifies that the values
{
o1
w,0, o

1
w,1, o

2
w,0, o

2
w,1
}n+q
w=n+q−m+1 output by C′ match those in the

encoded output translation tables sent in Step 6

10. For j ∈ CC (the check circuits):

98

• Pi, for i ∈ {1, 2}, does the following:

– Sends rij to P3, and P3 checks that these values are consistent with the pairs
{

(j, gr
i
j)
}

sent before.
– For w ∈ {1, . . . , n}: Sends sub-labels siw,0,j and siw,1,j , mask bit share λ(i)

w,j , and the
labels to the authenticated bits to P3.

• Given the above information, P3 reconstructs all input labels and verifies they match with
those labels sent previously. Also, using said labels, P3 verifies that the garbled circuit is
correctly constructed.

11. For the cut-and-choose computation from Step 9, let ÊE be the check circuits, let r̂ij be analogous
to the rij values from Step 2, and let k̂iw,j be analogous to the kiw,j from Step 6.
For w ∈ {1, . . . , n1}: P1 and P3 run a zero-knowledge proof-of-knowledge, with P1 proving that
there exists some bw ∈ {0, 1} such that for every j ∈ EE and for every j′ ∈ ÊE , k1

w,j = ga
1
w,bw

·r1
j

and k̂1
w,j′ = ga

1
w,bw

·̂r1
j′ .

For w ∈ {n1+1, . . . , n2}: P2 and P3 run a zero-knowledge proof-of-knowledge, with P2 proving that
there exists some bw ∈ {0, 1} such that for every j ∈ EE and for every j′ ∈ ÊE , k2

w,j = ga
2
w,bw

·r2
j

and k̂2
w,j′ = ga

2
w,bw

·̂r2
j′ .

12. P3 either outputs the output received in the evaluation circuits, or, if P3 received any inconsistent
inputs in Step 8, then it locally computes f(x, y, z), where x and y are the inputs P3 received in
Step 9, and z is P3’s own input.

Theorem 6.3. Let C be an arbitrary polynomial-size circuit and let G be a cyclic group with
prime order. Given access to ideal functionalities Fconst, Fgate, Foshare, Fot, Frand, and Fss,
and assuming that the decisional Diffie-Hellman problem is hard in G, then Πm−lindell

3PC (P1, P2, P3)
securely computes the circuit C in the presence of an adversary corrupting an arbitrary number of
parties.

Proof. The analysis here is nearly identical to the previous proof as well as the proof for the
two-party case [Lin13], and thus we just present the simulators for each corruption case.
The adversary corrupts parties P1 and P2. The simulator S is constructed as follows: S
invokes the adversary A, and runs as P3 would, using input 0n−n2 , until Step 11. Here, S uses
the witnesses aiw,bw sent by P1 and P2 for the zero-knowledge proof-of-knowledge to extract their
inputs. S then feeds these inputs to the trusted third party, receiving back f(x, y, z). S continues
to run as P3 would, and halts, outputting whatever A outputs.
The adversary corrupts parties P1 and P3. The simulator S is constructed as follows: S
invokes the adversary A, and runs as P2 would up until Step 6. S can extract both P1’s input
x and its mask bits λw,j through P1’s calls to F1

ss in Step 2 and Step 4. Likewise, in Step 5, S
extracts P3’s input z through the calls to Fot. S then passes x and z to the trusted third party,
learning f(x, y, z). In Step 6, S chooses r←$ {0, 1}ρ. Then for j ∈ {1, . . . , ρ}, S proceeds as follows:
If r[j] = 0, S uses the simulator that is known to exist for the two-party circuit garbling protocol to
construct garbled circuits which output f(x, y, z). Otherwise, S acts as P2 would. S continues to
act as P2 would, except that in Step 7 it sets the output of Fcf to be equal to the r chosen above.
Finally, S halts, outputting whatever A outputs.
The adversary corrupts parties P2 and P3. The analysis here is the same as the case where
parties P1 and P3 are corrupt.

99

The adversary corrupts party P1. We construct a simulator S with access to an adversary A
controlling P1 as follows: S invokes the adversary A, and runs as P2 and P3 would, extracting P1’s
input x through the calls to F1

ss in Step 4. S passes x to the trusted third party, learning f(x, y, z).
For the rest of the protocol, S acts as P2 and P3 would, and eventually halts, outputting whatever
A outputs.
The adversary corrupts party P2. The analysis here is the same as the case where party P1 is
corrupt.
The adversary corrupts party P3. We construct a simulator S with access to an adversary A
controlling P3 as follows: S invokes the adversary A, and runs as P1 and P2 would, extracting P3’s
input z through the Fot calls in Step 5. S then hands z to the trusted third party, who returns
f(x, y, z). In Step 6, S chooses r←$ {0, 1}ρ, and then for j ∈ {1, . . . , ρ} S proceeds as follows: If
r[j] = 0, S constructs a distributed garbled circuit which outputs f(x, y, z), otherwise S proceeds
as normal. Then, in Step 7, S fixes the output of Fcf to be r. For the rest of the protocol, S acts
as P1 and P2 would, and eventually halts, outputting whatever A outputs.

Efficiency

We now briefly argue why our 3PC protocols are roughly eight times as expensive in terms of
computation as the underlying 2PC protocols we utilize, and roughly sixteen times as expensive
in terms of communication; see Section 6.6 for a more detailed analysis and comparison with prior
work.

Both protocols are very similar to the underlying 2PC protocol they are based on; the major
changes in terms of computation cost are that (1) the cost of encrypting a single row increases due
to the use of the distributed encryption scheme, and (2) P3 needs to do twice the work (due to
needing to communicate with both P1 and P2) as compared to the evaluator in the underlying 2PC
protocol. Indeed, it takes about eight PRF calls (where one PRF call equals outputting κ bits) to
encrypt a single row of the garbled circuit, and thus the cost and size of a garbled circuit increases
by a factor of eight. The cost for P1 and P2 to distributively garble a circuit is a small number of
OTs per gate, and this can be amortized using OT extension techniques [IKNP03].

In terms of communication cost, both P1 and P2 need to send their half of the distributed
garbled circuit to P3, and the communication cost of actually constructing a distributed garbled
circuit is roughly the cost of a standard garbled circuit. Since each garbled circuit is eight times
larger than in the underlying 2PC protocol, we find that the overall communication size increases
by approximately sixteen.

6.5 Hybrid Functionalities

We now describe in more detail the ideal functionalities described in Section 6.3, as well as efficient
implementations of them in both the semi-honest and malicious settings.
Secret sharing of a constant bit. The functionality Fbconst is parameterized by a bit b, and
outputs a sharing (authenticated, in the malicious setting) of that bit.

Functionality Fbconst → 〈b〉

Output: The functionality does the following:

100

1. Choose bit r ∈R {0, 1}.

2. (Semi-honest setting) Output r to Pi and r ⊕ b to Pj .

3. (Malicious setting) Construct authenticated bits ri = 〈r〉(i) and rj = 〈r ⊕ b〉(j), and output ri to
party Pi and rj to party Pj .

In the semi-honest setting, this functionality can be instantiated by having Pi generate a random
bit r and sending r to Pj , who computes r ⊕ b. In the malicious setting we can instantiate this
using the protocol described by Nielsen et al. [NNOB12, Figure 3].

Bit secret sharing. The functionality Fss in the semi-honest setting is the standard secret sharing
functionality. In the malicious setting, the functionality creates an authenticated sharing of the
input bit.

Functionality F iss(b)→ 〈b〉

Input: Party Pi inputs a bit b.

Output: The functionality does the following:

1. Select r ∈R {0, 1} uniformly at random.

2. (Semi-honest setting) Output r to party Pj , and b⊕ r to party Pi.

3. (Malicious setting) Construct authenticated bits bj = 〈r〉(j) and bi = 〈b⊕ r〉(i), and output bj to
party Pj and bi to party Pi.

Implementing the functionality in the semi-honest setting is trivial. In the malicious setting we can
use the Input protocol described by Nielsen et al. [NNOB12, Figure 6].

One-out-of-two oblivious secret sharing. The functionality Foshare is used to share the sub-
labels of the garbled table in an oblivious fashion while preserving consistency with respect to the
circuit such that the circuit evaluation succeeds given the correct input sub-labels. More precisely,
Foshare interacts with two parties, called the sender Pj and the receiver Pi; it expects two inputs,
m0 and m1, from the sender along with a two-out-of-two sharing 〈b〉 of a selection bit b between
the sender and receiver, and outputs a random two-out-of-two sharing [mb] of mb. In the malicious
setting, 〈b〉 is an authenticated bit share. The functionality does not leak any information about b
to the parties. Furthermore, when the sender is honest, it leaks no information on its inputs to the
receiver. However, to ensure simulatability we allow a corrupted sender to choose its output share,
y(j), at will.

Functionality F i,joshare(〈b〉(i), (〈b〉(j),m0,m1, y
(j)))→ [mb]

Input: Party Pi inputs share bi = 〈b〉(i). Party Pj inputs share bj = 〈b〉(j) and vector (m0,m1) ∈
{0, 1}κ × {0, 1}κ. In the malicious setting, bi and bj are authenticated. Additionally, party Pj inputs a
value y(j) ∈ {0, 1}κ ∪ {⊥}; if Pj is honest it sets y(j) = ⊥, otherwise y(j) can be arbitrary.

Output: The functionality does the following:

1. (Malicious setting) If either 〈b〉(i) or 〈b〉(j) is not a correctly authenticated bit then abort.

2. Compute b := bi ⊕ bj
3. If y(j) = ⊥, then choose y(j) ∈R {0, 1}κ.

101

4. Output mb ⊕ y(j) to Pi and y(j) to Pj .

See Section 6.5.1 for an instantiation of Foshare in the semi-honest setting, and Section 6.5.2 for
an instantiation in the malicious setting.
Oblivious secret sharing. The oblivious secret sharing functionality Frand takes no inputs, and
outputs a sharing of a random bit. In the malicious setting, this output sharing is authenticated.

Functionality Frand → 〈r〉

Output: The functionality does the following:

1. Choose bits r, r′ ∈R {0, 1}.

2. (Semi-honest setting) Output r′ to Pi and r ⊕ r′ to Pj .

3. (Malicious setting) Construct authenticated bits ri = 〈r′〉(i) and rj = 〈r ⊕ r′〉(j), and output ri
to party Pi and rj to party Pj .

In the semi-honest setting, this can be easily instantiated by each party choosing a random bit ri
and letting r = ri⊕rj . In the malicious setting we need to construct authenticated shares and thus
need additional machinery: we can utilize the Rand protocol by Nielsen et al. [NNOB12, Figure
6].
Oblivious gate evaluation. The functionality FGgate takes as inputs shares of bits a and b, and
outputs a share of G(a, b) for some binary gate G. In the malicious setting, both input and output
shares are authenticated.

Functionality FGgate(〈a〉, 〈b〉)→ 〈G(a, b)〉

Input: The parties input bit shares 〈a〉 and 〈b〉. In the malicious setting, these shares are authenticated.

Auxiliary Input: The description of a binary gate G.

Output: The functionality does the following:

1. (Malicious setting) If any of the shares are not correctly authenticated then abort.

2. Compute a and b from the shares.

3. Compute c = G(a, b) and output a sharing (authenticated in the malicious setting) of c.

As our circuits require only AND and XOR gates, we only consider those choices for G here. In the
semi-honest setting, we can compute XOR gates locally and AND gates using one-out-of-four OT,
as is done in the GMW protocol [GMW87]. In the malicious setting we can efficiently instantiate
the functionality for XOR and AND gates using the XOR and AND protocols by Nielsen et
al. [NNOB12, Figure 6].
Oblivious transfer. The functionality Fot implements standard oblivious transfer.

Functionality F i,jot (b, (m0,m1))→ mb

Input: Party Pi inputs a choice bit b. Party Pj inputs two messages m0 and m1.

Output: The functionality outputs mb to Pi, and ⊥ to Pj .

This can be implemented efficiently in both the semi-honest and malicious setting using known
existing protocols [PVW08].

102

6.5.1 Semi-honest Implementation of Foshare

The following protocol implements the Foshare functionality, where m � b = m if b = 1 and the
zero-string otherwise.

Protocol Πi,j
oshare(〈b〉(i), (〈b〉(j),m0,m1,⊥))

Input: Party Pi inputs its share bi = 〈b〉(i) of 〈b〉. Party Pj inputs its share bj = 〈b〉(j) of 〈b〉 along
with two strings m0,m1 ∈ {0, 1}κ.

1. Pj chooses r ∈R {0, 1}κ uniformly at random.

2. Execute Fot with Pj as the sender having inputs (s0, s1) = (m0⊕r,m1⊕r), and Pi as the receiver
having input b′ = 1⊕ bi; denote Pi’s output as yi.

Outputs: Pj outputs yj = ((m0 ⊕m1)� (1⊕ bj))⊕ r and Pi outputs yi.

Lemma 6.1. The protocol Πi,j
oshare securely implements the functionality F i,joshare in the presence

of a semi-honest adversary in the Fot-hybrid world.

Proof. First, we show correctness; namely, we argue that the output of the protocol is a two-out-
of-two sharing of mb, that is, yi ⊕ yj = mb. Indeed,

yi ⊕ yj = m1⊕bi ⊕ r ⊕ ((m0 ⊕m1)� (1⊕ bj))⊕ r
= m1⊕bi ⊕ ((m0 ⊕m1)� (1⊕ bj)).

Note that if bj = 0, we have

yi ⊕ yj = m1⊕bi ⊕m0 ⊕m1 = mb.

Likewise, if bj = 1, we have
yi ⊕ yj = m1⊕bi = mb.

To prove that the protocol is simulatable, observe that (1) Pj receives no information in the
protocol (which follows from the privacy of OT) and (2) Pi only sees yi, where the value m1⊕bi is
perfectly blinded by r. Hence, similarly to the ideal evaluation of F i,joshare, the values seen by the
parties give them no information. More formally, we consider the following cases:

Pi is corrupted: The simulator, emulating the execution of Fot towards Pi, waits for A to input
his bit 1 ⊕ 〈b〉(i). The simulator extracts 〈b〉(i), submits it to Foshare, forwards the reply to
A, and halts with A’s output.

Pj is corrupted: The simulator receives the messages (m0⊕r,m1⊕r) from A and extracts r. The
simulator then submits (〈b〉(j),m0,m1, y

(j)) to Foshare, where y(j) = (m0⊕m1)�(1⊕〈b〉(j))⊕r,
and halts with A’s output.

Noting that each of these simulators perfectly simulates the adversary in the Fot-hybrid world, the
protocol is secure.

103

6.5.2 The Malicious Setting

In the malicious setting we utilize ideas from the protocol by Nielsen et al. [NNOB12]. In particular,
each party Pi holds a global key ∆i, which they use to construct authenticated bit shares. For a
bit b authenticated towards Pi, Pi holds both the bit b and a MAC Mb, with Pj holding the
authentication key Kb, with the condition that Mb = Kb ⊕ b∆j . To ease notation, in this Section
we let 〈b〉(i) = (b,Mb,Kb).
Authenticated bit. We repeat here the FaBit functionality [NNOB12, Figure 5].

Functionality FaBit → 〈r〉(i)

Auxiliary Input: Party Pj inputs its global key ∆j ∈ {0, 1}κ.

Output:
1. (If Pi is malicious) Set 〈b〉(i) = (b,M,M ⊕ b∆).
2. (If Pj is malicious) Let b ∈R {0, 1} and set 〈b〉(i) = (b,K ⊕ b∆j ,K).
3. (If both are honest) Let b ∈R {0, 1} and K ∈R {0, 1}κ, and set 〈b〉(i) = (b,K ⊕ b∆j ,K).
4. Output (b,K ⊕ b∆j) to Pi and (K,∆j) to Pj .

The implementation of FaBit is detailed in the work of Nielsen et al. [NNOB12, Section 4] and not
repeated here. Note that the parties can utilize FaBit to construct a constant bit by Pi setting
M = 0κ and Pj setting K = b∆j .
Receiver-authenticated one-out-of-two oblivious transfer. We first define the functionality
for receiver-authenticated oblivious transfer, which we utilize in our construction of a maliciously
secure implementation of Foshare.

Functionality F i,jraot(〈b〉(i), (m0,m1))→ mb

Input: Party Pi inputs an authenticated choice bit b. Party Pj inputs two messages m0 and m1.

Output: The functionality does the following:
1. If Pi’s choice bit b is not correctly authenticated then abort.
2. Output mb to Pi.

In order to efficiently implement Fraot, we need the following functionality:

Functionality Feq(a, b)→ {0, 1}

Input: Party Pi inputs a ∈ {0, 1}κ, and party Pj inputs b ∈ {0, 1}κ.

Output: The functionality outputs 1 if a = b, and 0 otherwise.

This can be instantiated efficiently using two calls to a random oracle H [NNOB12, pg. 7]. We can
thus instantiate Fraot as follows:

Protocol Πraot(〈b〉(i), (m0,m1))

Let 〈b〉(i) = (b,Mb,Kb).

1. The parties compute 〈r〉(i) = (r,Mr,Kr)← F iaBit.

2. Pi computes d = b⊕ r and sends d to Pj .

3. Pi sends Mb⊕Mr to Feq, and Pj sends (Kb⊕Kr)⊕ d∆j to Feq, to check the equality of the two

104

values. If they are not equal, Pj aborts the protocol.

4. The parties then compute 〈d〉(i) ← Fdconst.

5. Let 〈w〉(i) = 〈r〉(i) ⊕ 〈d〉(i). Pj sends X0 = H(Kw)⊕m0 and X1 = H(Kw ⊕∆j)⊕m1 to Pi.

Output: Pi outputs Xw ⊕H(Mw) and Pj outputs ⊥.

Lemma. The protocol Πraot securely implements the functionality Fraot in the presence of a ma-
licious adversary in the Random Oracle model.

Proof. Correctness is immediate. To prove simulatability, we consider the following corruption
cases:

Pi is corrupted: The simulator S simulating an adversary A corrupting Pi proceeds as follows.
S forwards its input (b,Mb) to A as input to the protocol. If A sends a message v to Feq
such that v 6= Mb⊕Mr, S aborts the protocol. Otherwise, S sends 〈b〉(i) to the trusted party,
receiving back mb. S then generates two random bit-strings X0 and X1, and programs H so
that H(Mw) = Xb ⊕mb. Finally, S sends X0 and X1 to A.

Pj is corrupted: The simulator S simulating an adversary A corrupting Pj proceeds as follows.
S forwards its input (m0,m1,Kb) to A as input to the protocol. If A sends a message v to
Feq such that v 6= (Kb ⊕Kr)⊕ d∆j , S aborts the protocol. Next, S waits until Pj sends X0
and X1 to Pi. It then uses its knowledge of 〈r〉(i) and 〈d〉(i) to extract m0 and m1, which it
feeds to the trusted party.

Noting that each of these simulators perfectly simulate the adversary in the (FaBit, Fconst, Feq)-
hybrid world, the protocol is secure.

One-out-of-two oblivious secret sharing. We can instantiate Foshare in the malicious setting
using a protocol similar to Πoshare with the following modifications:

1. We use receiver-authenticated OT in place of standard OT;

2. To ensure that the simulator can extract consistent inputs from a corrupted sender, we do
two invocations of Fraot;

3. In order to extract Pj ’s input in the case Pj is corrupt, we need an addition authentication
check requiring one invocation of FaBit.

Protocol Πi,j
oshare−m(〈b〉(i), (〈b〉(j),m0,m1,⊥))

Let 〈b〉(i) = (bi,Mbi ,Kbi) and 〈b〉(j) = (bj ,Mbj ,Kbj).

1. Pj chooses r0, r1 ∈R {0, 1}κ uniformly at random.

2. Execute Fraot with Pj as sender having inputs (s0, s1) = (m0⊕r0,m1⊕r1), and Pi as the receiver
having input 〈1〉(i) ⊕ 〈b〉(i); Pi denotes his output by yi.

3. Execute Fraot with Pj as sender having inputs (s0, s1) = (r0, r1), and Pi as the receiver having
input 〈b〉(i); Pi denotes his output by rbi .

4. Execute 〈r〉(j) = (r,Mr,Kr) ← FjaBit. Pj sends (d,Md) to Pi, where d = r ⊕ bj and Md =
Mr ⊕Mbj , and Pi checks if (d,Md,Kd ⊕Kr) is a valid authenticated bit, aborting if not.

105

Outputs: Pj outputs y(j) = ((m0 ⊕m1)� (1⊕ bj))⊕ r0 ⊕ r1 and Pi outputs yi ⊕ rbi .

Lemma. The protocol Πoshare−m securely implements the functionality Foshare in the presence of
a malicious adversary in the (FaBit, Fraot)-hybrid world.

Proof. We first demonstrate correctness. It suffices to show that yi ⊕ yj = mb. Indeed,

yi ⊕ yj = (m1⊕bi ⊕ r1⊕bi ⊕ rbi)⊕ ((m0 ⊕m1)� (1⊕ bj))⊕ r0 ⊕ r1

= m1⊕bi ⊕ ((m0 ⊕m1)� (1⊕ bj)),

and the derivation follows exactly as in the semi-honest case.
To prove that the protocol is simulatable, we consider the following corruption cases:

Pi is corrupted: The simulator S waits for A to input his choice bit 〈b′〉(i) to the first Fraot
invocation. If 〈b′〉 is not a valid authenticated bit, S aborts. Otherwise, S returns to A a
random string y′i. Likewise, in the second Fraot invocation, S retrieves 〈b〉(i) from A, aborting
if the authentication check fails. S then invokes Foshare with 〈b〉(i), receiving Pi’s output yi.
S computes r′i = yi ⊕ y′i and sends r′i to A as the output of the second Fraot. Finally, S acts
as Pj would in Step 4, and halts with A’s output.

Pj is corrupted: The simulator S emulates the two executions of Fraot towards the adversary
A controlling Pj , from which S receives (x0, x1) and (r′0, r′1), respectively. In Step 4, S
extracts 〈bj〉(j). S then computes (m′0,m′1) = (x0 ⊕ r′0, x1 ⊕ r′1) and submits the message
(〈bj〉(j),m′0,m′1, y(j)) to Foshare, where y(j) = ((m′0⊕m′1)� (1⊕ bj))⊕ r′0⊕ r′1, and halts with
A’s output.

Noting that each of these simulators perfectly simulates the adversary in the (FaBit, Fraot)-hybrid
world, the protocol is secure.

6.6 Evaluation

For simplicity we assume each party’s input has length `. Since we apply the XOR-tree technique
to P3’s input, we let `′ = max{4`, 8ρ} be the new input length.

Protocol based on cut-and-choose. Table 6.1 details the specific computational cost of each
step for Πm

3PC(P1, P2, P3). Note that these numbers are across all parties; the actual per-party cost
is less. Each of the hybrid calls can be instantiated efficiently using known techniques: Fcf can be
instantiated very efficiently in the random oracle model requiring only three oracle calls, Fzkpok
can be instantiated using 3ρ/2+18 exponentiations [LP11, pg. 36], and Fot can be computed using
three exponentiations [PVW08].

Protocol based on Lindell’s protocol. The concrete computational cost for this protocol
are similar to the ones above, except ρ in this case is smaller to achieve the same level of security.
However, we must run the above protocol as a sub-protocol. See Table 6.2 for the concrete efficiency
counts.

Comparison with SPDZ. We compare our three-party protocol with the SPDZ protocol [BDOZ11,
DPSZ12, DKL+12, DKL+13, KSS13], an efficient MPC protocol which works for n parties and arbi-
trary corruptions over arithmetic circuits, and follows the preprocessing paradigm. SPDZ represents

106

Step Exponentiations Hybrids Calls Symmetric Ops

1
2 4`+ 2(3ρ) (2` · Fss + (`′ + q) · Frand + 4` ·H) · (3ρ)
3 (4q · Fgate + 8q · Foshare) · (3ρ) 8(3ρ)q
4 2` · Fss
5 (2`′ · Fot) · (3ρ)
6
7 Fcf
8
9 3ρ 4(3ρ)q
10 (2` ·H + 2` · Fzkpok) · (3ρ)
11 (3ρ)q

Table 6.1: Computational cost for each step of Πm
3PC(P1, P2, P3).

Step Exponentiations Hybrids Calls Symmetric Ops

1
2 4`+ 2ρ (2` · Fss + (`′ + q)Frand + 4` ·H) · ρ
3 (4q · Fgate + 8q · Foshare) · ρ 8ρq
4 2` · Fss
5 (2`′ · Fot) · ρ
6 (2m ·H) · ρ
7 Fcf
8 ((2`+ m) ·H) · ρ ρq
9 — Cost of running Πm

3PC(P1, P2, P3) on circuit of size roughly O (`+ m) —
10 ρ 4ρq
11 (2` · Fzkpok) · ρ
12

Table 6.2: Computational cost for each step of Πm−lindell
3PC (P1, P2, P3).

the state-of-the-art at the time of writing in terms of efficiency in the multi-party setting. Here
we focus on the differences between both SPDZ and our protocol, and discuss their strengths and
weaknesses. Due to the different characteristics of each protocol (e.g., arithmetic versus boolean,
linear versus constant round, etc.), these protocols are somewhat “incomparable”. However, we
hope to give a general idea of the efficiency trade-offs of both protocols.

There are several key differences between the SPDZ protocol and our own. For one, SPDZ
works over arithmetic circuits, whereas our protocol works over boolean circuits.2 In terms of
communication, the SPDZ protocol requires rounds linear in the depth of the circuit, whereas
our protocol is constant-round. While it is difficult to compare the impact of this without an
implementation and experiments, it seems intuitive that as the latency between machines increases,
the cost of each additional communication round increases as well; this intuition has been backed
up by experiments in the semi-honest setting [SZ13].

Finally, we consider the start-to-finish execution time (i.e., including the cost of preprocessing)
for running an AES circuit. The preprocessing in our protocol is basically that found in the
TinyOT protocol [NNOB12], and, using the numbers presented there, is fairly efficient (around

2Damg̊ard and Zakarias [DZ13] develop a SPDZ-like protocol for Boolean circuits; however, its practical efficiency
is unclear.

107

1 minute [NNOB12, Figure 21]). Efficiency comes from the fact that the preprocessing is only
between two parties, namely, the circuit generators. The on-line running time is conjectured to be
around that of maliciously secure two-party protocols using cut-and-choose.

The SPDZ protocol, on the other hand, has a very efficient (information-theoretic) online phase
but a much costlier offline phase (around 17 minutes for three parties [DKL+12, Table 2]). In
addition, it has a one-time setup phase which is very costly: the parties need to execute an MPC
protocol for a circuit which generates a key pair with the secret key secret-shared among the
parties. Executing this on its own would likely eclipse the running time of our protocol.3 Thus,
given preprocessing, it seems likely that SPDZ would out-perform our protocol; however, in the
setting of executing the protocol from start to finish, we conjecture that our protocol would be
more efficient.

Finally, our protocol is most efficient in the random oracle model, whereas SPDZ works in the
standard model.

3We note that the work of Damg̊ard et al. [DKL+13] presents an efficient protocol for this one-time setup phase
in the weaker covert security model [AL07].

108

Chapter 7

Conclusion

In this dissertation we presented four improvements to the state-of-the-art in secure computation
for various security models and settings. In Chapter 3 we show how to achieve an upwards of 5×
improvement over the state-of-the-art maliciously secure two-party computation (2PC) protocols
when considering the multiple-execution setting, where the two parties would like to compute the
same function multiple times. In Chapter 4, we show a protocol in the publicly-verifiable covert
(PVC) setting, where a cheating party produces a certificate of cheating if caught, which is nearly
as efficient as the best known protocol in the covert setting. In Chapter 5, we present a maliciously
secure 2PC protocol for functions with predicate checks on their inputs. And finally, in Chapter 6,
we show an efficient three-party secure computation protocol which utilizes ideas from the two-party
setting to construct a protocol more efficient than known multi-party protocols.

While these results bring the community closer to making secure computation a truly practical
tool, there is still a lot of work that needs to be done before we can expect secure computation
to be a viable approach in real-world settings. First and foremost, robust implementations need
to be developed to benchmark the various proposed protocols, including several presented in this
dissertation. We have done some initial work on this with the release of libgarble1, a garbled
circuit library based on an implementation by Bellare et al. [BHKR13]. However, more needs to be
done. Well developed libraries for oblivious transfer and other secure computation primitives need
to be developed, and efficient and easy-to-use frameworks for implementing secure computation
protocols need to be released to further the development of more efficient protocols. With regards
to the (theoretical) research side of things, a better understanding of what security models are
applicable to what settings needs to be studied, to determine whether semi-honest, PVC, or mali-
cious protocols need to be used for certain real-world applications. Finally, developing ever-more
practical protocols is always an important step towards making secure computation deployable in
practice.

1https://github.com/amaloz/libgarble

109

https://github.com/amaloz/libgarble

Bibliography

[AIKW13] Benny Applebaum, Yuval Ishai, Eyal Kushilevitz, and Brent Waters. Encoding func-
tions with constant online rate or how to compress garbled circuits keys. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS,
pages 166–184. Springer, Heidelberg, August 2013.

[AL07] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient
protocols for realistic adversaries. In Salil P. Vadhan, editor, TCC 2007, volume 4392
of LNCS, pages 137–156. Springer, Heidelberg, February 2007.

[AL10] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient
protocols for realistic adversaries. Journal of Cryptology, 23(2):281–343, April 2010.

[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More effi-
cient oblivious transfer and extensions for faster secure computation. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13, pages 535–548. ACM
Press, November 2013.

[ALSZ15] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient
oblivious transfer extensions with security for malicious adversaries. In Elisabeth Os-
wald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS,
pages 673–701. Springer, Heidelberg, April 2015.

[AMPR14] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive secure
computation based on cut-and-choose. In Phong Q. Nguyen and Elisabeth Oswald, ed-
itors, EUROCRYPT 2014, volume 8441 of LNCS, pages 387–404. Springer, Heidelberg,
May 2014.

[AO12] Gilad Asharov and Claudio Orlandi. Calling out cheaters: Covert security with public
verifiability. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume
7658 of LNCS, pages 681–698. Springer, Heidelberg, December 2012.

[App13] Benny Applebaum. Garbling XOR gates “for free” in the standard model. In Amit
Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 162–181. Springer, Heidelberg,
March 2013.

[BBB+12] Elaine Barker, William Barker, William Burr, William Polk, and Miles Smid. Rec-
ommendation for key management — Part 1: General (Revision 3). NIST Special
Publication 800-57, July 2012.

110

[BDOZ11] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Kenneth G. Paterson, editor,
EUROCRYPT 2011, volume 6632 of LNCS, pages 169–188. Springer, Heidelberg, May
2011.

[BGMW93] Ernest F. Brickell, Daniel M. Gordon, Kevin S. McCurley, and David Bruce Wilson.
Fast exponentiation with precomputation (extended abstract). In Rainer A. Rueppel,
editor, EUROCRYPT’92, volume 658 of LNCS, pages 200–207. Springer, Heidelberg,
May 1993.

[BHKR13] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Efficient
garbling from a fixed-key blockcipher. In 2013 IEEE Symposium on Security and
Privacy, pages 478–492. IEEE Computer Society Press, May 2013.

[BHR12a] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling
with applications to one-time programs and secure outsourcing. In Xiaoyun Wang
and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 134–153.
Springer, Heidelberg, December 2012.

[BHR12b] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits.
In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 12, pages 784–
796. ACM Press, October 2012.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In 22nd ACM STOC, pages 503–513. ACM Press, May
1990.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In 20th
ACM STOC, pages 1–10. ACM Press, May 1988.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

[CJJ+13] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin
Rosu, and Michael Steiner. Highly-scalable searchable symmetric encryption with sup-
port for boolean queries. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 353–373. Springer, Heidelberg, August 2013.

[CKKZ12] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. On the
security of the “free-XOR” technique. In Ronald Cramer, editor, TCC 2012, volume
7194 of LNCS, pages 39–53. Springer, Heidelberg, March 2012.

[CKMZ14] Seung Geol Choi, Jonathan Katz, Alex J. Malozemoff, and Vassilis Zikas. Efficient
three-party computation from cut-and-choose. In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 513–530. Springer,
Heidelberg, August 2014.

111

[CO15] Tung Chou and Claudio Orlandi. The simplest protocol for oblivious transfer. In
Kristin E. Lauter and Francisco Rodŕıguez-Henŕıquez, editors, LATINCRYPT 2015,
volume 9230 of LNCS, pages 40–58. Springer, Heidelberg, August 2015.

[Cry] Crypto++ 5.6.0 benchmarks. http://www.cryptopp.com/benchmarks.html. Ac-
cessed 2015-05-08.

[de 95] Peter de Rooij. Efficient exponentiation using procomputation and vector addition
chains. In Alfredo De Santis, editor, EUROCRYPT’94, volume 950 of LNCS, pages
389–399. Springer, Heidelberg, May 1995.

[DI05] Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computation using a black-
box pseudorandom generator. In Victor Shoup, editor, CRYPTO 2005, volume 3621
of LNCS, pages 378–394. Springer, Heidelberg, August 2005.

[DKL+12] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Christian Miles, and Nigel P. Smart.
Implementing AES via an actively/covertly secure dishonest-majority MPC protocol.
In Ivan Visconti and Roberto De Prisco, editors, SCN 12, volume 7485 of LNCS, pages
241–263. Springer, Heidelberg, September 2012.

[DKL+13] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and
Nigel P. Smart. Practical covertly secure MPC for dishonest majority - or: Break-
ing the SPDZ limits. In Jason Crampton, Sushil Jajodia, and Keith Mayes, editors,
ESORICS 2013, volume 8134 of LNCS, pages 1–18. Springer, Heidelberg, September
2013.

[DO10] Ivan Damg̊ard and Claudio Orlandi. Multiparty computation for dishonest majority:
From passive to active security at low cost. In Tal Rabin, editor, CRYPTO 2010,
volume 6223 of LNCS, pages 558–576. Springer, Heidelberg, August 2010.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty com-
putation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran
Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 643–662. Springer, Hei-
delberg, August 2012.

[DZ13] Ivan Damg̊ard and Sarah Zakarias. Constant-overhead secure computation of boolean
circuits using preprocessing. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS,
pages 621–641. Springer, Heidelberg, March 2013.

[FJN+13] Tore Kasper Frederiksen, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Peter Sebastian
Nordholt, and Claudio Orlandi. MiniLEGO: Efficient secure two-party computation
from general assumptions. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 537–556. Springer, Heidelberg, May
2013.

[FNO15] Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Orlandi. Privacy-free
garbled circuits with applications to efficient zero-knowledge. In Elisabeth Oswald
and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages
191–219. Springer, Heidelberg, April 2015.

112

http://www.cryptopp.com/benchmarks.html

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 465–482. Springer, Heidelberg, August
2010.

[GKK+12] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin,
Mariana Raykova, and Yevgeniy Vahlis. Secure two-party computation in sublinear
(amortized) time. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM
CCS 12, pages 513–524. ACM Press, October 2012.

[GMS08] Vipul Goyal, Payman Mohassel, and Adam Smith. Efficient two party and multi party
computation against covert adversaries. In Nigel P. Smart, editor, EUROCRYPT 2008,
volume 4965 of LNCS, pages 289–306. Springer, Heidelberg, April 2008.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
ACM STOC, pages 218–229. ACM Press, May 1987.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cam-
bridge University Press, Cambridge, UK, 2004.

[HEK12] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled
circuits better than custom protocols? In NDSS 2012. The Internet Society, February
2012.

[HKE13] Yan Huang, Jonathan Katz, and David Evans. Efficient secure two-party computa-
tion using symmetric cut-and-choose. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 18–35. Springer, Heidelberg,
August 2013.

[HKK+14] Yan Huang, Jonathan Katz, Vladimir Kolesnikov, Ranjit Kumaresan, and Alex J.
Malozemoff. Amortizing garbled circuits. In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 458–475. Springer,
Heidelberg, August 2014.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–
161. Springer, Heidelberg, August 2003.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious
transfer - efficiently. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 572–591. Springer, Heidelberg, August 2008.

[JJK+13] Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin Rosu, and
Michael Steiner. Outsourced symmetric private information retrieval. In Ahmad-
Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13, pages 875–888.
ACM Press, November 2013.

113

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using
garbled circuits: how to prove non-algebraic statements efficiently. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13, pages 955–966.
ACM Press, November 2013.

[KM15] Vladimir Kolesnikov and Alex J. Malozemoff. Public verifiability in the covert model
(almost) for free. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015,
Part II, volume 9453 of LNCS, pages 210–235. Springer, Heidelberg, November / De-
cember 2015.

[KMsB13] Ben Kreuter, Benjamin Mood, abhi shelat, and Kevin Butler. PCF: A portable cir-
cuit format for scalable two-party secure computation. In Sam King, editor, 22nd
USENIX Security Symposium, Washington, D.C., USA, August 14–16, 2013. USENIX
Association.

[KMW16] Jonathan Katz, Alex J. Malozemoff, and Xiao Wang. Efficiently enforcing input va-
lidity in secure two-party computation. Cryptology ePrint Archive, Report 2016/184,
2016. https://eprint.iacr.org/2016/184.

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension
with optimal overhead. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 724–741. Springer, Heidelberg,
August 2015.

[KS06] Mehmet Kiraz and Berry Schoenmakers. A protocol issue for the malicious case of
Yao’s garbled-circuit construction. In 27th Symposium on Information Theory in the
Benelux, pages 283–290, June 2006.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates
and applications. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M.
Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008, Part II,
volume 5126 of LNCS, pages 486–498. Springer, Heidelberg, July 2008.

[KsS12] Benjamin Kreuter, abhi shelat, and Chih-Hao Shen. Towards billion-gate secure com-
putation with malicious adversaries. In Tadayoshi Kohno, editor, 21st USENIX Secu-
rity Symposium, Bellevue, Washington, USA, August 8–10, 2012. USENIX Association.

[KSS13] Marcel Keller, Peter Scholl, and Nigel P. Smart. An architecture for practical actively
secure MPC with dishonest majority. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and
Moti Yung, editors, ACM CCS 13, pages 549–560. ACM Press, November 2013.

[Lin13] Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert adver-
saries. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume
8043 of LNCS, pages 1–17. Springer, Heidelberg, August 2013.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party com-
putation in the presence of malicious adversaries. In Moni Naor, editor, EURO-
CRYPT 2007, volume 4515 of LNCS, pages 52–78. Springer, Heidelberg, May 2007.

114

https://eprint.iacr.org/2016/184

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party
computation. Journal of Cryptology, 22(2):161–188, April 2009.

[LP11] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose
oblivious transfer. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages
329–346. Springer, Heidelberg, March 2011.

[LR14] Yehuda Lindell and Ben Riva. Cut-and-choose Yao-based secure computation in the
online/offline and batch settings. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 476–494. Springer, Heidelberg,
August 2014.

[LR15] Yehuda Lindell and Ben Riva. Blazing fast 2PC in the offline/online setting with secu-
rity for malicious adversaries. In Indrajit Ray, Ninghui Li, and Christopher Kruegel:,
editors, ACM CCS 15, pages 579–590. ACM Press, October 2015.

[MF06] Payman Mohassel and Matthew Franklin. Efficiency tradeoffs for malicious two-party
computation. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors,
PKC 2006, volume 3958 of LNCS, pages 458–473. Springer, Heidelberg, April 2006.

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay — a secure two-
party computation system. In Matt Blaze, editor, 13th USENIX Security Symposium,
San Diego, California, USA, August 9–13, 2004. USENIX Association.

[MR13] Payman Mohassel and Ben Riva. Garbled circuits checking garbled circuits: More
efficient and secure two-party computation. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 36–53. Springer, Heidelberg,
August 2013.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In Reihaneh
Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages
681–700. Springer, Heidelberg, August 2012.

[NO09] Jesper Buus Nielsen and Claudio Orlandi. LEGO for two-party secure computation.
In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 368–386. Springer,
Heidelberg, March 2009.

[NSA] The case for elliptic curve cryptography. https://www.nsa.gov/business/programs/
elliptic_curve.shtml. Accessed 2015-05-07.

[Pin03] Benny Pinkas. Fair secure two-party computation. In Eli Biham, editor, EURO-
CRYPT 2003, volume 2656 of LNCS, pages 87–105. Springer, Heidelberg, May 2003.

[PKV+14] Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal Malkin, Seung Geol
Choi, Wesley George, Angelos D. Keromytis, and Steve Bellovin. Blind seer: A scalable
private DBMS. In 2014 IEEE Symposium on Security and Privacy, pages 359–374.
IEEE Computer Society Press, May 2014.

115

https://www.nsa.gov/business/programs/elliptic_curve.shtml
https://www.nsa.gov/business/programs/elliptic_curve.shtml

[PSSW09] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure
two-party computation is practical. In Mitsuru Matsui, editor, ASIACRYPT 2009,
volume 5912 of LNCS, pages 250–267. Springer, Heidelberg, December 2009.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume
5157 of LNCS, pages 554–571. Springer, Heidelberg, August 2008.

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles
Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 239–252. Springer, Heidel-
berg, August 1990.

[sS11] abhi shelat and Chih-Hao Shen. Two-output secure computation with malicious ad-
versaries. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS,
pages 386–405. Springer, Heidelberg, May 2011.

[SZ13] Thomas Schneider and Michael Zohner. GMW vs. Yao? Efficient secure two-party
computation with low depth circuits. In Ahmad-Reza Sadeghi, editor, FC 2013, volume
7859 of LNCS, pages 275–292. Springer, Heidelberg, April 2013.

[WHZ+15] Xiao Shaun Wang, Yan Huang, Yongan Zhao, Haixu Tang, XiaoFeng Wang, and Diyue
Bu. Efficient genome-wide, privacy-preserving similar patient query based on private
edit distance. In Indrajit Ray, Ninghui Li, and Christopher Kruegel:, editors, ACM
CCS 15, pages 492–503. ACM Press, October 2015.

[Woo07] David P. Woodruff. Revisiting the efficiency of malicious two-party computation. In
Moni Naor, editor, EUROCRYPT 2007, volume 4515 of LNCS, pages 79–96. Springer,
Heidelberg, May 2007.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd
FOCS, pages 160–164. IEEE Computer Society Press, November 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing
data transfer in garbled circuits using half gates. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 220–250.
Springer, Heidelberg, April 2015.

116

	Introduction
	Preliminaries
	The Multiple-execution Setting
	Our Contribution
	Preliminaries
	The Parallel Execution Setting
	The Sequential Execution Setting

	The Publicly Verifiable Covert Setting
	Our Contribution
	Preliminaries
	Signed Oblivious Transfer Extension
	Our Protocol
	Evaluation

	The Input Validity Setting
	Preliminaries
	Our Protocol
	Protocol Optimizations
	Evaluation

	The Three Party Setting
	Our Contribution
	Preliminaries
	Two-Party Distributed Garbling Scheme
	Three-Party Computation from Cut-and-Choose
	Hybrid Functionalities
	Evaluation

	Conclusion
	Bibliography

