
Provable Security for Cryptocurrencies

Dissertation submitted to the Faculty of the Graduate School of the

University of Maryland, College Park in partial fulfillment

of the requirements for the degree of Doctor of Philosophy

July 29, 2016

Andrew Miller

Committee Co-Chairs:

Prof. Jonathan Katz

Prof. Elaine Shi

Committee Members:

Prof. Michael Hicks

Prof. Bobby Bhattacharjee

Prof. Lawrence C. Washington

Department of Computer Science

University of Maryland, College Park, MD 20742



ii

ABSTRACT

Title of thesis: PROVABLE SECURITY FOR CRYPTOCURRENCIES

Andrew Miller, Doctor of Philosophy, 2016

Thesis directed by: Professor Jonathan Katz and Professor Elaine Shi
Department of Computer Science

The past several years have seen the surprising and rapid rise of Bitcoin and other “cryptocur-
rencies.” These are decentralized peer-to-peer networks that allow users to transmit money, to
compose financial instruments, and to enforce contracts between mutually distrusting peers, and
that show great promise as a foundation for financial infrastructure that is more robust, efficient
and equitable than ours today.

However, it is difficult to reason about the security of cryptocurrencies. Bitcoin is a complex
system, comprising many intricate and subtly-interacting protocol layers. At each layer it fea-
tures design innovations that (prior to our work) have not undergone any rigorous analysis.
Compounding the challenge, Bitcoin is but one of hundreds of competing cryptocurrencies in an
ecosystem that is constantly evolving.

The goal of this thesis is to formally reason about the security of cryptocurrencies, reining in their
complexity, and providing well-defined and justified statements of their guarantees. We provide
a formal specification and construction for each layer of an abstract cryptocurrency protocol,
and prove that our constructions satisfy their specifications.

The contributions of this thesis are centered around two new abstractions: “scratch-off puzzles,”
and the “blockchain functionality” model. Scratch-off puzzles are a generalization of the Bitcoin
“mining” algorithm, its most iconic and novel design feature. We show how to provide secure
upgrades to a cryptocurrency by instantiating the protocol with alternative puzzle schemes. We
construct secure puzzles that address important and well-known challenges facing Bitcoin today,
including wasted energy and dangerous coalitions.

The blockchain functionality, FBLOCKCHAIN, is a general-purpose model of a cryptocurrency rooted
in the “Universal Composability” cryptography theory. We use this model to express a wide
range of applications, including transparent “smart contracts” (like those featured in Bitcoin and
Ethereum), and also privacy-preserving applications like sealed-bid auctions. We also construct
a new protocol compiler, called Hawk, which translates user-provided specifications into privacy-
preserving protocols based on zero-knowledge proofs.
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Chapter 1

Introduction

The past several years have seen the unprecedented rise of “cryptocurrencies,” virtual currencies

that are not administered by any state or corporate entity, but rather exist solely within a de-

centralized peer-to-peer computer network that anyone can join. Bitcoin, the first (and currently

largest) successful cryptocurrency, has operated with essentially uninterrupted service and sig-

nificant growth since its launch in 2009. At the time of writing, its total market capitalization

(the current market price per bitcoin, multiplied by the total number of bitcoin units in circu-

lation) exceeds $10 billion US dollars. This quantity is comparable to the market capitalization

of publicly-traded companies in the Fortune 500, and approximately equal to the M1 money

supply1 of the Quetzal (the national currency of Guatemala).

Cryptocurrencies are often referred to as a “glimpse into the future of finance” [1]. By eliminating

central points of failure and dispersing influence over a wide network, they carry the potential

promise of a more robust and equitable financial infrastructure. Existing outside of traditional

regulated structures, they have also helped accelerate deployment of innovations like “smart

contracts,” which allow users to control their money by writing fragments of program code. The

total value of venture capital investment in Bitcoin-related technology companies today exceeds

$1 billion US dollars [53].

With such significant value at stake, security is clearly of paramount concern. Since they allow

open participation from anonymous users, cryptocurrencies are unamenable to traditional means

of policy enforcement, but instead derive their security from the strength of underlying network

protocol itself. However, although Bitcoin has been an empirical success thus far, it is difficult to

reason about its security. Cryptocurrencies are complex systems, comprising many intricate and

subtly-interacting protocol layers. Furthermore, Bitcoin’s success has led to a Cambrian explo-

sion of “altcoins,” hundreds of protocols that modify its template in various ways and compete

with it for market share. Compounding the challenge, the cryptocurrency ecosystem also un-

dergoes constant evolution as open source development communities improve their performance

and extend their functionality.

1The M1 money supply is the amount of currency in circulation plus the sum of short-term deposit accounts
(e.g., checking accounts and saving accounts).

1



Introduction 2

The goal of this thesis is to formally reason about the security of cryptocurrencies, reining in

their complexity, and providing well-defined and justified statements of their guarantees. We

show that it is possible to construct a provably secure cryptocurrency protocol that captures the

underlying techniques and capabilities of the real systems in use today.

The results of our effort have three main benefits. First, we provide positive evidence for the

security of the Bitcoin protocol. By expressing it as a positive result in distributed computing,

we provide a partial explanation for Bitcoin’s phenomenal success thus far — it embodies a novel

design that relies on weaker assumptions than those prior known.

Of course, a provably secure protocol model does not guarantee that real-life cryptocurrency

systems will succeed. Several well-known drawbacks of Bitcoin and Ethereum threaten to un-

dermine the assumptions that our protocol relies on, such as their high cost in computing power,

and the fact that miners in reality are prone to collusion. Fortunately, our modular framework

enables us to develop protocol upgrades that address these concerns, while still preserving the

original security guarantees.

Finally, we show how to construct provably-secure applications atop a cryptocurrency. Not

only can we model existing designs like Ethereum smart contracts and Zerocash’s privacy-

preserving payments, we extend the state-of-the-art by developing Hawk, a new protocol for

privacy-preserving auctions, crowdfunding campaigns, and more.

1.1 Overview and Contributions

This thesis is structured as a layered construction of a provably secure cryptocurrency system.

The layers range from the low-level (a model of an anonymous message propagation network in

Section 3.3) to high-level (the user-provided applications that ensure privacy in Section 7.3). At

each layer, we provide formal specifications of our security goals and primitive assumptions, and

prove that our protocols satisfy these.

In summary, this thesis makes the following contributions:

• In Chapter 3, we provide the first formal analysis of Bitcoin’s underlying consensus proto-

col. More specifically, we study a simplified variation, which we call Nakamoto consensus.

To study this consensus protocol, we make develop an idealized model of Bitcoin’s underly-

ing peer-to-peer communication network, which roughly acts like an anonymous broadcast

channel. Surprisingly, this communication model is significantly weaker than the standard

setting in distributed systems, which provides some form of identity-based communications

(e.g., a PKI that associates identities to public keys). Instead, it relies on an alternative as-

sumption about the allocation of computational resources (i.e., a majority of the network’s

aggregate computational power must follow the protocol correctly) [76].

We also provide a generalized abstraction of the core mechanism underlying Nakamoto

consensus, which we call a Scratch-Off Puzzle (SOP). This abstraction expresses the char-

acteristics needed to fill their role in the Nakamoto consensus protocol: in particular, they
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must have no shortcut, and they must be efficiently solved by many individuals working

independently.

• By instantiating Nakamoto consensus protocol with different scratch-off puzzles, we obtain

provably secure consensus protocols with additional beneficial properties. In Chapter 4,

we construct a novel SOP that discourages large Bitcoin mining coalitions, one of Bitcoin’s

widely-feared threats. Our construction is derived from hash-based signatures and zero-

knowledge proofs. We analyze this construction in a formal framework that captures a wide

range of coalitions, including both “mining pools” and “hosted mining,” the two forms that

occur in practice today [78].

• In Chapter 5, we construct a novel storage-based SOP and develop a system based on it,

Permacoin, that recycles cryptocurrency mining resources for a secondary, socially useful

purpose [77]: encouraging the distributed storage of an public archival dataset.

• In Chapter 6, we define a formal framework for constructing applications built atop the

Nakamoto consensus protocol. Our framework is general enough to express applications

based on “transparent smart contracts,” such as those of Bitcoin and Ethereum, as well as

privacy-preserving applications. Our framework is rooted in the Universal Composability

(UC) theory of cryptography [27].

• In Chapter 7, we show how to use this framework to develop new, provably-secure ap-

plications for cryptocurrencies. We first use our framework to formalize (a simplification

of) Zcash, an existing protocol for privacy-preserving payments [16]. Next, we use our

framework to construct a novel protocol, Hawk, which implements a broad class of privacy-

preserving mechanisms, including auctions, crowdfunding campaigns. The Hawk protocol

is based on zero-knowledge proofs, hiding all the private inputs of the participants while

ensuring that the application-specific functionality is computed correctly. We develop an

application compiler for Hawk, which generates an executable for the protocol according

to a user-provided specification [61].





Chapter 2

Background and Preliminaries

This chapter presents background information on cryptocurrency systems and defines notation

and cryptographic primitives used in later chapters.

2.1 Background on Bitcoin and Cryptocurrencies

The idea of cryptographic currency dates back at least to Chaum’s proposal for “untraceable

electronic cash” in 1983 [30], a system involving bank-issued cash in the form of blindly signed

coins. Unblinded coins are transferred between users and merchants, and redeemable after the

bank verifies they have not been previously redeemed. Several startup companies in the 1990s

including DigiCash [97] and Peppercoin [89] attempted to bring electronic cash protocols into

practice but ultimately failed in the market. No schemes from this “first wave” of cryptocurrency

research achieved significant deployment. Compared to these prior efforts, Bitcoin’s most salient

distinction is that it has no central authority, owner, or administrator; rather, the bank is

implemented as a decentralized peer-to-peer computation in which anyone can participate.

In our development we provide self-contained definitions of a simplified protocols, abstracting

away the less-relevant details about the Bitcoin protocol itself. However, below we give a brief

technical introduction to the function of Bitcoin and the cryptocurrency ecosystem. For a more

thorough explanation of the Bitcoin protocol, we refer the reader to surveys [12, 22].

Puzzles, rewards, and epochs. In Bitcoin, new money is printed at a predictable rate

through a distributed coin-minting process. At the time of writing, roughly speaking, 25 bitcoins

are minted every 10 minutes (referred to as an epoch) on average. When an epoch begins, a

public puzzle instance is generated by computing an up-to-date hash of the global transaction

log (called the “blockchain”). Then, Bitcoin nodes race to solve this epoch’s puzzle. Whoever

first finds an eligible solution to the puzzle can claim the newly minted coins corresponding to

this epoch.

5
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In slightly more detail, miners start with the puzzle instance puz, and construct a payload m

which contains (a tree hash over) the miners’ public keys and a new set of transactions to commit

to the log during this epoch. They then search for a nonce r such that H(puz‖m‖r) < 2−d, where

H : {0, 1}∗ → [0, 1] is a hash function and d is a difficulty parameter, and puz is derived from

the puzzle solution of the previous epoch. The difficulty parameter is adjusted according to the

total amount of computational resources devoted to mining to ensure that each epoch lasts 10

minutes on average.

Bitcoin nodes reach consensus on the history of transactions by following a simple rule: they

adopt the longest chain of puzzle solutions as the authoritative one, and attempt to extend this

chain with further puzzle solutions. Roughly speaking, this defeats history revision attacks, since

to revise history would involve computing a blockchain that is more difficult than the known

good chain. An adversary must therefore possess a significant fraction of the total computational

resources to successfully race against the rest of the network in extending the chain.

Bitcoin’s Peer-to-Peer Network. Bitcoin’s consensus mechanism relies on being able to

broadcast messages throughout the entire network. Each time a puzzle solution is found by a

miner, or a transaction is created by a user, this information must be propagated throughout

the network as quickly as possible. These communications are carried out over a peer-to-peer

overlay network, the topology of which is formed through a randomized process. Every node

maintains a local list of potential peer addresses to connect to. New nodes initialize this list by

querying one of a handful of “seed nodes” listed in the source code; thereafter, nodes propagate

updated information about peers through gossip. By default, each node attempts to maintain

outgoing connections to 8 peers, choosing randomly from its local list. Each node also accepts

up to 125 incoming connections from arbitrary other peers.

In reality, the Bitcoin peer-to-peer network layer is imperfect, and susceptible to various denial

of service and deanonymization attacks [19, 20, 39, 52, 75, 79].

In this thesis, we make use of a idealized abstraction of this communication functionality (see

Section 3.3). Our framework guarantees bounded-delay propagation of every message sent from

an honest party, and furthermore conceals the origin of each message (i.e., provides anonymity

to the sender). We note that subsequent modeling efforts [18, 47, 87] also make use of this

abstraction.

Mining Pools. In the simplest case, each individual Bitcoin mining participant behaves inde-

pendently, communicating only through messages defined by the protocol.

However, throughout the past several years, the vast majority of Bitcoin participants join coali-

tions called “mining pools” rather than participating as independents (i.e., “solo-mining”), pri-

marily in order to reduce uncertainty in their payoff [92].

Most mining pools (with the exception of P2Pool [102]) are administered by a trusted “pool

operator” who directs how the hashpower of the pool is used. The original Bitcoin whitepaper [81]
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draws an analogy between Bitcoin mining and voting in a democratic election (i.e. “one-cpu-one-

vote”). Extending the analogy, these pools are akin to vote buying, since they offer an economic

incentive in exchange for their influence.

At several times over the past year, the largest handful of mining pools have accounted for well

over a third of the network’s overall computing effort [25]. Recently the largest mining pool,

GHash.IO, has even exceeded 50% of the total mining capacity. The Bitcoin community has

therefore expressed a significant demand for technical solutions for this problem [72].

A key enabling factor in the growth of mining pools is a simple yet effective enforcement mech-

anism; members of a mining pool do not inherently trust one another, but instead submit

cryptographic proofs (called “shares”) to the other pool members (or to the pool operator),

in order to demonstrate they are contributing work that can only benefit the pool (e.g., work

that is tied to the pool administrator’s public key). We address the problem or large pools by

constructing a new protocol that thwarts such enforcement mechanisms.

Programmable Money and Smart Contracts. Although Bitcoin is primarily intended

to provide an e-cash service, allowing users to transfer quantities of virtual money from one

to another, it is clear that the underlying network can also be used for implementing more

complicated financial applications. Bitcoin features a simple programming language for defining

access control policies. For example, it is possible to define a policy script such that a quantity

of money can only be transferred with the consent of (i.e., with a signed message from) 2 out

of 3 principals. Furthermore, Ethereum [103], currently Bitcoin’s largest competitor, features a

very flexible programming model for controlling the flow of money: users provide program that

are run as processes called “smart contracts,” which are executed by the network and can send

and receive money and data inputs from users accounts. Ethereum’s tutorial documentation

walks the programmer through creating mechanisms like auctions, lotteries, and elections, in a

javascript-like programming language called Solidity and a python-like language called Serpent.

Though this smart contract model is powerful, programming even a simple smart contract re-

mains an error prone exercise [40], and (prior to our work) there has not yet been a framework for

proving the security of smart contract-based applications. An additional challenge is that since

smart contracts are executed by the public peer-to-peer network, they are inherently “transpar-

ent,” i.e., they cannot have any private state. The smart contract model can thus be thought of

as a third party that is trusted for correctness and availability, but not for privacy.

Applications that require privacy, which include many natural settings in finance (since financial

information is often sensitive for individuals and businesses) cannot be implemented with a

smart contract alone, but would instead require an additional layer of cryptography, adding to

the complexity. Our framework also supports provably secure, private contracts, which serve as

specifications for privacy-preserving applications.

Cryptocurrencies and Cryptography. Our work is closely related to two main directions

that the cryptography research community has pursued in response to cryptocurrencies.
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The first direction is to use more sophisticated cryptography to improve the privacy of Bitcoin

payments. Although Bitcoin is designed to allow pseudonymous use, it uses only simplistic

cryptography (just digital signatures) and leaks considerable information. Several studies have

found that it is possible to forensically analyze the Bitcoin blockchain, (especially when combined

with side-channels in the p2p network as mentioned earlier) and to trace the flow of funds by

inferring connections between related transactions [63, 73, 88, 91]. Fortunately, there have been

several applicable techniques proposed in the e-cash literature predating Bitcoin — especially the

so-called “auditable” e-cash schemes of Sander, Ta-Shma, and Yung [93, 94]. These auditable

e-cash protocols obscure the transaction graph by using zero-knowledge proofs. and rely only

on “transparent” central parties without public state (i.e., those that can be implemented using

a public consensus protocol). Recent efforts have improved the efficiency of these schemes and

even made them into practical implementations [15, 37, 74, 100]. We formalize (a simplification

of) one of these schemes, Zerocash, in our framework (in Section 7.2).

The second direction has been to use a cryptocurrency as a primitive within a cryptographic

protocol, and in particular as a new way of providing “fairness” in multi-party computations.

Roughly speaking, fairness means that either all parties receive the desired output of a distributed

computation, or else none of them do. It is well-known that fairness is generally impossible in

the plain model without any trusted intermediary [32]. Using cryptocurrencies as a primitive,

however, we can implement a compelling form of “fairness with penalties,” where either fairness

holds, or else a penalty of digital currency is seized from the attacker and disbursed to compensate

the honest parties [4, 18, 59].

Our work can be seen as subsuming both of these goals. The model of Kumaresan and Bentov [18]

and Kiayias et al. [59] support both public payments, and private computations, but the private

output of a computation can only be data, not a payment effect. Our framework supports both

public and privacy-preserving payments (as described in Section 7.2), and allows the output

of a private computation to include both private data and effects. The protocol we develop

in Section 7.3 is a non-trivial extension of Zerocash [16], though it relies on the same suite of

cryptographic tools (generic zero-knowledge proofs).

2.2 Cryptographic Preliminaries

2.2.1 Notation

Throughout our development, we assume that all protocols are implicitly paramterized by a

security parameter, 1λ. The term “negligible” is defined as negl(λ) < 1/poly(λ). Similarly by

“high probability” we mean 1− negl(λ).

We write [`] to denote the set {i ∈ N|1 < i < `}
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2.2.2 The UC Protocol Definition Framework

Our security notions are defined in a variation of the universal composability (UC) framework,

introduced by Canetti [27]. We now give a brief and high-level description of this framework,

highlighting the differences in our variation.

Universal composability is a general-purpose definitional framework, an alternative to. UC

is defined by an experiment involving the concurrent execution of several kinds of processes,

including protocol parties (Π), adversaries (A), and an environment (E). All of these processes

are defined as interactive Turing machines. The distinguishing feature of UC is that both a) the

assumptions of a protocol, such as the communication model, cryptographic setup assumptions,

and b) the application or problem specifications, are all defined in terms of trusted services called

“functionalities,” modeled as an additional process in the system.

We benefit from the use of this framework in several ways. First, the UC framework is a versatile

alternative to game-based or property-based definitions in cryptography and distributed systems.

Instead of specifying an application by laying out several desired properties or classes of attacks to

prevent, in UC an application is specified by providing program code for an “ideal functionality,”

a hypothetical third party that, if trusted, would fulfill all the desired guarantees. This approach

helps us manage when specifying complex applications. This is especially important for our

culminating application, Hawk (see Chapter 7), which requires many phases of input, involves

many different roles for different parties, and offers fine-grained guarantees under multiple failure

modes. Secondly, UC most naturally expresses a very strong form of secrecy/privacy guarantees,

which our constructions satisfy. As we mention in Section 7.2.4, alternative definitions for similar

applications have subtle gaps that allow for unintended leakage. Finally, since a functionality

definition can be used either as a construction goal or as a starting assumption, the UC framework

provides a natural approach for modular or incremental constructions. For example, in Chapter 6

we define a protocol that implements the FBLOCKCHAIN functionality, and in Chapter 7 we make

use of the FBLOCKCHAIN functionality as a trusted service.

2.2.2.1 Interactive Turing Machine Systems

As mentioned above, all of the processes in the UC experiment are defined in terms of Interactive

Turing Machine (ITM) systems. An ITM is a Turing machine with a collection of input and

output tapes. A system consists of several of these machines, with their tapes connected up to

each other (input tape to output tape). When two machines are connected by a tape, if one of

them writes a full-formed message to the “output end” of the tape, then the machine on “input

end” is “activated” and can read and process this message. The program code of an ITM thus

defines how to respond to each incoming message, ultimately either terminating or writing to an

output tape.

An essential composition technique is to define an ITM in terms of “sandbox execution” of other

ITMs. We often describe this as an ITM that runs another subsystem of machines “locally,”

potentially defining a transformation of inputs and outputs between them.
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2.2.2.2 The UC Execution Model

The UC framework is centered around an experiment involving the execution of a distributed

system of processes. This execution is parameterized by several ITM programs: a protocol Π,

an adversary A, an environment E , and a functionality F. We describe the roles of each of these

processes shortly. The experiment is denoted EXEC(Π,F,A, E).

We follow a convention of describing ITMs as reactive machines, by defining how to respond to

each received message. By convention, we assume that messages are prepended with tags, as

in tag(. . . ). We often use the shorthand “Assert X”, where X is some predicate; this means

to ignore the previously received message if X does not hold. We now describe conventions for

defining each of these kinds of ITMs.

Protocols. The protocol Π is jointly run by an arbitrary number of parties. Parties are

associated with arbitrary strings, called party identifiers Pi. Parties are able to condition on

their own identifier strings, Pi. Parties do not run until they are activated, thus while there

may be an unbounded number of potential parties, a typical execution involves only a bounded

number.

Functionalities. Protocol parties do not interact directly with each other, but instead commu-

nicate through an intermediary called a “functionality.” Functionalities are used to model net-

work primitives (e.g., synchronous point-to-point network) and cryptographic setup assumptions

(e.g., a common reference string). The more services this functionality provides, the stronger

are the assumptions thus modeled.

Functionalities also serve as a straightforward and versatile way of specifying an application. We

start by defining a functionality that exhibits the behaviors we would desire for our protocol —

for example, a consensus protocol is easily modeled as a functionality that accepts input from

every party, chooses an acceptable value, and sends it to all the parties. Next we construct a

protocol that is “just as good,” but relies only on a simpler primitive (e.g., a lossy broadcast

channel). “Just as good” is given a formal meaning, as we explain shortly, by the notion of

UC-secure realization. Naturally, we can use functionalities as an interface for composition — a

protocol that realizes a functionality can be substituted in place of that functionality.

Parties

Adversaries. Our attack model is the “static Byzantine” attacker. Such an attacker is given

control over some number of “corrupted” parties. The adversary choose these parties at the

outset of the protocol. We’ll often bound the number of such compromises, such that the

guarantees only hold against for adversaries that respect this bound. The functionality F is

informed of which parties are corrupted, and can condition its behavior accordingly. For example,

our network model includes a weak form of broadcast channel, where an honest sender’s message

is guaranteed to reach each other party within a bounded amount of time, but a corrupted sender

can deliver messages to some party and not others.
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Environments. The environment E and the adversary are also able to communicate over an

arbitrary interface. In a sense, the environment is an extension of the adversary. Inputs to the

protocol, and outputs from the protocol are modeled by interaction between the protocol parties

and the environment, E . Thus “on input x” in a protocol definition means “on receiving x from

E”.

Allowing the environment to control the inputs and outputs means that the protocol guarantees

must hold even for arbitrary (i.e., potentially adversarially influenced) input choices. The envi-

ronment can also be thought of as representing the arbitrary other programs that run alongside

the protocol on a user’s machine. This notion is essential to the compositionality (i.e., to the

proof of the “composition theorem” [27]), since the inputs to a protocol may be chosen by an

arbitrary other protocol that composes with it in blackbox fashion. Of course, the environment

is limited to seeing “side-effects.” It cannot see the internal state of the protocols of honest par-

ties or the private states of the functionality, nor can it observe direct communications between

parties and the functionality.

Secure emulation. In the UC framework, a pair of a protocol and functionality (Π1,F1),

called the “real world” or “hybrid world,” are said to securely emulate another pair (Π2,F2),

called the “ideal world,” if every attack that exists on the former also exists in the latter. This

is formalized by stating that for every real world adversary A, there must exist an ideal world

adversary SA (that might depend onA), such that the real and ideal world execution experiments

are indistinguishable to any environment:

∀A,∃SA,∀E , EXEC(E ,Π1,F1,A) ≈ EXEC(E ,Π2,F2,SA)

Due to Canetti [27], it suffices to construct a simulator S for the dummy adversary A∅, which

merely forwards information between the functionality and the environment. It’s also useful to

define a dummy protocol, called the ideal protocol Π∅, which simply forwards input messages

from the environment directly to the functionality, and relays messages from the functionality

directly as output to the environment. We say that a protocol Π realizes F2 (in the F1-hybrid

world) if (Π,F1) emulates (Π∅,F2).

2.2.2.3 Timing and Message Delivery

We are interested in defining protocols that involve communication over a synchronous (i.e.,

time-aware) network. To maintain compatibility with UC (since the underlying model of ITM

systems is not time-aware), we build our mechanisms for modeling time into the functionalities.

We define a mechanism for functionality programs to keep track of time (counted in discrete

“rounds”); and now always refers to the current round. Functionality programs can use this

mechanism to schedule tasks to be executed on (or before) a later round. This is expressed

using the short hand “schedule task for no later than round r.’ All such tasks scheduled for

round r must be delivered before the round can advance to r + 1. This functionality gives the

adversary significant control over the scheduling. The adversary triggers the delivery of tasks by
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sending deliver(·) messages to the functionality, and advances the round with an advanceRound

message. We’ll be interested in adversaries and environments that “make progress,” that is they

succeed at calling advanceRound sufficiently many times. We stress that the scheduled time

associated with a task is only a maximum — the adversary can deliver any task at any earlier

time.

The functionalities we use guarantee that each party must be activated (i.e., sent a tick message)

at least once per round. This is accomplished by scheduling the next round’s tasks at the

beginning of the previous round. Synchronous network communications are also implemented

this way, by scheduling a task (for the next ∆th round, i.e., the next communication round)

that delivers a message to each party. Our model therefore inherently models “rushing” (i.e.,

“front-running”) attacks, since the adversary is allowed to choose the order in which messages

are delivered in a round, and can insert his own messages to deliver immediately.

To maintain secrecy, the adversary is not given a way to inspect the task queue or learn its

contents. Instead the adversary indicates which task to deliver by giving an array index into the

task queue. To handle this, throughout our development, we discuss functionalities that enable

the adversary to build a meaningful “mirror” of the task queue. For example, our broadcast

channel functionality leaks the contents of each message to A, which suffices to reconstruct the

queue exactly.

At a high level, our approach is similar to the FSYN functionality of Canetti [27] and also to

the FCLOCK model of Katz et al. [57]. However, our model differs mainly in the following two

technical respects:

1. Our functionalities are written in a way that avoids the “reentrancy” problem, a subtle

modelling error identified by Camenisch et al. [26] that affects prior models including FSYN

and FCLOCK do. This problem occurs when the functionality directly activates the adversary

after receiving a message from a party, expecting a response from the adversary (e.g., “on

receiving send(m) from P, send m to A and wait for OK from A”). Formally speaking, this

leads to undefined behavior, since the adversary could discard such activation or invoke

another protocol party before continuing, in which case the OK might never arrive. We

avoid this problem by defining only functionality always return control immediately to the

sender. 1

2. We provide a convenient shorthand (based on scheduling tasks for later rounds) that enables

specification of arbitrary time-aware functionalities with rushing adversaries. This can

roughly be thought of as a central time service that functionalities (and protocols) can use.

Modeling constrained computational power. Our development of protocols based on com-

putational puzzles requires us to make precise assumptions about the computational power of

the processes, specifically that each process is able to perform a fixed amount of computation in

each time instant. To account for this, we require that when a process receives a tick activation

1Camenisch et al. [26] propose an alternate workaround, which is to extend the ITM model to incorporate
special “restricting” messages which must be answered by the adversary immediately, without activating other
machines.



Background and Preliminaries 13

Functionality FBASIC

Timing and Scheduling

initialize the round counter, now := 0,
initialize the task queue, tasksr := {} for all r ∈ N
the phrase “schedule task for no later than round r” means to append task to tasksr

• on advanceRound from A:

if there are no pending tasks for the current round (i.e., if tasksnow is empty):
now := now + 1

for each Pi: // ensure each party is activated at least once per round
schedule { send tick to Pi } for no later than round now

• on deliver(r, j) from A:

run subroutine tasksr[j]
delete tasksr[j] from tasksr

Leaking to the adversary

initialize leaks := {}
the phrase “leak m” means to append m to leaks

• on getleaks from A:

send leaks to A

Beacon Values

• on getBeacon from Pi:

if snow has not been initialized, snow
$← {0, 1}λ

send beacon(snow) to Pi
Figure 2.1: A basic framework for defining synchronous functionalities

(i.e., once per round), it is permitted to perform a limited number of computational steps. We

do not see how to enforce this constraint by defining it into the functionality, so instead we state

this as an assumption about the model.

Leaking information. We often want to model the “leakage” of information to the adversary.

For example, when one party sends a message to another over the diffusion channel, this message

is revealed to the adversary. In order to maintain the responsiveness of the functionality (i.e.,

to guarantee that control returns immediately to the sender), we do not activate the adversary

immediately, but instead store the leaked information in a buffer. The adversary can later read

this buffer by polling. The phrase “leak m” is used as shorthand for appending to this buffer.

This is in contrast to the usual presentation of authenticated channels in UC, for example, which

activates the adversary and therefore control potentially never returns to the party.

On the omission of session IDs. Readers familiar with UC may notice that we do not

describe any mechanisms for handling session identifiers (SIDs). In the standard UC framework,

each protocol and functionality is parameterized by an arbitrary SID. This is especially useful

when various instances of protocols and functionalities can run concurrently. Intuitively, the use

of distinct SIDs for each protocol instance can help prevent messages from one instance being

replayed in another instance. In each of our constructions, we do not make use of concurrent

execution (i.e., each protocol uses only a single functionality), and hence elide description of the

SID mechanism for simplicity.
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2.2.3 Non-Interactive Zero-Knowledge Proofs

A non-interactive zero-knowledge proof system (NIZK) for an NP language L consists of the

following algorithms:

• K(1λ,L)→ crs, also written as KeyGennizk(1λ,L)→ crs: Takes in a security parameter λ,

a description of the language L, and generates a common reference string crs.

• P(crs, stmt, w) → π: Takes in crs, a statement stmt, a witness w such that (stmt, w) ∈ L,

and produces a proof π.

• Verify(crs, stmt, π) → {0, 1}: Takes in a crs, a statement stmt, and a proof π, and outputs

0 or 1, denoting accept or reject.

• K̂(1λ,L) → (ĉrs, τ, ek): Generates a simulated common reference string ĉrs, trapdoor τ ,

and extract key ek

• P̂(ĉrs, τ, stmt)→ π: Uses trapdoor τ to produce a proof π without needing a witness

Perfect completeness. A NIZK system is said to be perfectly complete, if an honest prover

with a valid witness can always convince an honest verifier. More formally, for any (stmt, w) ∈ R,

we have that

Pr

[
crs← K(1λ,L), π ← P(crs, stmt, w) :

V(crs, stmt, π) = 1

]
= 1

Computational zero-knowlege. Informally, an NIZK system is computationally zero-knowledge

if the proof does not reveal any information about the witness to any polynomial-time adver-

sary. More formally, a NIZK system is said to computationally zero-knowledge, if there exists

a polynomial-time simulator S = (K̂, P̂), such that for any non-uniform polynomial-time adver-

sary A,

Pr
[
crs← K(1λ,L) : AP(crs,·,·)(crs) = 1

]
≈ Pr

[
(ĉrs, τ, ek)← K̂(1λ,L) : AP̂1(ĉrs,τ,·,·)(ĉrs) = 1

]
In the above, P̂1(ĉrs, τ, stmt, w) verifies that (stmt, w) ∈ L, and if so, outputs P̂(ĉrs, τ, stmt)

which simulates a proof without knowing a witness. Otherwise, if (stmt, w) /∈ L, the experiment

aborts. This notion is adaptive zero knowledge in the sense that the simulator must specify the

reference string before seeing the theorem statements.

Computational soundness. A NIZK scheme for the language L is said to be computationally

sound, if for all polynomial-time adversaries A,

Pr

[
crs← K(1λ,L), (stmt, π)← A(crs) :

(V(crs, stmt, π) = 1) ∧ (stmt /∈ L)

]
≈ 0
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Simulation extractability. All of our NIZK-based constructions rely on simulation extractabil-

ity. Simulation extractability is a strong notion which requires that even after seeing many sim-

ulated proofs (even for false theorems), whenever the adversary makes a new proof, a simulator

is able to extract a witness. Simulation extractability implies simulation soundness and non-

malleability (i.e., it is not feasible for an adversary to take a verifying proof and “maul” it into a

verifying proof for another statement) since if the simulator can extract a valid witness from an

adversary’s proof, the statement must belong to the language. More formally, a NIZK system is

said to be simulation extractable if it satisfies computational zero-knowledge and additionally,

there exists a polynomial-time algorithm E , such that for any polynomial-time adversary A, it

holds that

Pr


(ĉrs, τ, ek)← K̂(1λ,L);

(stmt, π)← AP̂(ĉrs,τ,·)(ĉrs, ek);

w ← E(ĉrs, ek, stmt, π) : stmt /∈ Q and

(stmt, w) /∈ L and V (ĉrs, stmt, π) = 1

 ≈ 0

where in the above, Q is the list of oracle queries made by A to P̂(ĉrs, τ, ·). Here the K̂ is identical

to the zero-knowledge simulation setup algorithm.

Note that the extractor algorithm E works for all adversaries, and does not therefore depend or

have access to the adversary’s code. Rather, the extractor’s advantage arises entirely from its

special access to a trapdoor ek for the ĉrs. Next, note that the adversary may be able to fake a

(different) proof for a statement that has been queried, however, it is not able to forge a proof

for any other invalid statement.

Practical Implementations of NIZKs. There have been several recent advances in efficient

and generic NIZK constructions for arbitrary NP languages [14, 48, 86]. There are several freely

available library implementations of these (including libsnark [14], snarklib, Pinocchio [86], and

Geppetto [35]). We make use of libnark in our prototype implementations.

More precisely, these constructions are zkSNARKs (zero-knowledge succinct noninteractive ar-

guments of knowledge), which are NIZKs that are additionally succinct (i.e., the size of the proof

is independent of the size of the witness), but are not simulation extractable. A known trans-

formation can upgrade an arbitrary NIZK to simulation extractable [38, 62]. When applied to

a zkSNARK, however, this transformation sacrifices the succinctness property (intuitively, the

transformation includes an encryption of the witness alongside the zkSNARK proof); regardless,

for small witnesses these costs are reasonable.

These constructions are defined for languages represented by arbitrary arithmetic circuits. As a

set of constraints of the form ( ~A · ~x)( ~B · ~x) = ~C · ~x, where ~x is a vector of all the wire variables

in the circuit (each element is in Zp, for a large (e.g., 254-bit) prime p), and ~A, ~B, and ~C are

vectors of constants (also in Zp). The practical performance of the proof system depends on the

size and structure of this circuit.





Chapter 3

Modeling Bitcoin as a Consensus

Protocol

A parable is often told about the Rai-stone money of Yap [49]. As the story goes (coarsely

abridged), the Micronesian islands of Yap once used enormous Rai stones as currency, making

payments with boats to transport them up or down the river. At one point, a boat capsized,

and the Rai stones sunk deep in the riverbed, unrecoverable. Rather than write off the ruined

money as a loss, they simply kept accounting for it as though it were there. This story reveals

a key principle underlying Bitcoin’s design: the physical nature of the currency doesn’t really

matter — it’s sufficient if everyone concerned can keep track of the state of things, agreeing on

who owns how much money at any time.

Ownership of Bitcoin is expressed using public key cryptography: the network unanimously

agrees on the association between public keys and portions of the money supply. Money can

naturally be transferred from one public key to another using digitally signed messages. Bitcoin

is thus easily understood as a distributed state machine, where the state at any given time

corresponds to a ledger of account balances. Implementing money should therefore be no harder

than agreeing on an ordered sequence of transactions.

The distributed computing community has spent more than three decades actively researching

“consensus protocols” that enable a network of computers to reach agreement. The problems

here are notoriously subtle, especially since networks can intermittently fail, and some of the

computers in the network might be compromised by a malicious attacker. Regardless, the field

is mature, and there are many iconic protocols, such as Paxos [69] and PBFT [28], that provide

strong guarantees under rigorously-defined models. It’s surprising that the first cryptocurrency

differs so significantly from this template!

What fundamentally distinguishes Bitcoin’s design from traditional consensus protocols is the

adversarial setting it is designed for. Bitcoin operates on top of an entirely anonymous peer-

to-peer network. Anyone that wants to can participate as a miner, and there is no reliance

on “real names.” In contrast, most traditional consensus protocols rely heavily on the use of

individual identifiers, and have a basic structure of collecting “majority votes.” Without having

17
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an authoritative list of registered participants, it’s hard to imagine how to securely count votes.

Systems that allow parties to generate their own arbitrary identities are typically vulnerable

to the Sybil attack [42], in which selfish or malicious processes claim a large number of extra

identities, stuffing the ballot box with votes.

In place of identities, Bitcoin’s security can be based on an alternative assumption about the

allocation of computational resources. The network reaches consensus through a process of com-

petitive puzzle solving, and security is guaranteed as long as the protocol-following participants

can “outcompute” any attacker. This alternative assumption is well-suited to the anonymous

decentralized setting — anyone can potentially obtain and contribute computing power.

In this chapter, we formally construct (a simplified form of) the Nakamoto consensus proto-

col that embodies these novel aspects. We define a network model that captures the difficult

anonymous setting: our model allows participants to communicate anonymously by publicly

broadcasting messages. We show that the Nakamoto protocol achieves a strong notion of con-

sensus. This contribution is the first security proof of Bitcoin against arbitrary attackers.

In formalizing this protocol, we develop a general abstraction for a key component of Nakamoto’s

protocol, the computational puzzle scheme. We call this abstraction a “scratch-off puzzle,” gener-

alizing the particular puzzle construction used in Bitcoin. Our abstraction captures the essential

security requirements for an appropriate puzzle — in a nutshell, it requires that an adversary

cannot take any shortcuts, and that when many individual participants make independent and

concurrent efforts to solve the puzzle, their efforts are efficiently combined. Our main result in

this chapter is a proof that the Nakamoto Consensus protocol, instantiated with an arbitrary

scratch-off puzzle, achieves consensus as long as the adversary controls a sufficiently small frac-

tion of the network’s overall hashpower. The scratch-off puzzle abstraction plays a central role

in Chapters 4 and 5, where we construct alternative puzzles that also fit this definition, and

therefore meet the minimum security requirements.

3.1 Related Work

Okun [85] studied distributed-computing problems in various models of anonymous networks.

The weakest model he considered, the “port-unaware” model, is most similar to ours. However,

our model is weaker still: in the port-unaware model, each corrupt process can send at most

one message to a correct process in each round, whereas in our model the adversary can deliver

an arbitrary number messages to honest parties. Okun’s positive result crucially relies on this

message bound, and is thus inapplicable to our model. Similarly our communication model

is related to (but weaker than) other models such as partial broadcast [34] and homonymous

networks [41].

Cryptographic puzzles (also called proofs of work) have been analyzed and proposed for a variety

of other purposes, including timed-release encryption [90], spam prevention [10, 44, 70], DoS

resistance [51, 55], and defense against Sybil attacks [23].



Modeling Bitcoin as a Consensus Protocol 19

Aspnes et al. [9] studied Byzantine agreement without a PKI in a model where computational

puzzles can be solved at some bounded rate. This work, however, also assumes pre-existing

authenticated channels between honest parties.

Our work extends the informal security argument made by Nakamoto [82]. Nakamoto’s argument

also follows from an analysis of Poisson distributions, but it only defends against a particular

attack strategy. Our proof is stronger, since our model captures any feasible attack strategy

with the resources given. For example, our attack model proves that even the “selfish mining”

attacker of Eyal and Sirer [45], as well as “stubborn miners” [84] and related strategies [95],

cannot undermine the basic consensus guarantees. Finally we note that several subsequent

works [47, 87] adopt our basic model of anonymous message diffusion, but analyze a more faithful

representation of the actual Bitcoin protocol. We stress that our goal is not to model Bitcoin

specifically, but rather to provide a complete but abstract construction of a cryptocurrency

system.

Several (subsequent) works also analyze new consensus protocols inspired by Bitcoin and based

on similar assumptions to ours [3, 58]. These incorporate the most significant features of our

model, including anonymous message diffusion and the assumption that each process makes a

bounded number of random oracle queries per round. The protocol of Dziembowski et al. [3]

avoids relying on a beacon value to begin the protocol; instead, each party generates a challenge,

and the puzzle is derived a combination of all such challenges. For very large networks, this

may impose a significant additional communication cost. In the Nakamoto consensus protocol,

only lucky parties that find a puzzle solution must broadcast a message, and the number of such

puzzles is independent of n (i.e., depends only on the ratio of f to n). While scratch-off puzzles

are inherently parallelizable, Miller et al. [58] show how to implement pseudonymous broadcast

primitives using inherently sequential puzzles instead.

Finally, several authors have proposed deriving a timelock encryption scheme from a scratch-off

puzzle scheme [54, 71]. Here, a puzzle instance is used as a public encryption key, and a solution

to the scratch-off puzzle can be used as a decryption key. These schemes rely on methods that

are currently impractically expensive methods (generic program obfuscation).

3.2 Scratch-off Puzzles

As explained in Chapter 1, Bitcoin miners compete to solve computational puzzles, and whoever

solves a puzzle first in each epoch receives a reward. As there is no shortcut to solving this puzzle,

for an attacker to dominate the network would require the attacker to expend more computational

resources than the rest of the honest participants combined. Although the Bitcoin puzzle is

commonly referred to as a proof-of-work puzzle, the requirements of the puzzle are somewhat

different than existing definitions for proof-of-work puzzles [31, 43, 50, 99].
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In this section we provide a formal definition of the basic requirements of the Bitcoin puzzle. We

call any puzzle satisfying these requirements a scratch-off puzzle.1

The first requirement captured by our definition is that the attacker should not be able to take

“shortcuts” to solve the puzzle faster than honest parties. We express this using an explicit

parameter γ, such that the attacker solves puzzles at most γ more efficiently than an honest

party following the ordinary algorithm.

The second requirement is that the puzzles must be efficiently solved with parallel effort. In

Bitcoin, all of the independent mining participants simultaneously attempt to solve puzzles, and

only communicate in order to exchange solutions that they find. Even though the parties do not

coordinate, they must not waste much effort on redundant work. This requirement is unique

to our scratch-off puzzle definition; a traditional proof-of-work puzzle or client puzzle might

only be solvable through a sequential computation carried out by a single party [50, 99]. For

example, Rivest’s classic time-lock puzzle scheme can only effectively be solved through sequential

repeated squaring [90]. Since this procedure is deterministic and inherently sequential, multiple

independent participants would not be able to solve this any faster than one working alone. In

general, scratch-off puzzle constructions that satisfy this property are designed so that they can

only be solved through a brute force search of a large solution space. Since the search space is

large, the independent parties search in randomized regions and do not overlap in their search.

We also require puzzle solutions to be nonmalleable, in the sense that seeing solutions for an

arbitrary number of set of puzzles does not help the adversary solve any different puzzle not

included in that set. Each distinct puzzle should require fresh work to solve. If this property

were not satisfied, then the worst-case scenario is that an adversary could perform a large

precomputation step, and thereafter solve each new puzzle with very little marginal effort. Stebila

et al. pointed out that early definitions of client puzzles did not prevent this scenario [99].

Finally, in the Nakamoto consensus protocol, solving a puzzle enables the puzzle solver to deter-

mine which new transactions get committed, and in particular to choose the public key where

the puzzle reward is sent. We incorporate this in our definition by adding an arbitrary “payload”

message to the solver routine. For this to be useful, we must require that the payload of a ticket

is bound to it in the following sense: if an honest party publishes a ticket associated to a payload

m (e.g., containing a public key belonging to the party to whom the reward must be paid), the

adversary should not gain any advantage in obtaining a puzzle solution associated with some

different payload m∗ for the same puz. This is because in Bitcoin, each epoch is defined by a

globally known, unique puzzle instance puz; at most one winning ticket for puz and a payload

message is accepted into the blockchain; and a user who solves a puzzle only receives the reward

if their message is the one that is associated. If an adversary can easily modify a victim’s winning

ticket to be associated to a different payload of its choice, then the adversary can listen for when

the victim’s ticket is first announced in the network, and then immediately start propagating

the modified ticket (e.g., containing its own public key for the reward payment) and attempt to

outrace the victim. It is possible that the network will now deem the adversary as the winner

1The terms “scratch-off puzzle” and “winning ticket” are motivated by the observation that Bitcoin’s coin
minting process resembles a lottery with scratch-off ticket, wherein a participant expends some effort to learn if
he holds a winning ticket.
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of this epoch—this is especially true if the adversary has better network connectivity than the

victim (as described by Eyal and Sirer [45]). Intuitively, seeing a puzzle solution output by an

honest party does not help noticeably in producing a solution associated to a different payload

m∗.

In our definition, the difficulty, non-malleability, and non-transferability properties are all bun-

dled into a single property called incompressibility. This property is defined by a game that

allows the attacker to query a puzzle-solving oracle with arbitrary puzzles and payloads. The

oracle queries do not help the attacker to solve different puzzles, or even previous puzzles with

different payloads.

3.2.1 Definition of Scratch-Off Puzzles

A scratch-off puzzle is parameterized by parameters (d, t, t0, γ) where, informally speaking, t

denotes the amount of work needed to attempt a single puzzle solution, γ refers to the maximum

amount by which an adversary can speed up the process of finding solutions, d affects the average

number of attempts to find a solution, and t0 denotes the initialization overhead of the algorithm.

We typically assume that t0 � 2dt, where 2dt is the expected time required to solve a puzzle.

Definition 3.1. A scratch-off puzzle is parameterized by parameters (d, t, t0, γ), and consists of

the following algorithms (satisfying properties explained shortly):

• G(1λ)→ params: sets up public parameters for a puzzle scheme. The params are an implicit

argument to each of the remaining functions, but we omit these for brevity.

• Work(puz,m) → ticket: The Work algorithm takes an arbitrary puzzle instance puz ∈
{0, 1}λ, and some payload message m. The Work algorithm makes continual effort to find

a puzzle valid puzzle solution, terminating once one is found. In all our constructions,

this effort consists of a brute-force random search over the solution space, where each

marginal attempt takes t steps (the unit scratch time), and the overhead for initialization

and finalization is t0.

• Verify(puz,m, ticket) → {0, 1}: checks if a ticket is valid for a specific instance puz and

payload m. If ticket passes this check, we refer to it as a winning ticket for (puz,m).

Intuitively, the honest Work algorithm makes repeated scratch attempts, and each attempt has

probability 2−d of yielding a winning ticket, where d is called the puzzle’s difficulty parameter.

We will henceforth use the notation

ζ`(t, d) := 1−
∑
i∈[`]

(
t

i

)
2−di(1− 2−d)t−i

to denote the probability of producing at least ` successes after t independent Bernoulli trials,

each with independent probability 2−d of success. We will soon use these probabilities as a

lower bound for the success of uncorrupted processes, and as upper-bound for the success of an
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adversary. Finally we use Workt(puz,m) to denote running Work(puz,m) for at most t · t + t0

steps, and returning ⊥ if it has not terminated normally.

A scratch-off puzzle must satisfy three requirements:

1. Correctness. For any (puz,m, t), if Workt(puz,m) outputs ticket 6= ⊥, then Verify(puz,m, ticket) =

1.

2. Parallel feasibility. Solving scratch-off puzzles is feasible using the honest Work algo-

rithm, even if the puzzles are adversarially chosen, and moreover this effort can be paral-

lelized without much loss. More formally, for any q = poly(λ), t = poly(λ), and for any

polynomial time adversary A that chooses puzzle instances,

Pr


params← G(1λ),

{puzi,mi}i∈[q] ← A,
∀i ∈ [q] : ticketi ←Workt(puzi,mi) :

∃i ∈ [q] : Verify(puzi,mi, ticketi)

 ≥ ζ1(qt, 2−d)− negl(λ).

Intuitively, each unit scratch attempt, taking time t, has probability 2−d of finding a

winning ticket. Therefore, if q (potentially parallel) processes each makes t, the probability

of finding one winning ticket overall is ζ1(qt, 2−d)± negl(λ).

3. γ-Incompressibility. Roughly speaking, the work for solving a puzzle must be incom-

pressible, in the sense that even the best adversary can speed up the process of finding

puzzle solutions by at most a factor of γ. Furthermore, this holds even if the adversary

has (polynomially-bounded) oracle access to the honest algorithm — that is, observing the

output of Work(puz,m) does not help the adversary solve a different puzzle puz′ 6= puz,

nor does it help the adversary find solutions to puz associated with a different payload

m∗ 6= m. More formally, a scratch-off puzzle is γ-incompressible (where γ ≥ 1) if for any

` = poly(λ) and any probabilistic polynomial-time adversary A taking at most t · t steps,

Pr


params← G(1λ),

{puzi,mi, ticketi}i∈[`] ← AWork :

all {puzi}i∈[`] are distinct, and

∀i ∈ [`] : Verify(puzi,mi, ticketi) = 1 ∧ (puzi,mi) /∈ Q

 ≤ ζ(`, γt, 2−d)± negl(λ).

where Q is the transcript of oracle queries made by A to Work. Ideally, we would like the

compressibility factor γ to be as close to 1 as possible. When γ = 1, the honest Work

algorithm is the optimal way to solve a puzzle.

Note that this definition allows the adversary to find multiple puzzle solutions for a single puzzle

instance puz, potentially for varying payload messages, for just the cost of finding one. The defi-

nition would be stronger if we bounded the adversary’s advantage for distinct pairs {(puzi,mi)},
whereas instead our definition only considers distinct puzzle instances {puzi}. Looking ahead,

we will need to make use of this relaxation in Chapter 4 when constructing nonoutsourceable

puzzles. Regardless, even with this relaxation our definition suffices to prove the correctness of

the Nakamoto consensus protocol.
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Let H : {0, 1}∗ → {0, 1}λ be a hash function modeled as a random oracle. For measuring running
time, we consider evaluating H to take tRO steps. Furthermore, we do not count verification (e.g.,
given m,h, to check if h = H(m)) towards the running time.

• G(1λ): return ⊥ (no setup is needed)

• Work(puz,m):
Loop indefinitely:

Draw a random nonce, s
$← {0, 1}λ.

Compute h := H(puz‖m‖s)
If h < 2λ−d then return ticket := (s, h) and terminate. Otherwise, resume from the
beginning of the loop.

• Verify(puz,m, ticket):
Parse ticket as (s, h), and check that h = H(puz‖m‖ticket) and h < 2λ−d.

Figure 3.1: The Bitcoin scratch-off puzzle.

Remarks on modeling oracles and running time. We assume, somewhat inelegantly,

that verification is free. This assumption is also present in subsequent and independent models

(Garay et al. [47] and Pass et al. [87]). It is justified by observing that computational resources

used for verification are independent of the computational resources used for mining. In the

case of Bitcoin mining equipment, most mining is performed using dedicated ASIC hardware,

whereas the general purpose CPU is used for verification. Furthermore, in the schemes we

consider, verification cost is independent of the overall puzzle difficulty. As the difficulty in-

creases to accommodate more participants and more powerful mining equipment (while keeping

the average time to solve a puzzle fixed at 10 minutes), verification cost remains unchanged.

In practice, nontrivial verification costs result in a possible Denial-of-Service attack vector —

the adversary could attempt to flood the communication network with bogus puzzle solutions.

Various countermeasures are built into the actual peer-to-peer network: invalid puzzle solutions

are not propagated by honest relay nodes, and any node that relays invalid puzzle solutions is

disconnected by its peers.

We are careful to express running time as a construction-specific measure. Our proof of the

Bitcoin puzzle assumes the random oracle model. However, later on, we construct a puzzle

that involves zero-knowledge proofs. About NP statements — however, statements involving a

random oracle are not in NP. Various efforts have been made to define notions of zero-knowledge

proofs for languages involving oracles (e.g., [29, 46]). To sidestep these modeling difficulties, we

therefore assume that the random oracle is instead instantiated with an actual cryptographic

function (heuristically accepted to be secure) before applying zero-knowledge proofs.

3.2.2 The Bitcoin Scratch-Off Puzzle

We now show (as a sanity check) that the original Bitcoin puzzle satisfies our definition of

scratch-off puzzles, and thus is indeed a generalization. An abstraction of Bitcoin’s scratch-off

puzzle is shown in Figure 3.1.2 We assume that each random-oracle call takes time tRO, and all

other work in each iteration of Work takes tother = O(λ) time. We then have the following:

Theorem 3.2. The construction in Figure 3.1 is a (d, t, t0, γ)-scratch-off puzzle for arbitrary

d > 0, where t = tother + tRO, t0 = 0, and γ = tRO/(tRO + tother).

2This puzzle is also known as HashTrail [31, 50, 99], and was first used in Hashcash [10].
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FDIFFUSION functionality

Inherit FBASIC (see Figure 2.1), including beacon values, scheduling events, and leaking messages to
the adversary

Anonymous message diffusion

• on multicast(m) from process Pi:
leak multicast(m)
for each honest Pj

schedule delivery of multicast(m) to Pj for now + ∆

Figure 3.2: Anonymous message diffusion functionality

Proof. The correctness proof is trivial. For γ-incompressibility, observe that for any adversary

that makes only t random oracle calls, its probability of success in finding ` winning tickets is at

most ζ`(t, 2
−d), since each distinct random oracle query has exactly an independent 2−d chance

of yielding a winning ticket. Since the preimage space for the oracle queries is prefixed by puz

and m, oracle queries to Work do not help find solutions for other puzzle/message pairs. Since

the honest Work algorithm takes (tRO+tother)·t time, this scratch-off puzzle is tRO/(tRO+tother)-

incompressible.

3.3 The Message Diffusion Model and

Monte Carlo Consensus

Anonymous message diffusion. As explained in Chapter 1, Bitcoin is built atop a peer-to-

peer broadcast system that allows users to anonymously publish puzzle solutions and transac-

tions. In Figure 3.2 we define a functionality that provides an idealized form of this commu-

nication primitive. Any process is able to publish a message m by sending multicast(m) to

this functionality. Messages published this way are guaranteed to be delivered to each honest

process within a maximum of ∆ rounds. Except for this constraint, the adversary is given com-

plete control over the order of message delivery. The identity of the source is hidden from the

adversary, but the content of each message is immediately leaked to the adversary. The attacker

can effectively “rush” (i.e., “front-run”) by waiting for honest parties to submit messages, and

then choosing and delivering the attacker’s own messages ahead of the honest messages. Finally,

the adversary is also permitted to deliver its own messages to some but not all of the parties.

This means that an honest process that receives a message cannot tell for certain if every other

process has also received that message.

Monte-Carlo Consensus. Below we provide a self-contained definition of a consensus pro-

tocol. Our definition is mostly standard: each process is provided an arbitrary string of input

proposedi, and each (uncorrupted) process is required to output a common value corresponding

chosen from among the inputs.

The main distinction compared to standard definitions is that the agreement property may be

violated with non-zero probability. It is most common that randomized consensus protocols are

defined as Las Vegas algorithms, terminating in finite time with probability 1, but guaranteeing
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agreement unconditionally if they terminate [8]. Instead, our protocols are Monte Carlo algo-

rithms, guaranteed to terminate in finite time, but may fail to reach agreement with negligible

(though non-zero) probability. 3

The validity property defined below says that the decided-upon value must correspond to one

of the inputs with at least inverse polynomial probability (e.g., Ω( 1
λ )). We choose this relatively

weak goal as a convenience, in order to simplify the proofs in this chapter (particularly that of

Theorem 3.8). Strengthening it is straightforward, as we later demonstrate in Chapter 6: we

can simply run such a protocol O(λ) times sequentially to boost the probability of succeeding at

least once.

Definition 3.3. (Monte Carlo Consensus) A Monte Carlo consensus protocol for a set of n

processes (f of which may be corrupted) begins with each correct process Pi receiving an input

value proposedi ∈ {0, 1}∗, and must satisfy the following properties:

• (Termination): All correct processes must output a single value after a bounded time.

• (Agreement): All correct processes must out the same value, except with negligible proba-

bility.

• (Validity): The output value will be one of the inputs with inverse-polynomial probability.

3.4 The Nakamoto Consensus Protocol

In Bitcoin, participants (called miners) continuously attempt to solve puzzles, where each solution

is used to derive the challenge for the next puzzle instance, thereby forming a chain of puzzle

solutions. Participants coordinate with each other according to a simple rule: the longest chain

of puzzle solutions is considered the authoritative one. Each node works to extend the longest

chain of puzzle solutions it knows, and when a node finds a new puzzle solution, it broadcasts

this to the rest of the network. When the parameters are chosen correctly, this guarantees that

the honest parties eventually agree on (a prefix of) their puzzle solution chains.

Unlike a traditional consensus protocol (including the Monte Carlo consensus definition presented

earlier in Section 3.3), where processes must eventually terminate and output a final value,

the actual Bitcoin protocol never terminates. Instead, it more closely resembles a “stabilizing

consensus” protocol, wherein each process provides an output register reflecting the current most-

likely value, and eventually this register stabilizes in the sense that the chance of it changing

thereafter is negligible.

In Figure 3.3 we define an abstraction of the Bitcoin protocol that indeed terminates with a final

value.4 Each process Pi initially begins with an empty Chain of puzzle solutions, along with

3This is not a significant weakness in practice. A negligible probability of failure is inherent in any protocol
whose safety relies on cryptography.

4Although the Bitcoin protocol never outputs a final value, users of the system often need to make irrevocable
decisions. For example, a merchant must have confidence that a transaction is permanently committed before
letting a customer walk out of the store with an item. The Bitcoin whitepaper recommends waiting for 6 puzzle
solutions before considering a transaction committed, although this is not enforced by the system itself. Our
consensus protocol can be thought of as implementing this policy (for some O(λ) puzzles, not necessarily 6) for
the system as a whole.
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Nakamoto Consensus Protocol

Parameters: a scratch-off puzzle scheme SOP, difficulty parameter d, and final round r̂
Input: a proposed value proposedi
Initially,

Chain := [ ] // an empty sequence
Prefer := proposedi
puz := puz0 := FSCRATCH.getBeacon

• on receiving multicast(Chain′,Prefer′):

assert SOP.Verify(puz0,Prefer
′,Chain′1)

for 1 ≤ j ≤ |Chain′|
puzj := Chain′j−1‖Prefer′

assert SOP.Verify(puzj ,Prefer
′,Chain′j)

if |Chain′| > |Chain| then
interrupt any current worker task
Chain := Chain′

Prefer := Prefer′

start a new worker task as Work(puz,Prefer)

• on tick(r) do

run worker for up to ttick steps
if worker returns ticket 6= ⊥ then
Chain := Chain ∪ {ticket}
multicast (Chain,Prefer)

if r == r̂ then output Prefer and terminate

Figure 3.3: Nakamoto Consensus

their input value, proposedi, and outputs a final value after a fixed number of rounds r̂. The

first puzzle solution is determined by the current beacon value at the start of the protocol. In

each tick of the clock, each process attempts to solve a puzzle solution that extends Chain by

one solution. (Since only ttick steps are allowed in clock tick but the Work routine runs until

completion, we describe this effort as a background task that can be paused and resumed.) The

jth puzzle solution is denoted Chainj . When a process receives a multicast message containing

a new Chain′, it switches to this if Chain′ is longer than the current one. Each puzzle solution

chain is associated with a value Prefer, which corresponds to the payload message associated

with each puzzle in the chain (all such payload messages must be consistent in a valid chain).

At the beginning when the Chain is initially empty, processes Prefer their original input value.

Once the final round r̂ is reached, each process outputs Prefer as its final decision value.

In the remainder of this section, we will prove that the Nakamoto consensus protocol satisfies

the requirements of a Monte Carlo consensus protocol. The puzzle difficulty parameter d and

the number of rounds to wait r̂ must be chosen with knowledge of the other model parameters,

such that the message delay bound is small enough relative to the rate of puzzle solutions. We’ll

describe shortly how to instantiate these parameters.

Switching to the continuous Poisson process. So far, we have defined puzzle solving as

a discrete process, where attempts to solve a puzzle are made in each discrete round. However,

it is easier to derive bounds for the continuous-time Poisson process, rather than Bernoulli

processes. Fortunately, the Bernoulli process converges to a Poisson process in the limit where

time increments are very small, and therefore we can use this as an approximation.
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The main idea is that we will consider the duration of a single clock tick (i.e., the time to compute

ttick steps) as an infinitesimal dr, and consider the limit when dr → 0. As we let dr vary, we

wish to keep constant the expected (real-valued) time for the network to solve a puzzle. This is

achieved by varying the puzzle difficulty 2−d proportionally with dr.

We must also make a simplifying assumption for this to apply to our puzzle schemes, which is

that the unit scratch cost, t, is equal to the number of steps permitted during a clock tick, ttick.
5

A geometric distribution describes the number of trials in between each success in a Bernoulli

process; the number of trials to have ` successes is a sum of ` geometric distributions. Similarly,

an exponential distribution describes the (real-valued) interarrival time between events in a

Poisson process, and the time to reach ` successes is a sum of ` exponential distributions. We

now prove a lemma that allows us to switch between these approximations. We let µ̄ represent

the expected amount of (real-valued) time to have one success in a sequence of Bernoulli trials,

assuming that the time for each trial is dr (and the probability of success p in each trial varies

proportionally with dr). Then in the limit as dr → 0, the sum of ` such geometric distributions

converges to a sum of ` exponential distributions each with expectation µ̄.

Lemma 3.4. Let µ̄ > 0 be a constant, and let X`,dr ∼
∑

1≤i≤`

Geom(p)dr be a sum of ` geometric

distributions each with probability p = dr/µ̄ and scaled by dr. Also let X` ∼
∑

1≤i≤`

Exp(µ̄) be a

sum of ` exponential distributions with mean µ̄. Then X` serves as the limit of X`,dr as dr → 0,

in the sense that

∀r. lim
dr→0

Pr[X`,dr ≤ r] = Pr[X` ≤ r]

.

Proof. We first show the limit for the case that ` = 1. That the limit also extends to the sum of

` identical distributions is trivial. Recall that ζ1(n, p) denotes the probability of having at least

1 success out of n Bernoulli trials with success probability p. Therefore

Pr[X1,dr ≤ r] = ζ1(
r

dr
, p) = 1− (1− p) r

dr .

Substituting p = dr/µ̄, we have

Pr[X1,dr ≤ r] = 1− (1− dr

µ̄
)
r
dr .

Using the limit definition of e−1 = limx→∞
(
1− 1

x

)x
, and substituting x = µ̄

dr , we have

lim
dr→0

1− (1− dr

µ̄
)
r
dr = lim

x→∞
1− ((1− 1

x
)x)

r
µ̄ = 1− e−

r
µ̄ .

5In practice, the assumption that the real time to complete a puzzle attempt, dr, is infinitesimal is justified
because in the constructions we consider, the time to make one puzzle solving attempt is extremely small relative
to the message propagation time and the average time to solve a puzzle. For example, in the real life deployment
of Bitcoin, a puzzle solving attempt requires only hash function evaluation, which takes on the order of 10
microseconds on an ordinary CPU, whereas the average time to solve a puzzle in Bitcoin is 10 minutes.
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This is exactly the CDF of the exponential distribution

Pr[X1 ≤ r] = 1− e−
r
µ̄ .

Bounding the puzzle solving rate. Our goal will be to prove that in the final round of

the protocol, r̂, all of the correct processes agree on a chain of puzzle solutions with a common

prefix. To achieve this, we will prove two bounds about the rate at which the adversary can solve

puzzles and the rate at which the honest parties can solve puzzles. We now define two processes

that can serve as such bounds.

To reduce clutter, we assume without loss of generality that we measure time in units equal to the

message delay bound plus the initialization/finalization overhead of work, such that ∆ + t0 = 1.

We will need to assume that the effective computational power of correct processes exceeds that

of the adversary, in the sense they solve puzzles at a faster rate, even after accounting for the

γ factor permitted by the scratch-off puzzle. 6 We introduce a parameter µ to represent the

expected time needed for the network to find one puzzle solution, and let the puzzle difficulty

2−d vary in order to maintain µ = 2d

γndr. Since µ denotes (an upper bound for) the expected

time for the network as a whole to find a puzzle solution, we use µB = n
n−f γµ to denote the

expected time for a correct process to find a puzzle solution.

First, we define a process A as a Poisson arrival process with an expected interarrival time µ,

where Ax represents the arrival time of the xth event.

Ax ∼
∑

1≤i≤x

Exp(µ) (3.1)

We can show that A serves as an upper bound for the arrival rate of puzzle solutions found by

the network as a whole.

Lemma 3.5. Let Xr denote the total number of distinct puzzles with solutions, known to any

uncorrupted process in an execution of the Nakamoto consensus protocol after time r. Then in

the limit as dr → 0, for any x > 0, we have Pr [Xr ≥ x] ≤ Pr [Ax ≤ r] + negl(λ).

Proof. This lemma follows from the γ-incompressibility property of the puzzle scheme SOP.

We first property to introduce an expression that bounds X. Since the network takes at most

n · t computational steps during each clock tick, and r
dr clock ticks occur during an interval of

duration r, then applying the incompressibility property gives us the lower bound Pr [Xr ≥ x] <

ζx(γn r
dr , 2

−d) + negl(λ).

6The assumption that a majority of the network correctly follows the protocol is also present in Nakamoto’s
whitepaper [81], as well as the subsequent works of Garay et al. [47] and Pass et al. [87]. It would be more
realistic to justify this assumption with an incentive-compatibility argument. We discuss incentive alignment in
Chapter 4, although weakening this assumption remains an open challenge in general.
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Recall that ζ denotes the probability of having at least x successes out of γn r
dr Bernoulli trials

with success probability 2−d = γn
µ dr. Using Lemma 3.4, we can see that as dr approaches zero,

this converges to a Poisson arrival process with expected interarrival time µ.

Next we define a process B consisting of alternating phases of a Poisson arrival with expected

arrival time µB , and a delay phase of constant time ∆, where Bx represents the time after

completing x cycles through both phases.

Bx ∼
∑

1≤i≤x

(exp(µB) + ∆ + t0) (3.2)

This process serves as a lower bound for the length of the puzzle chains known to each process.

Lemma 3.6. In an execution of the Nakamoto consensus protocol, let Xr denote the minimum

length of |Chain| known to any correct process at time r. Then as dr approaches zero, for any

x > 0, we have Pr [Xr ≤ x] ≤ Pr [Bx ≥ r] + negl(λ).

Proof. This lemma follows from the parallel feasibility property of the underlying puzzle scheme

SOP. After subtracting the initialization and finalization overhead t0, from an arbitrary point

in time r0, a correct process finds a new puzzle solution by time r with probability at least

ζ1((n − f) r−r0dr , 2−d). Recalling that ζ1 describes the probability of having at least one success

after (n − f) r−r0dr Bernoulli trials, then by Lemma 3.4, as dr approaches 0, this converges to

a Poisson arrival process with expected interarrival time µB . After finding a puzzle solution

and sending it to the other processes, by at least the maximum message delay bound ∆, every

process knows of a chain that is at least one larger.

We can now use the processes A and B to justify the agreement property. If Br̂ ≥ x, then that

implies all clients decide on a value associated with a chain containing at least x puzzle solutions.

If additionally A2x > r̂, then fewer than 2x distinct puzzle solutions have been shown in total,

and hence all processes must have output on a unique consistent value.

Instantiating the parameters. The Nakamoto consensus scheme must be instantiated with

parameters r̂ (the amount of time to wait until terminating), and d (the puzzle difficulty). We

now show how to instantiate these parameters, along with the related values x and µ defined

earlier, such that the necessary bounds A2x > r > Bx hold with high probability.

We will need to assume that the effective computational power of the uncorrupted processes is

greater than half the power of the network overall, even when accounting for the γ advantage

given to the adversary in the underlying puzzle, so n−f ≥ γn
2 . We denote this relative advantage

with δ,

δ =
2(n− f)

γn
> 1. (3.3)

To choose our parameters, we divide up this advantage by thirds: one third each for deviation

bounds on A2x and Bx respectively, and one third to account for the message delay and initial-

ization/finalization overhead incurred in B. Intuitively, the puzzle should be difficult enough so
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that correct processes often find and propagate puzzle solutions before two solutions are found

overall. First, we define x in terms of δ and security parameter λ,

x = λ/DKL(δ1/3‖1) (3.4)

where DKL(µP ‖µQ) is the Kullback-Leibler divergence (KL-divergence) between exponential

distributions P and Q with scale parameters µP and µQ respectively. 7

We write out the formulas for two instances we will need later:

DKL(δ( 1
3 ))‖1) = δ( 1

3 ) − 1− log(δ( 1
3 )) (3.5)

DKL(δ−( 1
3 ))‖1) = δ−( 1

3 ) − 1− log(δ−( 1
3 )) (3.6)

Next we solve for r̂ such that
r̂ − x
xµB

=
2xµ

r̂
= δ( 1

3 ), (3.7)

resulting in a quadratic equation that simplifies to

r̂ =
4x

4− δ( 5
3 )
. (3.8)

After having determined r̂ and x explicitly, we can solve for µ (and hence the puzzle difficulty

d) by plugging these in to Equation 3.7.

Next we prove a lemma that these parameters are satisfactory. The proof is based on simple

Chernoff bounds.

Lemma 3.7. Let parameters µ, r̂, and x be defined as in Equations 3.4, 3.7, and 3.8. As

described above, let A be a Poisson arrival process with scale parameter µ; A2x is the time of the

2xth arrival. Let B be a process with alternating phases of (1) Poisson arrivals (scale parameter

µ) followed by (2) constant time delay ∆ + t0 = 1; Bx is the time at which B has completed x

cycles through both phases. Then A2x > r̂ > Bx except for a negligible probability.

Proof. We derive Chernoff bounds to give us the desired result. Consider A1, which is a single

exponential distribution with scale parameter µ. The moment generating function of A1 is

E[etA1 ] = (1− tµ)−1. (3.9)

The moment generating function for a sum of independent distributions is simply the product

of the respective moment generating functions. Thus, for any x,

E[etAx ] = (1− tµ)−x. (3.10)

7 The KL-divergence is often used to express the number of bits needed to distinguish between two probability
distributions [66]. Analogously, we use this quantity to establish with high probability the separation between
two distributions, A2x and Bx.
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Process B is also a sum of independent variables, where the moment generating function for the

distribution with constant value ∆ + t0 = 1 is et. So,

E[etBx ] = (1− tµB)−xetx. (3.11)

Let R be a non-negative random variable. By Markov’s inequality, Pr[R ≥ r̂] ≤ E[R]/r̂. This

inequality provides a maximum probability of deviating from the expected value. The Chernoff

bound technique is to apply this inequality to an exponential transformation on R. For any

t > 0, we have

Pr[R ≥ r̂] = Pr[etR ≥ etr̂] ≤ E[etR]/etr̂. (3.12)

A similar inequality exists for R ≤ r̂. For any t < 0, we have

Pr[R ≤ r̂] = Pr[etR ≥ etr̂] ≤ E[etR]/etr̂. (3.13)

In order to obtain the tightest bounds, we solve for t to minimize the probability. Using this

technique, and by assuming E[A2x] > r̂ > E[Bx], we obtain the following bounds:

Pr[Bx ≥ r̂] ≤ exp(r̂ − x) (3.14)

Pr[A2x ≤ r̂] ≤ exp(r̂) (3.15)

Beginning with 3.14 and applying (3.7) then (3.5), we have an upper bound for B,

Pr[Bx ≥ r̂] ≤ exp

(
x− (r̂ − x)/µB + x log

(r̂ − x)

xµB

)
= exp

(
x

(
1− (r̂ − x)

xµB
+ log

(r̂ − x)

xµB

))
= exp

(
−x
(
δ( 1

3 ) − 1− log δ( 1
3 )
))

= exp
(
−xDKL(δ( 1

3 )‖1)
)

= e−λ.

Finally, since DKL(δ( 1
3 )‖1) ≥ DKL(δ−( 1

3 )‖1) for all δ, we can easily provide a matching bound

for A using (3.15), (3.7), and (3.6),

Pr[A2x ≤ r̂] ≤ exp

(
2x− r̂/µ+ 2x log

r̂

2xµ

)
= exp

(
2x

(
1− r̂

2xµ
+ log

r̂

2xµ

))
= exp

(
−2x

(
δ−( 1

3 ) − 1− log δ−( 1
3 )
))

= exp
(
−2xDKL(δ−( 1

3 )‖1)
)

= exp
(
−xDKL(δ( 1

3 )‖1)
)

= e−λ.
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These tail bounds complete our proof.

We now prove the Nakamoto consensus protocol correct.

Theorem 3.8. The Nakamoto Consensus protocol, when instantiated with a (t, γ, d, t0)-scratch-

off puzzle, and with parameters r̂ and d chosen as described in Equations 3.8, 3.4, and 3.7, and

assuming the adversary corrupts no more than f processes where 2(n−f)
γn > 1, is a Monte Carlo

consensus protocol as defined in 3.3.

The termination property holds immediately — every process terminates after a fixed round r̂.

The agreement property follows from Lemmas 3.5, 3.6, and 3.7, which establish that at time r̂,

each correct process outputs a value associated with a chain of puzzle solutions of at least length

x, yet altogether the correct processes know of fewer than 2x distinct puzzle solutions in total.

This implies that the value associated with x puzzle solutions is unique.

Finally, to prove the validity property, we must show that the unique value is one of the inputs to

a correct process with a non-negligible probability. Here we rely again on the use of processes A

and B as established in Lemmas 3.5 and 3.6. Suppose we initialize a counter to 0 at the beginning

of the protocol. If a correct process finds and propagates a solution before two puzzle solutions

are found in total (i.e., B1 < A2), then we increment the counter at time B1. Otherwise, we

decrement the counter at time A2. In either case, after we modify the counter, we repeat the

experiment, a total of 2x+1 times. The value of this counter is a simple random walk. It follows

from Equation 3.7 and the definitions of A and B that

E[B1] = µB + 1 < 2µ = E[A2], (3.16)

and therefore the random walk is positive-biased. The final value is thus positive with probability

better than 1/2 (since an odd number of steps have been taken, the final value is never exactly 0).

When the final value is positive, then we know from the Ballot theorem [2] that with probability
1

2x+1 the counter never returns to zero. When this holds, the correct processes converge to one

of their inputs in the first step, and maintain the “lead” until the end, ultimately deciding on

that value.

Example and comparison with Bitcoin. We now give an example instantiation with con-

crete parameters. We stress that we have not attempted to optimize our choice of parameters

for performance, but instead have aimed only to choose adequate parameters that let us prove

asymptotic security. Regardless, we can compare our parameterization directly to that of Bitcoin.

In the Bitcoin whitepaper [81], Nakamoto provides concrete security estimates against a double-

spend attack on a merchant, assuming that the merchant waits to observe a given number of

puzzle solutions before accepting a payment. Against such an attacker with 10% of the network’s

hashpower (i.e., when δ = 1.8), if the merchant waits for 5 blocks (an average of 50 minutes), then

the probability of a successful attack is less than 0.1% (approximately e−λ where λ = 7). Taking

λ = 7 as our security parameter, our instantiation (Equation 3.4) would require us to wait for at

least x ≈ 340 puzzle solutions, significantly more than in Bitcoin. By Equation 3.8, our protocol
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calls for waiting for r̂ ≈ 1460 communication rounds until terminating. Although Bitcoin does

not explicitly express a bound for the communication delay, experimental measurements have

shown that (at the current time) a Bitcoin block propagates to approximately 90% of the nodes

within approximately 12 seconds [36]. Therefore, taking ∆ ≈ 12 seconds, the total running time

would be nearly five hours, while the average time to find one puzzle solution would be only

µ ≈ 22seconds.





Chapter 4

Nonoutsourceable Scratch-Off

Puzzles to Deter Mining

Coalitions

4.1 Overview

The most fundamental assumption made by decentralized cryptocurrencies is that no single

entity or adminstration wields a large fraction of the computational resources in the network.

Violation of this assumption can lead to severe attacks such as history revision and double

spending which essentially nullify all purported security properties that are widely believed

today.

However, two recent trends in mining – namely, mining pools and hosted mining – have led to

the concentration of mining power, and have cast serious doubt on the well-foundedness of these

fundamental assumptions that underly the security of Bitcoin-like cryptocurrencies. Specifically,

mining pools exist because solo miners wish to hedge mining risks and obtain rewards at a more

stable, steady rate. At several times over the past two years, the largest handful of mining

pools have accounted for well over a third of the network’s overall computing effort [25]. For

example, recently the largest mining pool, GHash.IO, has even exceeded 50% of the total mining

capacity.1 Currently, Hosted mining, on the other hand, allows individuals to outsource their

mining effort to one or a few large service providers. Hosted mining services have already

emerged, such as Alydian [24], whose “launch day pricing was $65,000 per Terahash, and mining

hosting contracts are available in 5 and 10 Th/sec blocks” [24]. Hosted mining is appealing

because it can potentially reduce miners’ cost due to economies of scale. Henceforth we will refer

to both mining pools and hosted mining as mining coalitions.

Such large mining coalitions present a potential lurking threat to the security of Bitcoin-like

cryptocurrencies. To exacerbate the matter, several recent works [45, 64] showed that it may

1See http://arstechnica.com/security/2014/06/bitcoin-security-guarantee-shattered-by-anonymous-miner-with-51-network-power/
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be incentive compatible for a mining coalition to deviate from the honest protocol – in par-

ticular, Eyal and Sirer [45] showed that a mining concentration of about 1/3 of the network’s

mining power can obtain disproportionately large rewards by exhibiting certain “selfish mining”

behavior.

While alternatives to centralized mining pools are well-known and have been deployed for several

years, (such as P2Pool,[102] a decentralized mining pool architecture), these have unfortunatley

seen extremely low user adoption (at the time of writing, they account for less than 2% of the

network). Fundamentally, the problem is that Bitcoin’s reward mechanism provides no particular

incentive for users to use these decentralized alternatives.

Increasing understanding of these problems has prodded extensive and continual discussions in

the broad cryptocurrency community, regarding how to deter such coalitions from forming and

retain the decentralized nature of Bitcoin-like cryptocurrencies [72]. The community demands a

technical solution to this problem.

4.1.1 Our Results and Contributions

Our work provides a timely response to this community-wide concern [72], providing the first

formally founded solution to combat Bitcoin mining centralization. Our key observation is the

following: an enabling factor in the growth of mining pools is a simple yet effective enforcement

mechanism; members of a mining pool do not inherently trust one another, but instead submit

cryptographic proofs (called “shares”) to the other pool members (or to the pool operator), in

order to demonstrate they are contributing work that can only benefit the pool (e.g., work that

is tied to the pool operator’s public key).

Strongly Nonoutsourceable puzzles. Our idea, therefore, is to disable such enforcement

mechanisms in a cryptographically strong manner. a new form of proof-of-work puzzles which

additionally guarantee the following:

If a pool operator can effectively outsource mining work to a worker, then the worker can

steal the reward without producing any evidence that can potentially implicate itself.

Intuitively, if we can enforce the above, then any pool operator wishing to outsource mining

work to an untrusted worker runs the risk of losing its entitled mining reward, thus effectively

creating a disincentive to outsource mining work (either in the form of mining pools or hosted

mining). Our nonoutsourceable puzzle is broadly powerful in that it renders unenforceable even

external contractual agreements between the pool operator and the worker. In particular, no

matter whether the pool operator outsources work to the worker through a cryptocurrency

smart contract or through an out-of-the-band legal contract, we guarantee that the worker can

steal the reward without leaving behind evidence of cheating.
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Technical insights. At a technical level, our puzzle achieves the aforementioned guarantees

through two main insights:

P1: We craft our puzzle such that if a worker is doing a large part of the mining computation, it

must possess a sufficiently large part of a “signing key” such that it can later sign over the

reward to its own public key – effectively stealing the award from the pool operator;

P2: We offer a zero-knowledge spending option, such that a worker can spend the stolen reward in

a way that reveals no information (including potential evidence that can be used to implicate

itself).

As a technical stepping stone, we formulate a weaker notion of our puzzle referred to as a weakly

nonoutsourceable puzzle. A weakly nonoutsourceable puzzle essentially guarantees property P1

above, but does not ensure property P2. In Section 4.4 we argue that weakly nonoutsourceable

puzzles alone are inadequate to defeat mining coalitions, and in particular hosted mining. As a

quick roadmap, our plan is to first construct a weakly nonoutsourceable puzzle, and from there

we devise a generic zero-knowledge transformation to compile a weakly nonoutsourceable puzzle

into a strongly nonoutsourceable one.

Community demand and importance of formal security. The community’s demand for

a nonoutsourceable puzzle is also seen in the emergence of new altcoins [80, 98] that (plan to)

adopt their own home-baked versions of nonoutsourceable puzzles. Their solutions, however, offer

only weak nonoutsourceability, and do not provide any formal guarantees. The existence of these

custom constructions further motivates our efforts, and demonstrates that it is non-trivial to both

formalize the security notions as well as design constructions with provable security. To date, our

work provides the only formally-founded solution, as well as the first strongly nonoutsourceable

puzzle construction.

4.2 Weakly Nonoutsourceable Puzzles

The Bitcoin scratch-off puzzle described in the previous section is amenable to secure outsourcing,

in the sense that it is possible for one party (the worker) to perform mining work for the benefit

of another (the pool operator) and to prove to the pool operator that the work done can only

benefit the pool operator.

To give a specific example, let m be the public key of the pool operator; if the worker performs

2d
′

scratch attempts, on average it will have found at least one value r such that H(puz‖m‖r) <
2λ−d

′
. The value r can be presented to the pool operator as a “share” (since it represents a

portion of the expected work needed to find a solution); intuitively, any such work associated

with m cannot be reused for any other m∗ 6= m. This scheme is an essential component of

nearly every Bitcoin mining pool to date [92]; the mining pool operator chooses the payload

m, and mining participants are required to present shares associated with m in order to receive

participation credit. The rise of large, centralized mining pools is due in large part to the

effectiveness of this mechanism.
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We now formalize a generalization of this outsourcing protocol, and then proceed to construct

puzzles that are not amenable to outsourcing (i.e., for which no effective outsourcing protocol

exists).

4.2.1 Notation and Terminology

Pool operator and Worker. We use the terminology pool operator and worker referring

respectively to the party outsourcing the mining computation and the party performing the

mining computation. While this terminology is natural for describing mining pools, we stress

that our results are intended to simultaneously discourage both mining pools and hosted mining

services. In the case of hosted mining, the roles are roughly swapped; the cloud server performs

the mining work, and the individuals who hire the service receive the benefit and must be

convinced the work is performed correctly. We use this notation since mining pools are more

well-known and widely used today, and therefore we expect the mining-pool oriented terminology

to be more familiar and accessible.

Protocol executions. A protocol is defined by two algorithms S and C, where S denotes the

(honest) worker, and C the (honest) pool operator. We use the notation (oS ; oC) ← (S, C) to

mean that a pair of interactive Turing Machines S and C are executed, with oS the output of S,

and oC the output of C.

In this paper we assume the pool operator executes the protocol program C correctly, but the

worker may deviate arbitrarily.2 We use the notation (A, C) to denote an execution between a

malicious worker A and an honest pool operator C. Note that protocol definition always uses

the honest algorithms, i.e., (S, C) denotes a protocol or an honest execution; whereas (A, C)
represents an execution.

4.2.2 Definitions

Outsourcing protocol. We now define a generalization of outsourced mining protocols, en-

compassing both mining pools and hosted mining services. Our definition of outsourcing protocol

is broad – it captures any form of protocol where the pool operator and worker may communicate

as interactive Turing Machines, and at the end, the pool operator may obtain a winning ticket

with some probability. The protocol is parametrized by three parameters tC , tS , and te, which

roughly models the pool operator’s work, honest worker’s work, and the “effective” amount of

work during the protocol.

Definition 4.1. A (tS , tC , te)-outsourcing protocol for scratch-off puzzle (G,Work,Verify), where

te < tS + tC and tc < te, is a two-party protocol, (S, C), such that

• The pool operator’s input is puz, and the worker’s input is ⊥.

2This is without loss of generality, and does not mean that we assume the mining pool operator is honest,
since the protocol (S, C) may deviate from “honest” Bitcoin mining.
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• The pool operator C runs in at most tC · t time, and the worker S in at most tS · t time.

• C outputs a tuple (ticket,m) at the end, where ticket is either a winning ticket for payload

m or ticket = ⊥. Further, when interacting with an honest S, C outputs a ticket 6= ⊥ with

probability at least ζ1(te, 2
−d)− negl(λ).

Formally,

Pr


puz← G(1λ)

(·; ticket,m)← (S, C(puz)) :

Verify(puz,m, ticket)

 ≥ ζ1(te, 2
−d)− negl(λ).

The parameter te is referred to as the effective billable work, because the protocol (S, C) has the

success probability of performing te unit scratch attempts. Note that it must be the case that

te < µ(tS + tC). Intuitively, an outsourcing protocol allows effective outsourcing of work by the

pool operator if te � tC .

Note that this definition does not specify how the payload m is chosen. In typical Bitcoin mining

pools, the pool operator chooses m so that it contains the pool operator’s public key. However,

our definition also includes schemes where m is jointly computed during interaction between S
and C, for example.

Weak nonoutsourceability. So far, we have formally defined what an outsourcing protocol is.

Roughly speaking, an outsourcing protocol generally captures any possible form of contractual

agreement between the pool operator and the worker. The outsource protocol defines exactly

what the worker has promised to do for the pool operator, i.e., the “honest” worker behavior. If a

worker is malicious, it need not follow this honest prescribed behavior. The notion of weak non-

outsourceability requires that no matter what the prescribed contractual agreement is between

the pool operator and the worker– as long as this agreement “effectively” outsources work to

the worker– there exists an adversarial worker that can always steal the pool operator’s ticket

should the pool operator find a winning ticket during the protocol. Effectiveness is intuitively

captured by how much effective work the worker performs vs. the work performed by the pool

operator in the honest protocol. Note that there always exists a trivial, ineffective outsourcing

protocol, where the pool operator always performs all the work by itself – in this case, a malicious

worker will not be able to steal the ticket. Therefore, the weak non-outsourceability definition

is parametrized by the effectiveness of the honest outsourcing protocol.

More specifically, the definition says that the adversarial worker can generate a winning ticket

associated with a payload of its own choice, over which the pool operator has no influence. In

a Bitcoin-like application, a natural choice is for an adversarial worker to replace the payload

with a public key it owns (potentially a pseudonym), such that it can later spend the stolen

awards. Based on this intuition, we now formally define the notion of a weakly nonoutsourceable

scratch-off puzzle.

Definition 4.2. A scratch-off-puzzle is (tS , tC , te, α, ps)-

weakly nonoutsourceable if for every (tS , tC , te)-outsourcing protocol (S, C), there exists an ad-

versary A that runs in time at most tS · t+ α, such that:
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• Let m∗
$← {0, 1}λ. Then, at the end of an execution

(A(puz,m∗), C(puz)), the probability that A outputs a winning ticket for payload m∗ is at

least psζ1(te, 2
−d). Formally,

Pr


puz← G(1λ);m∗

$← {0, 1}λ

(ticket∗; ticket,m)← (A(puz,m∗), C(puz)) :

Verify(puz, ticket∗,m∗)

 ≥ psζ1(te).

• Let viewh denote the pool operator’s view in an execution with the honest worker (S, C(puz)),
and let view∗ denote the pool operator’s view in an execution with the adversary

(A(puz,m∗), C(puz)). Then,

view∗
c≡ viewh.

When C interacts with A, the view of the pool operator view∗ is computationally indistin-

guishable from when interacting with an honest S.

Later, when proving that puzzles are weakly nonoutsourceable, we typically construct an adver-

sary A that runs the honest protocol S until it finds a ticket for m, and then transforms the

ticket into one for m∗ with probability ps. For this reason, we refer to the adversary A in the

above definition as a stealing adversary for protocol (S, C). In practice, we would like α to be

small, and ps ≤ 1 to be large, i.e., A’s run-time is not much different from that of the honest

worker, but A can steal a ticket with high probability.

If the pool operator outputs a valid ticket for m and the worker outputs a valid ticket for m∗, then

there is a race to determine which ticket is accepted by the Bitcoin network and earns a reward.

Since the µ-incompressibility of the scratch-off puzzle guarantees the probability of generating

a winning ticket associated with either m or m∗ is bounded above by ζ1(µ(tS + tC), 2
−d), the

probability of the pool operator outputting a ticket — but not the worker — is bounded above

by ζ1(µ(tS + tC), 2
−d)− psζ1(te, 2

−d).

4.3 A Weakly Nonoutsourceable Puzzle

In this section, we describe a weakly nonoutsourceable construction based on a Merkle-hash tree

construction. We prove that our construction satisfies weak nonoutsourceability (for a reasonable

choice of parameters) in the random oracle model. Informally, our construction guarantees that

for any outsourcing protocol that can effectively outsource a fixed constant fraction of the effective

work, an adversarial worker will be able to steal the puzzle with at least constant probability.

Our construction is formally defined in Figure 4.2, but here we provide an informal explanation

of the intuition behind it.

Intuition. To solve a puzzle, a node first builds a Merkle tree with random values at the leaves;

denote the root by digest. Then the node repeatedly samples a random nonce s, computes

h = H(puz‖s‖digest), and uses h to select q leaves of the Merkle tree and their corresponding
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σ4,0 σ4,1σ1,0 σ2,0 σ2,1 σ3,0 σ3,1 σn,0 σn,1...

k leaves revealed 
during scratch
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Secret key (leaves)

σ1,1

Figure 4.1: Illustration of our weakly-nonoutsourceable puzzle.

Let H,H2 : {0, 1}∗ → {0, 1}λ denote random oracles.

• G(1λ): no setup necessary

• Work(puz,m):

Construct Merkle tree. Sample L random strings leaf1, . . . , leafL
$← {0, 1}λ, and then

construct a Merkle tree over the leafi’s using H2 as the hash function. Let digest denote the
root digest of this tree.

Scratch. Repeat the following scratch procedure:

∗ Draw a random nonce, s
$← {0, 1}λ.

∗ Compute h := H(puz‖m‖s‖digest), and use the value h to select q distinct leaves from the
tree.

∗ Let B1, B2, . . . , Bq denote the branches corresponding to the selected leaves. In particular,
for a given leaf node, its branch is defined as the Merkle proof for this leaf node, including
leaf node itself, and the sibling for every node on the path from the leaf to the root.

∗ Compute σh := {Bi}i∈[q] in sorted order of i.

∗ If H(puz‖s‖σh) < 2λ−d then record the solution pair (s, σh) and goto “Sign payload”.

Sign payload. Sign the payload m as follows:

∗ Compute h′ := H(puz‖m‖digest), and use the value h′ to select a set of 4q′ distinct leaves
from the tree such that these leaves are not contained in σh. From these, choose an arbitrary
subset of q′ distinct leaves. Collect the corresponding branches for these q′ leaves, denoted
B1, B2, . . . , Bq′ .

∗ Let σ′h := {Bi}i∈[q′] in sorted order of i.

∗ Return ticket := (digest, s, σh, σ
′
h).

• Verify(puz,m, ticket):

Parse ticket := (digest, s, σh, σ
′
h)

Compute h := H(puz‖m‖s‖digest) and h′ := H(puz‖m‖digest).
Verify that σh and σ′h contain leaves selected by h and h′ respectively.
Verify that σh and σ′h contain valid Merkle paths with respect to digest.
Verify that H(puz‖s‖σh) < 2λ−d.

Figure 4.2: A weakly nonoutsourceable scratch-off puzzle.

branches (i.e., the corresponding Merkle proofs). It then hashes those branches (along with puz

and s) and checks to see if the result is less than 2λ−d.

Once successful, the node has a value s what was “difficult” to find, but is not yet bound

to the payload message m. To effect such binding, a “signing step” is performed in which

h′ = H(puz‖m‖digest) is used to select a set of 4q′ leaf nodes (i.e., using h′ a seed to a pseu-

dorandom number generator). Any q′ of these leaves, along with their corresponding branches,

constitute a signature for m and complete a winning ticket. o Intuitively, this puzzle is weakly

nonoutsourceable because in order for the worker to perform scratch attempts, it must
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• either know a large fraction of the leaves and branches of the Merkle tree, in which case it

will be able to sign an arbitrary payload m∗ with high probability – by revealing q′ out of

the 4q′ leaves (and their corresponding branches) selected by m∗,

• or incur a large amount of overhead, due to aborting scratch attempts for which it does

not know the necessary leaves and branches,

• or interact with the pool operator frequently, in which case the pool operator performs a

significant fraction of the total number of random oracle queries.

To formally prove this construction is weakly nonoutsourceable, we assume that the cost of the

Work algorithm is dominated by calls made to random oracles. Thus, for simplicity, in the

following theorems we equate the running time with the number of calls to the random oracle.

However, the theorem can be easily generalized (i.e., relaxing by a constant factor) as long as

the cost of the rest of the computation is only a constant fraction of the random-oracle calls.

Theorem 4.3. The construction in Figure 4.2 is a (d, 2tRO, t0, γ)-scratch-off puzzle, where t0 =

0 and γ = 1, assuming that only the random oracle calls contribute to the running time of Work.

Proof. Correctness and parallel feasibility proofs are trivial. We now prove incompressibility.

We restrict our focus to the case where the adversary outputs only a single puzzle, message,

and solution (puz,m∗, ticket) (i.e., when ` = 1). We consider two cases. The first case is that

the puzzle puz output by the adversary does not appear in the oracle query transcript Q. The

second case is that the puzzle puz occurs in Q, but only along with a distinct message m! = m∗.

Case 1: Different puzzles. For any adversary A to obtain a winning ticket with ζ1(te, 2
−d) prob-

ability, the adversary must have made at least te good scratch attempts. A good scratch attempt

consists of at least two random oracle queries, h := H(puz‖s‖digest) and H(puz‖s‖σh) such that

the branches σh are consistent with h and digest. For each good scratch attempt the adversary

must know at least some fraction of the branches, and have made random oracle calls to select the

O(λ) branches that are consistent with the digest. Without calling the random oracle to select

the leaves, except for negligible probability the adversary cannot guess the correct branches to

fetch (which are then fed into the next another random oracle to compare against the difficulty).

Case 2: Same puzzle, different message. For non-transferability, we need to show that for any

polynomial time adversary A, knowing polynomially many honestly generated tickets to puz for

payload m1,m2, . . . ,m` does not help noticeably in computing a ticket for m∗ to puz, where

m∗ 6= mi for any i ∈ [`].

The adversary A may output two types of tickets for m∗: 1) m∗ uses the same Merkle digest as

one of the mi’s; and 2) m∗ uses a different Merkle digest not seen among the mi’s.

In the latter case, it is not hard to see that the adversary A can only compress the computation

at best as the best incompressibility adversary. Therefore, it suffices to prove that no polynomial

time adversary can succeed with the first case except with negligible probability. Below we prove

that.
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Notice that the honest Work algorithm generates a fresh Merkle digest every time it is invoked.

Therefore, with the honest algorithm, each Merkle digest will only be used sign a single payload

except with negligible probability. Since the number of leaves L ≥ q + 8q′, there are at least 8q′

leaves to choose from in the signing stage. q′ of those will be revealed for signing a message m.

The probability that the revealed q′ leaves are a valid ticket for message m′ 6= m is bounded

by
(

8q′

3q′

)
/
(

8q′

4q′

)
∝ exp(−c2q′). If the adversary has seen honestly generated tickets for ` different

payloads, by union bound, the probability that there exists a ticket, such that its q′ revealed

leaves constitute a valid signature for a different message m∗ is bounded by ` · exp(−c2q′).

Theorem 4.4. Let q, q′ = O(λ). Let the number of leaves L ≥ q + 8q′. Suppose d > 10 and

te ·2−d < 1/2. Under the aforementioned cost model, the above construction is a (tS , tC , te, α, ps)

weakly nonoutsourceable puzzle, for any 0 < η < 1 s.t. tC < ηte, ps >
1
2 (1 − η) − negl(λ), and

α = O(λ2).

In other words, if the pool operator’s work tC is a not a significant fraction of te, i.e., work is

effectively outsourced, then an adversarial worker will be able to steal the pool operator’s ticket

with a reasonably big probability, and without too much additional work than the honest worker.

For simplicity of presentation, we prove this for the case when η = 1/2. It is trivial to extend the

proof for general 0 < η < 1. To summarize, we would like to prove the following: for a protocol

(S, C), if no adversary A (running in time not significantly more than the honest worker) is able

to steal the winning ticket with more than 1
2ζ1(te, 2

−d) probability, then tC must be a significant

fraction of te, i.e., the pool operator must be doing a significant fraction of the effective work.

This would deter outsourcing schemes by making them less effective.

If the ticket output at the end of the protocol execution contains a σh such that 1) the selected

leaves corresponding to σh were not decided by a random oracle call during the execution; or 2)

σh itself has not been supplied as an input to the random oracle during the execution, then this

ticket is valid with probability at most 2−d. For (S, C) to be an outsourcing protocol with te

effective billable work, the honest protocol must perform a number of “good scratch attempts”

corresponding to te. Every good scratch attempt queries the random oracle twice, one time to

select the leaves, and another time to hash the collected branches. We now define the notion of

a “good scratch attempt”.

Definition 4.5. During the protocol (S, C), if either the pool operator or worker makes the two

random oracle calls h := H(puz‖s‖digest) and H(puz‖s‖σh) for a set of collected branches σh

that is consistent with h and digest, this is referred to as a good scratch attempt. Each good

scratch attempt requires calling the random oracle twice – referred to as scratch oracle calls.

Without loss of generality, we assume that in the honest protocol, if a good scratch attempt finds

a winning ticket, the pool operator will accept the ticket. This makes our proof simpler because

all good scratch attempts contribute equally to the pool operator’s winning probability. If this

is not the case, the proof can be easily extended – basically, we just need to make a weighted

version of the same argument. For each good scratch attempt, there are two types of random

oracle calls. Type 1 calls select the leaves. Type 2 calls hash the collected branches. Assume

in the extreme case that the worker makes all the Type 1 calls (which accounts for 1/2 of all
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work associated with good scratch attempts). Now consider Type 2 work which constitutes the

other half: for each good scratch attempt, if the worker knows < 1/3 fraction of leaves of the

corresponding tree before the Type 1 random oracle call for selecting the leaves, then the pool

operator must have done at least one unit of work earlier when creating the Merkle tree digest.

This is because if the worker knows < 1/3 fraction of the leaves before leaves are selected, then

the probability that the selected leaves all fall into the fraction known by the worker is negligible.

Since this is a good scratch attempt, for the selected leaves that the worker does not know, the

pool operator must then know the leaves and the corresponding Merkle branches. This means

that the pool operator earlier called the random oracle on those leaves to construct the Merkle

digest.

If we want the pool operator’s total work to be within 1/2 of the total effective work, then for

at least 1/2 of good scratch attempts, the worker must know at least 1/3 of leaf nodes before

the Type 1 oracle is called to select the leaves.

Suppose that d > 10 is reasonably large and that te ·2−d < 1/2. In this case, the probability that

two or more tickets are found within te good attempts are a constant fraction smaller than the

probability of one winning ticket being found. If for at least 1/2 of the good scratch attempts,

the worker knows at least 1/3 fraction of leaves before leaves are selected, then an adversarial

worker A would be able to steal the ticket with constant probability given that a winning ticket

is found. To see this, first observe that the probability that a single winning ticket is found is

a constant fraction of ζ1(te, 2
−d). Conditioned on the fact that a single winning ticket is found,

the probability that this belongs to an attempt that the worker knows > 1/3 leaves before leaves

are selected is constant. Therefore, it suffices to observe the following fact.

Fact 1. For a good scratch attempt, if a worker knows > 1/3 fraction of leaves before leaves are

selected, then conditioned on the fact that this good scratch attempt finds a winning ticket, the

worker can steal the ticket except with probability proportional to exp(−cq′) for an appropriate

positive constant c.

Proof. By a simple Chernoff bound.

The argument is standard. In expectation, among the selected 4q′ leaves, the worker knows 1/3

fraction of them. Further, the worker only needs to know 1/4 fraction of them to steal the ticket.

The probability that the worker knows less than q′ out of 4q′ leaves can be bounded using a

standard Chernoff bound, and this probability is upper bounded by exp(−q′/27).

4.4 Strongly Nonoutsourceable Puzzles

In the previous section, we formally defined and constructed a scheme for weakly nonoutsource-

able puzzles, which ensure that for any “effective” outsourcing protocol, there exists an adversar-

ial worker that can steal the pool operator’s winning ticket with significant probability, should

a winning ticket be found. This can help deter outsourcing when individuals are expected to

behave selfishly.
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One critical drawback of the weakly nonoutsourceable scheme (and, indeed, of Permacoin [77])

is that a stealing adversary may be detected when he spends his stolen reward, and thus might

be held accountable through some external means, such as legal prosecution or a tainted public

reputation.

For example, a simple detection mechanism would be for the pool operator and worker to agree

on a λ/2-bit prefix of the nonce space to serve as a watermark. The worker can mine by randomly

choosing the remaining λ/2-bit suffix, but the pool operator only accepts evidence of mining work

bearing this watermark. If the worker publishes a stolen puzzle solution, the watermark would

be easily detectable.

Ideally, we should enable the stealing adversary to evade detection and leave no incriminating

trail of evidence. Therefore, in this section, we define a “strongly nonoutsourceable” puzzle,

which has the additional requirement that a stolen ticket cannot be distinguished from a ticket

produced through independent effort.

Definition 4.6. A puzzle is (tS , tC , te, α, ps)-

strongly nonoutsourceable if it is (tS , tC , te, α, ps)-weakly nonoutsourceable, and additionally the

following holds:

For any (tS , tC , te)-outsourcing protocol (S, C), there exists an adversary A for the protocol such

that the stolen ticket output by A for payload m∗ is computationally indistinguishable from a

honestly computed ticket for m∗, even given the pool operator’s view in the execution (A, C). For-

mally, let puz← G(1λ), let m∗
$←{0, 1}λ. Consider a protocol execution (A(puz,m∗), C(puz)): let

view∗ denote the pool operator C’s view and ticket∗ the stolen ticket output by A in the execution.

Let ticketh denote an honestly generated ticket for m∗, (ticketh := WorkTillSuccess(puz,m∗)), and

let viewh denote the pool operator’s view in the execution (S, C(puz)). Then,

(view∗, ticket∗)
c≡ (viewh, ticketh)

Recall that in Bitcoin, the message payload m typically contains a Merkle root hash representing

a set of new transactions to commit to the blockchain in this round, including the public key to

which the reward is assigned. Thus to take advantage of the strongly nonoutsourceable puzzle,

the stealing worker should bind its substituted payload m∗ to a freshly generated public key for

which it knows the corresponding private key. It can then spend its stolen reward anonymously,

for example by laundering the coins through a mixer[21].

In Figure 4.3, we present a generic transformation that turns any weakly nonoutsourceable puzzle

into a strongly nonoutsourceable puzzle. The strengthened puzzle is essentially a zero-knowledge

extension of the original – a ticket for the strong puzzle is effectively a proof of the statement “I

know a solution to the underlying puzzle.”

Theorem 4.7. If (GenKey′,Work′,Verify′) is a (tS , tC , te, α, ps) weakly nonoutsourceable puzzle,

then the puzzle described in Figure 4.3 is a (tS , tC , te, α + tenc + tNIZK, ps − negl(λ)) strongly

nonoutsourceable puzzle, where tenc + tNIZK is the maximum time required to compute the en-

cryption and NIZK in the honest Work algorithm.
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Let NIZK be a non-interactive zero-knowledge proof system. Also assume that E = (Key,Enc,Dec) is
a CPA-secure public-key encryption scheme.

Let (G′,Work′,Verify′) be a weakly nonoutsourceable scratch-off puzzle scheme. We now construct a
strongly nonoutsourceable puzzle scheme as below.

• G(1λ): Run the puzzle generation of the underlying scheme puz′ ← G′(1λ). Let crs ← NIZK.K(1λ);
and let (skE , pkE)← E .Key(1λ). Output puz← (puz′, crs, pkE)

• Work(puz,m, t):

Parse puz := (puz′, crs, pkE).
ticket′ ←Work′(puz′,m, t),
Encrypt c← Enc(pkE ; ticket

′; s).
Set π ← NIZK.P(crs, (c,m, pkE , puz

′), (ticket′, s))
for the following NP statement:

Verify′(puz′,m, ticket′) ∧ c = Enc(pkE ; ticket
′; s)

Return ticket := (c, π).

• Verify(puz,m, ticket);

Parse puz := (puz′, crs, pkE), and parse ticket as (c, π).
Check that Verify(crs, (c,m, pkE , puz

′), π) = 1.

Figure 4.3: A generic transformation from any weakly nonoutsourceable scratch-off puzzle to
a strongly nonoutsourceable puzzle.

Proof. We first prove that this derived puzzle preserves weak nonoutsourceability of the underly-

ing puzzle. Suppose that (S, C) is a (tS , tC , te) outsourcing protocol. We will construct a suitable

stealing adversary A. To do so, we begin by deriving an outsourcing protocol (S ′, C′) for the un-

derlying puzzle; the stealable property of the underlying puzzle allows to introduce an adversary

A′, from which we will derive A. Let the outsourcing protocol (S ′, C′) for the underlying puzzle

be constructed as follows: Suppose that C′ is given the input puz′.

1. S ′ executes S unchanged.

2. C′ first generates a keypair according to the encryption scheme, (pkE , skE) ← E .Key(1λ),

runs the NIZK setup crs← NIZK.K(1λ), and then runs C using puzzle (puz′, crs, pkE).

3. If C outputs a ticket (c, π), then C′ decrypts c and outputs ticket′ ← Dec(skE , c).

When run interacting with S, the original pool operator C outputs a valid ticket with proba-

bility at least ζ1(te) − negl(λ); therefore, the derived pool operator C′ decrypts a valid ticket

with probability ζ1(te) − negl(λ). Since the underlying puzzle scheme is assumed to be weakly

nonoutsourceable, there exists a stealing adversary A′ running in time t′a = tS +α. We can thus

construct an A that runs A′ until it outputs ticket′A for the underlying puzzle, and then generate

an encryption and a zero-knowledge proof.

We also need to prove it satisfies the additional indistinguishability property required from a

strongly nonoutsourceable puzzle. This follows in a straightforward manner from the CPA-

security of the encryption scheme, and the fact that the proof system is zero-knowledge.

We next state a theorem that this generic transformation essentially preserves the non-transferability

of the underlying puzzle.
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Theorem 4.8. If the underlying puzzle (G′,Work′,Verify′) is δ′-non-transferable, then the derived

puzzle through the generic transformation is δ non-transferable for

µ+ δ′ ≤ (µ+ δ)t

t · t+ (tenc + tnizk)`

where tenc and tnizk are the time for performing each encryption and NIZK proof respectively.

Proof. We show that if an adversary A running in time t can win the non-transferability game

of the derived puzzle, we can construct another adversary A′ running in slightly more time than

t that can win the non-transferability game of the underlying puzzle.

A′ will call A as a blackbox. A′ first receives a challenge for the underlying puzzle, in the form

of puz′, m′1,m
′
2, . . . ,m

′
`, and winning tickets ticket′1, . . . , ticket

′
`. Next, A′ picks crs honestly, and

picks pkE such that A′ knows the corresponding skE . A′ now gives to A the puzzle puz :=

(puz′, crs, pkE). For i ∈ [`], A′ computes the zero-knowledge version ticketi := (ci, πi). where

ci is an encryption of ticket′i, and πi is the NIZK as defined in Figure 4.3. A′ gives m′1, . . . ,m
′
`

and ticket1, . . . , ticket` to A as well. Since A wins the non-transferability game, it can output a

winning ticket (m∗, ticket∗) for puzzle puz with at least ζ1((µ + δ)t, 2−d) probability where t · t
is the runtime of A; further m∗ 6= m′i for any i ∈ [`].

A′ now parses ticket∗ := (c, π). A′ then uses skE to decrypt c and obtain ticket′ – if the NIZK

is sound, then ticket′ must be a winning solution for the underlying puzzle puz′ and payload m∗

except with negligible probability – since otherwise one can construct an adversary that breaks

soundness of the NIZK. Now, A′ outputs (m∗, ticket′) to win the non-transferability game. A′

runs in t · t+ (tenc + tnizk)` time, but wins the non-transferability game with probability at least

ζ1((µ+ δ)t, 2−d). This contradicts the fact that the underlying puzzle is δ′-non-transferable.

Cheap plaintext option. Although we have shown it is plausible for a stealing worker (with

parallel resources) to compute the zero-knowledge proofs, this would place an undue burden

on honest independent miners. However, it is possible to modify our generic transformation so

that there are two ways to claim a ticket: the first is with a zero-knowledge proof as described,

while the second is simply by revealing a plaintext winning ticket for the underlying weakly

nonoutsourceable puzzle.





Chapter 5

Permacoin: Storage-based

Scratch-off Puzzles to Recycle

Mining Effort

5.1 Overview

Bitcoin mining is considerably expensive. At the current price and inflation rate, the Bitcoin

network pays out over $1 million per day in the form of Bitcoin mining rewards. If we suppose

that miners act like competitors in an efficient market, then we should predict that the costs of

Bitcoin mining are close to the total value of the mining rewards. Further assuming electricity

is the main cost, at $0.1 per KWH this would correspond to over 400 Megawatts - comparable

to the output of a small gas power plant.1

The Bitcoin FAQ2 has this to say on the matter: Question: Is [Bitcoin] not a waste of energy?

Answer: Spending energy on creating and securing a free monetary system is hardly a waste....

[Banks] also spend energy, arguably more than Bitcoin would.

Regardless of whether Bitcoin’s resource costs are justified, we may still look to reduce them. At

the time of writing, each Bitcoin puzzle solution requires about 270 hash computations in expec-

tation, and on average one solution is found every 10 minutes. The puzzle solutions themselves

have no intrinsic use, but are valued only for their indirect role in securing the Bitcoin network.

The Bitcoin FAQ also addresses the following question:

.

1Similar estimates can be found by observing the “hashpower” of the network (270 hash computations per 10
minutes, today) and the power consumption of typical mining devices [22, 36, 83].

2Referenced 6 Apr. 2013 at https://en.bitcoin.it/wiki/FAQ.

49
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Question: Why don’t we use calculations that are also useful for some other purpose? Answer:

To provide security for the Bitcoin network, the calculations involved need to have some very spe-

cific features. These features are incompatible with leveraging the computation for other purposes.

Indeed researchers have struggled to identify useful computational tasks outside Bitcoin, e.g.,

protein folding problems [13], that also have the predictable solution times and efficient public

verifiability required for Bitcoin.

We propose a system, Permacoin , which shows how to modify Bitcoin to repurpose the computing

resources that cryptocurrency miners invest for a general, useful goal and thus reduce waste.

5.1.1 Goal and approach

We show that Bitcoin resources can be repurposed for other, more broadly useful tasks, thereby

refuting the widespread belief reflected in the Bitcoin FAQ. We propose a new scheme called

Permacoin. The key idea in our scheme is to make a cryptocurrency in which mining depends

upon storage resources, rather than computation.

Concretely, Permacoin is based around a modified SOP in which nodes in Bitcoin perform mining

by constructing a Proof of Retrievability (POR) [56]. A POR proves that a node is investing

memory or storage resources to store a target file or file fragment. By building a POR-based SOP

into Bitcoin, our scheme creates a system of highly distributed, peer-to-peer file storage suitable

for storing a large, publicly valuable digital archive F. Specifically, our aim is to distribute F to

protect it against data losses associated with a single entity, e.g., the outages or wholesale data

losses already incurred by cloud providers [60].

In contrast to existing peer-to-peer file storage schemes [33, 65], our scheme doesn’t require an

identity or reputation system to ensure storage of F, nor does it require that F be a popular

download. We achieve file recoverability based strictly on clients’ incentives to make money (i.e.,

mine Bitcoins).

5.1.2 Challenges

In constructing our SOP in Permacoin based on Proofs of Retrievability, we encounter three

distinct challenges.

A standard POR involves a single prover holding a single file F. In our setting, however, multiple

clients collectively store a large dataset F (too large for a single client) in a distributed manner.

Of these an adversarially selected fraction may act maliciously. The first challenge in creating

our SOP is to construct an adversarial model for this new setting, and then present a distributed

POR protocol that is secure in this model. Assuming that clients have independent storage

devices, we prove that with our SOP, for clients to achieve a high rate of mining, they must store

F such that it is recoverable.
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Additionally, we must ensure that clients indeed maintain independent storage devices. If, for

instance, clients pooled their storage in the cloud to reduce their resource investment, the benefits

of dataset-recovery robustness through distribution would be lost. Thus a second challenge in

our SOP construction is to ensure that clients must make use of local storage to solve it.

To enforce locality of storage, we take two approaches. First, we base our SOP construction

on the nonoutsourceable puzzle construction presented in Chapter 4. Second, we ensure that

accesses to the file are made sequentially and pseudorandomly. Thus fetching blocks remotely

from a provider would incur infeasibly high communication costs (e.g., extremely high latency).

We show using benchmarks how our SOP scheme thus takes advantage of practical network-

resource limitations to prevent dangerous storage pooling.

5.2 The Permacoin Scratch-Off Puzzle

Our idea, at a high level, is to build a scratch-off-puzzle out of a Proof-of-Retrievability (POR),

such that the only way effective way to solve the puzzle is to store portions of the public dataset.

In the following sections, we describe how we design the puzzle to ensure that (a) users reliably

store a subset of the data, (b) participants assign themselves mostly non-overlapping subsets

of data to ensure good diversity, and (c) the entire dataset is recoverable with high probability

from the contents of participants’ local storage devices.

5.2.1 Strawman: A Simple POR-based Puzzle

To reduce the energy wasted by Bitcoin’s current proof-of-computation lottery, we propose re-

placing it in Permacoin with a POR lottery. In a POR lottery, every scratch-off attempt can

be associated with the effort of computing a POR. There are at least two issues that must be

addressed:

• Choosing a random subset of segments based on each participant’s public key. Since each

participant may not have sufficient storage to store the entire dataset, we have each partic-

ipant choose a random subset of segments of the data to store, based on the hash of their

public key.

• Non-interactive challenge generation. In traditional PORs, a verifier sends a random chal-

lenge to a prover, and the prover answers the challenge. In our system, the verifier is the

entire Bitcoin network, and the challenge must be generated non-interactively.

Thus, we have the participants generate challenges based on the publicly known epoch-

dependent puzzle ID puz. A valid challenge is computed as H(puz||s) for some string s of

the prover’s choice.

Our strawman protocol is described in Figure 5.1.
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• G(1λ): Setup.
The dealer computes and publishes the digest of the entire dataset F, consisting of n
segments.

• Work(puz,m):

Generate an arbitrary identity (e.g., a signing key or Bitcoin address) with public key
pk.

Next choose a subset Spk of segments to store:

∀i ∈ [`] : let u[i] := H0(pk||i) mod n, Spk := {u[i]}i∈[`]

where ` is the number of segments stored by each participant. The participant stores
{(F[j], πj)|j ∈ Spk}, where πj is the Merkle proof for the corresponding segment F[j].

Scratch. Repeat the following scratch procedure: Every scratch-off attempt is seeded
by a random string s chosen by the user. A participant computes k random challenges
from its stored subset Spk:

∀i = 1, 2, . . . , k : ri := u[H(puz||pk||i||s) mod `] (5.1)

The ticket is defined as:

ticket := (pk, s, {F[ri], πi}i=1,2,...,k)

where πi is the Merkle proof for the ri-th segment F[ri].

• Verify. The Verifier is assumed to hold the digest of F . Given a ticket :=
(pk, s, {F[ri], πri}i=1,2,...,k) verification first computes the challenged indices using Equa-
tion (5.1), based on pk and s, and computing elements of u as necessary. Then verify
that all challenged segments carry a valid Merkle proof.

Figure 5.1: A simple POR lottery.

5.2.2 A Nonoutsourceable POR-based Puzzle

One drawback of the strawman POR lottery (Figure 5.1) is that it is outsourceable, so it does not

incentivize distributed storage, which undermines our goal of long-term, resilient data-storage.

In particular, participants can potentially benefit from economies of scale if they outsource

the puzzle solving process to a cloud server, including the storage and computation necessary.

If most users outsource the puzzle solving process to the cloud, then Permacoin’s distributed

computational and storage network would effectively become centralized with a few companies.

To increase our resilience against correlated disasters, we wish to increase the geographical

diversity of the storage. Therefore, we wish to disincentivize users from outsourcing their storage

to cloud providers.

We now propose a nonoutsourceable POR lottery mechanism (see Figure 5.2) that discourages

users from outsourcing puzzle solving to the cloud.

Idea 1: Tie the payment private key to the puzzle solution. Our first idea is to tie to

the puzzle solution to the private key to which the lottery reward is paid out. This key must be

kept private in order to claim the reward for oneself. By tying the payment private key to the

puzzle solution, a user must reveal her private key to the cloud if she wishes to reduce her own
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• G(1λ): Setup. Let r > 1 denote a constant. Suppose that the original dataset F0

contains f segments.

First, apply a maximum-distance-separable code and encode the dataset F0 into F con-
taining n = rf segments, such that any f segments of F suffice to reconstruct F0. Then,
proceed with the Setup algorithm of Figure 5.1.

• Work(puz,m):

Construct Merkle tree. Sample L random strings leaf1, . . . , leafL
$← {0, 1}λ, and

then construct a Merkle tree over the leafi’s using H2 as the hash function. Let pk
denote the root digest of this tree.

Next choose a subset Spk of segments to store:

∀i ∈ [`] : let u[i] := H0(pk||i) mod n, Spk := {u[i]}i∈[`]

where ` is the number of segments stored by each participant. The participant stores
{(F[j], πj)|j ∈ Spk}, where πj is the Merkle proof for the corresponding segment F[j].

Scratch. For each scratch-off attempt seeded by a random none s chosen by the user,
compute the following:

σ0 := 0
r1 := u[H(puz||pk||s) mod `]

For i = 1, 2, . . . , k :
hi = H(puz||pk||σi−1||F[ri]) (∗)
Use the value hi to pseudorandomly select q distinct leaves from {leafi}.
Let B1, B2, . . . , Bq denote the Merkle branches corresponding to the selected leaves.
σi := {Bi}i∈[q] in sorted order of i.

ri+1 := H(puz||pk||σi) mod `
This attempt succeeds if H(puz‖r‖σk) < 2λ−d

Sign payload. Sign the payload m as follows:

∗ Compute h′ := H(puz‖m‖digest), and use the value h′ to select a set of 4q′ distinct
leaves from {leafi} such that these leaves are not contained in {σi}. From these,
choose an arbitrary subset of q′ distinct leaves. Collect the corresponding branches
for these q′ leaves, denoted B1, B2, . . . , Bq′ .

∗ Let σ′h := {Bi}i∈[q′] in sorted order of i.

∗ The ticket is defined as:

ticket := (pk, s, σ′h, {F[ri], σi, πri}∀i=1,2,...,k, )

where πri is the Merkle proof of F[ri].

• Verify. Given ticket := (pk, s, σ′h{F[ri], σi, πri}∀i=1,2,...,k), verification is essentially a
replay of the scratch-off, where the signing is replaced with signature verification. This
way, a verifier can check whether all iterations of the scratch-off were performed correctly.

Figure 5.2: Nonoutsourceable POR-based puzzle.
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costs by outsourcing the puzzle to the cloud. We assume that at least a fraction of the users will

choose not to entrust the cloud with their payment private keys.

Idea 2: Sequential and random storage access. We also need to discourage a user from

outsourcing storage to the cloud, but performing computation locally on her own machine. To

achieve this goal, we craft our puzzle such that access to storage is sequentialized during the

scratch-off attempt. Furthermore, the storage access pattern is random (based on outcomes of

calling a random oracle) and cannot be precomputed ahead of time. Thus, if the data is stored in

the cloud and the computation is performed locally, many round-trips must be incurred during

the scratch-off attempt, which will reduce the user’s chance of finding a winning ticket.

Idea 3: Boosting recoverability with erasure codes. As in standard proof-of-retrievability

schemes, we boost the probability of successful recovery through erasure coding. In the setup

phase, we erasure code a dataset containing f segments into rf segments, where r > 1, such

that any f segments suffice to recover the dataset.

Parameterizations and security. In order for this to be secure, unforgeable signature scheme

for all k + 1 messages, we can set L = 2kq + 8q′, q = O(λ) and q′ = O(λ), as in Section 4.2.

In practice, we need only set our parameters such that any reasonable user would prefer to store

at least L/2 leaves on the server. We can therefore set q = 1 for all the internal iterations of

the scratch-off step. However, for the (k + 1)-th signature, we set q′ = O(λ), and the solver

must choose 4q′ leaves and reveal any q′ of them. In this case, if the client withholds L/2 leaves

from the server, the server must in expectation contact the client k/2 times during the scratch-

off attempt – in Section 5.3, we show that the cost of transmitting even small packets of data

greatly exceeds the cost of simply computing scratch-off iterations locally. Therefore, a rational

user would not outsource its computation yet withhold L/2 or more leaves.

5.3 To Outsource or Not to Outsource

As mentioned earlier, since we bind possession of newly minted coins to a user’s private key in

Permacoin, we assume that a substantial fraction of users will not entrust their private keys to

a service provider and risk theft of their coins.

A user j who only stores her private key skj locally can choose between two ways of storing her

assigned blocks of F: a local storage device or outsourced storage leased from a remote cloud

storage service. (A combination of the two is also possible.) We now analyze the storage choice

of rational participants, those seeking to maximize their return on mining by achieving the lowest

expected cost per SOP. We argue that rational users will choose local storage to drive down their

resource costs.

In both the local storage and outsourced storage scenarios, the user locally provisions a basic

computational resource (incurring the hardware costs of a motherboard, CPU, and RAM and
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Table 5.1: Notation used for Permacoin system parameters

f # segments necessary for recovery
m total # segments stored by good users during recovery
n total # encoded segments
` # segments assigned to each identity
k # iterations per puzzle
B # size of each block (bytes)

power costs, but not of a substantial storage medium). The cost differences for the two storage

scenarios—again, favoring local storage—stem from the following:

Cost of Storage and I/O: In the local scenario, a client’s costs are its investment in stor-

age equipment for mining, specifically, for the purchase of RAM or SSD. (These costs may be

characterized in terms of equipment depreciation.)

In the outsourced scenario, a client’s costs include the: 1) Cost of storage and disk I/O charged by

the service provider; 2) Cost of network bandwidth, including that of the network link provided

by an ISP, and the cost per GB of network transfer charged by a service provider. In our setting,

storage of the file F can be amortized across multiple users, so we assume the storage cost and

disk I/O cost are close to zero. What remains is the cost of network I/O.

We show that based on typical market prices today, the costs of storage and I/O are significantly

cheaper for the local storage option.

Latency: By design, our SOP sequentially accesses blocks in F in a random (pseudorandom)

order. The resulting, unpredictable fetches penalize outsourced storage, as they introduce sub-

stantial latency: a single round-trip for every fetched block, which is vastly larger than disk I/O

latency. This latency overhead reduces a miner’s chance of finding a valid puzzle solution and

winning the reward when the number k of outsourced fetches is large.

If each block fetch incurs roundtrip latency τ , then for large k, the total incurred latency kτ may

be quite large. For example, with k = 6000, one iteration parameter we analyze below, and a

45ms roundtrip latency, typical for regional internet accesses, kτ would be 4.5 minutes—almost

half the length of an epoch. Boosting to k > 13, 333 would render kτ larger than an average

epoch, making outsourcing infeasible.

Of course, if kτ is small enough, a client can parallelize fetches across SOP guesses. It is helpful

to quantify formally the value of time, and penalties associated with latency, as we do now.

5.3.1 Stochastic model

We now present a stochastic model that offers a quantitative comparison of the economics of

local vs. outsourced storage. The notation used for the parameters of our scheme are summarized

in Table 5.1.

We consider a stochastic process in which a single-threaded mining process is trying to find a

ticket. This mining thread will keep computing the iterations sequentially as described in Figure
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5.2. At any time, if another user in the network finds a winning ticket first, the current epoch

ends, and the mining thread aborts the current scratch-off attempt and starts a new attempt for

the new epoch.

We consider the following cost metric: expected cost invested until a user succeeds in finding one

ticket. Every time a user finds a ticket (before anyone else finds a winning ticket), the user has

a certain probability of having found a winning ticket, and hence being rewarded.

Game with a giant. We can think of this stochastic process as a user playing a game against

a giant. The giant models the rest of the network, which produces winning tickets at a certain

rate. The stochastic process in which the giant produces winning tickets is a memoryless process.

At any time, the remaining time T it takes for the giant to find a winning ticket follows an

exponential distribution. The expectation of T is also the expected epoch length. In Bitcoin, as

noted, the difficulty of its SOP is periodically adjusted with respect to the computational power

of the network to keep the expected epoch length at about 10 minutes.

If the giant generates a puzzle solution, it is immediately communicated to the user, who aborts

her current attempt. Thus the stochastic process can be modeled as a Markov chain as follows:

• Every iteration takes t time, and costs c.

• If k iterations are finished (before the giant wins), a user finds a ticket (which may or may

not be a winning ticket). In this case the user gets a positive reward in expectation.

• Let si denote the state in which the user has finished computing the i-th iteration of the

puzzle.

• If i < k − 1: with probability p, the giant does not win in the current iteration, and the

state goes from si to si+1. With probability 1− p, the giant wins, and the state goes back

to s0, i.e., the current epoch ends, and a new scratch-off attempt is started. Suppose that

the expected epoch length is T ; then it is not hard to see that p = 1− t/T given that the

stochastic process of the giant winning is memoryless.

• In state sk−1, with probability 1, the state goes back to s0. Furthermore, in state sk−1,

with probability p, the user will finish computing all k iterations — in which case another

random coin is drawn to decide if the ticket wins.

s0 s1 s2 . . . sk−1

1

1− p
1− p

1− p

pppp

Figure 5.3: Markov chain model for a sequential mining process that resets if the epoch ends
during an iteration.

We analyze the stationary distribution of the above Markov chain. Let πk−1 denote the proba-

bility that it is in state sk−1. It is not hard to derive that πk−1 = (1−p)pk−1/(1−pk). Therefore,
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in expectation, 1/πk−1 time is spent between two visits to the state sk−1. Every time the state

sk−1 is visited, there is a p probability that the user will finish all k iterations of the puzzle.

Therefore, in expectation, 1/(πk−1p) time (in terms of number of iterations) is spent before the

user finds a ticket before the giant does. If a user finds a ticket before the giant does, we call

this a “success”. Hence, we have that

E [expected cost per success] =
c(1− pk)

(1− p)pk

5.3.2 Local Storage vs. Outsourced Storage

Based on the above analysis, we now plug in typical practical values for the parameters and

investigate the economics of local vs. outsourced storage.

Local storage. The cost of a scratch-off attempt depends on two things, the power consumed

and the cost of the equipment. We consider two hardware configurations,

1. with SSD drives as the storage medium; and

2. using RAM as the storage medium.

Both are typical configurations that an amateur user can easily set up. Note that while it is

possible to optimize the local hardware configuration further to have better amortized cost, it

is outside the scope of this paper to do so, since our goal is to show that, even for an amateur

user, local mining is economically superior to outsourced storage mining.

First we estimate the cost of local mining using an SSD and standard CPU. Today, the cost

of a desktop containing a high-end processor (Intel Core i7, 3.4GHz and 8 virtual cores) is

approximately $500. The cost of a 100GB SSD is about $100. Amortized over three years,

the effective cost is 6.34e-6 $/second. We measured the power consumption while mining to

be about 40 watts; assuming an electricity cost of 15 cents/kWh, the energy cost of mining is

1.67e-6 $/second in power. Note the mining cost is dominated by equipment, not power. The

latency for a single disk read of up to 4096 bytes is measured at approximately 30 microseconds.

We assume for now that the size of a file segment is 64 bytes, and every puzzle iteration requires

hashing a single leaf with two 120-bit secrets (y = 1). Computing a hash over a message of

less than 128 bytes takes no more than ∼ 15 microseconds on an ordinary CPU, suggesting

that for a single-threaded mining program, the SSD and CPU would be in approximately equal

utilization. Thus assuming an average of 30 microseconds per iteration, the cost of mining with

a local SSD is roughly 3.2e-10 $/iter.

Next we consider the cost of local mining using RAM rather than an SSD. A 2GB stick of DDR3

SDRAM can be purchased for about $20, and has a data transfer rate of 12, 800 megabytes

per second. Assuming a segment size of 64 bytes, the average throughput of this memory is

approximately 200 million puzzle iterations per second. This is faster than a single-threaded CPU

performing signing operations can keep up with. On the other hand, many desktop computers
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have a graphics processor (GPU) that can be used to accelerate Bitcoin mining. Taking one

example, the ATI Radeon 6750 costs $100, consumes 150 watts, and can perform 150 million

Bitcoin hashes per second. Thus, under this scheme the GPU would be utilized approximately

as much as the RAM.

Outsourced storage. The cost of outsourced storage mining may vary according to the pricing

of the specific service provider. Our goal is to show that under most conceivable scenarios for

outsourced mining, local mining will be superior. To demonstrate this, we consider a wide

spectrum of cost ranges for the outsourced storage setting, and show that even when we unfairly

favor the outsourced option by assuming aggressive lower bounds for its cost, the local option is

still more more economical.

We consider multiple cost configurations for the outsourced storage option:

1. EC2. First, we rely on the pricing representative of today’s high-end cloud providers. In

particular, our estimates are based of Amazon EC2’s pricing. EC2 charges 10 cents per

gigabyte of transfer, and a base rate of 10 cents for the smallest virtual machine instance.

2. Bandwidth + CPU. Amazon EC2’s setup is not optimized for constant-use high-bandwidth

applications. Other rental services (such as http://1gb.com/en/) offer “unmetered” band-

width at a fixed monthly cost. To model this, we consider a cost lower bound by assuming

that the cloud provider charges nothing, and that the user only needs to pay for its local

CPU and the bandwidth cost charged by the ISP.

Internet transit costs are measured in $ per mbps, per month. Costs have diminished

every year; the median monthly cost of bulk bandwidth during 2013 has been estimated

at $1.71/mbps, corresponding to 0.53 cents per gigabyte under constant use.3 Each puzzle

iteration requires transferring a file segment.

Since the SSD accounts for about 16% of the equipment cost in the local SSD configuration,

and the CPU is approximately matched with the SSD in terms of utilization, for this model

we assume that the latency is equivalent, but reduce the local equipment and power cost

by 16%.

3. CPU only or bandwidth only. We consider an even more aggressive lower bound for out-

sourcing costs. In particular, we consider a scenario in which the user only needs to pay

for the local CPU; or she only needs to pay the ISP for the bandwidth.

While this is not realistic today, this lower bound models a hypothetical future world

where cloud costs are significantly lowered, or the scenario where a powerful adversary can

reimburse users’ mining costs assuming they join its coalition.

3According to an October 2013 press release by market research firm
TeleGeography: http://www.telegeography.com/press/press-releases/2013/10/08/

ip-transit-port-upgrades-yield-steeper-price-declines-for-buyers/index.html

http://1gb.com/en/
http://www.telegeography.com/press/press-releases/2013/10/08/ip-transit-port-upgrades-yield-steeper-price-declines-for-buyers/index.html
http://www.telegeography.com/press/press-releases/2013/10/08/ip-transit-port-upgrades-yield-steeper-price-declines-for-buyers/index.html
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Table 5.2: Costs per iteration for different mining configurations in Permacoin (mining with
local storage vs. three forms of cloud storage). Latency is the time to compute one iteration of
the puzzle. Effective Latency accounts for the pipelining of computation and storage requests.
Equipment is the fixed cost of the system. Total cost per iteration is shown assuming the

transfer of a 64-byte segment.

Model Latency Eff. Lat. Equipment Power Bandwidth Total

CPU & SSD 45µs 30µs $600 40W n/a $2.10e-10/iter

GPU & RAM 600ns 300ns $700 190W n/a $5.04e-14/iter

EC2 30ms 0 $0.10/s n/a $.10/GB $8.39e-7/iter

CPU + BW 30ms 15µs $500 33.6W $5.3e-3/GB $4.04e-10/iter

CPU Only 30ms 15µs $500 33.6W n/a $8.76e-11/iter

BW Only 30ms n/a n/a n/a $5.33e-3/GB $3.16-10/iter

Figure 5.4: Cost effectiveness versus number of iterations k, for different hardware config-
urations. Note that for k > 4e3 iterations, the CPU/SSD configuration with local storage is

more cost effective than the CPU-only (zero-cost bandwidth) with remote storage.

Findings. Table 5.2 compares the costs of local mining to those of outsourced storage.

Notice that in our protocol in Figure 5.2 one tunable parameter is the number of bytes that must

be transferred between the server and the client per iteration if storage were to be outsourced

to a server. In general, when more bytes are transferred per iteration, the bandwidth cost per

iteration also increases. In Table 5.2 we assume a conservative parameter setting where only

64-byte segments are transferred.

Although latency is listed in the second-leftmost column, the effect of latency is not accounted

for in the rightmost Total cost column, since this depends on the number of iterations of the

puzzle. Figure 5.4 illustrates that cost effectiveness diminishes when the number of iterations

is increased sufficiently. The figure suggests that under almost all scenarios, local mining is

strictly more economical than outsourcing storage, regardless of the number of iterations k for

the scratch-off attempt. We stress that this is true even when 1) the local mining user did not

spend too much effort at optimizing its hardware configuration; and 2) we give the outsourced

storage option an unfair advantage by using an aggressive lower bound for its costs. Recall that

local mining saves in cost for two reasons: 1) local storage and I/O costs less than remote (in

the latter case the client has to pay for both the storage, disk I/O, and network bandwidth);

and 2) lower storage I/O latency gives the user an advantage in the stochastic lottery against

the “giant”.
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The only exception is the “CPU only” entry in Table 5.2 — in this case, the user is not paying

anything for bandwidth, and the only cost is for the CPU hashing operation. In this case, the

cost per iteration is lower for the outsourced option than for the local CPU/SSD option (though

even here GPU/RAM with local storage remains more efficient). However, longer roundtrip

latency to the remote storage will penalize the user during the mining. Therefore, even in this

case, we could discourage outsourced storage by setting k very large (thousands of iterations),

so that the effect of longer storage I/O latency dominates. For the rest of our analysis, we do

include the price of bandwidth in our model and so small values of k are sufficient.

5.4 Partially Outsourced Storage Analysis

While our analysis in Section 5.3 shows that a puzzle-solving configuration using local storage

is typically more cost-effective than a configuration using remote cloud storage, we also wish

to consider a hybrid-strategy, in which the user chooses to store just a fraction γ < 1 of her

assigned segments on the cloud. We suppose that by doing so, the user may be able to recover

an γ fraction of the cost of her storage device. However, this results in a diminished puzzle-

solving rate, since with probability γ, a given iteration requires accessing one of the remotely

stored segments. The user has two options in this case; the first is to incur the cost of bandwidth

by fetching the block from the cloud, while the second is to simply abort the attempt and start

a fresh attempt from the beginning. Let C1 (resp., C2) denote the cost of fetching one block

from the cloud (resp., local device), and p1 (resp., p2) denote the probability of the epoch ending

during the fetch from the cloud (resp., local device), and let ci be the expected cost of reaching

the next ticket beginning from state i (using the optimal strategy). It is preferable to abort after

state si (when the next segment to fetch is remote) if c0 < C2 + p2ci+1 + (1 − p2)c0. We can

simplify the strategy space by observing that ci is monotonically decreasing, thus the optimal

strategy is defined by a critical state sµ, after which it is preferable to fetch from the cloud, and

before which it is preferable to restart. The stochastic process describing this hybrid strategy is

illustrated in Figure 5.5.

s0 . . . sµ−1 sµ . . .

1− p′0

p′0

1− p2

1− p′µ

p′0
p2 p′µ

Figure 5.5: Markov chain describing the optimal hybrid strategy. State si represents the
instant before fetching the ith segment (either locally or remotely). There is a critical state µ,
before which it is advantageous to restart from s0 rather than incur the cost of fetching from
the cloud. We abbreviate the transition probabilities in the states before sµ as p′0 = (1− γ)p′2,

and after sµ as p′µ = γp2 + (1− γ)p1.

The optimal value for µ can be computed iteratively by plugging in appropriate values for

C1, C2, p1, p2. We illustrate the expected cost per ticket (using the optimal hybrid strategy) for

various settings of the puzzle iterations parameter k (and leaving the segment size as 64 bytes)



Permacoin: Storage-based Scratch-off Puzzles to Recycle Mining Effort 61

Figure 5.6: Cost effectiveness of the optimal hybrid strategy, when a portion γ of the file is
not stored locally.

in Figure 5.6. Given the relative cost of bandwidth to the cost of a local storage device, this

analysis shows that is preferable to store the entire file (γ = 0) for any setting of k.

Based on the above analysis, we can make the following claim about the behavior of rational

mining participants:

Claim 1. For realistic estimates of bandwidth and equipment costs (see Table 5.2), even assuming

participants that omit segments can recoup the proportional cost of the local storage devices,

rational participants will choose to locally store the entire set of file segments associated with

their public key, rather than omitting any segments or relying on remote cloud storage.

Proof. This claim follows from the optimal hybrid strategy (illustrated in Figure 5.5) when some

segments are not stored locally, and plugging in our estimated bandwidth and equipment costs

(see Table 5.2 and Figure 5.6). The claim holds whenever the cost of bandwidth is high relative

to the cost of a storage device, or when the cost of the signature-computing device is a significant

fraction of the overall equipment cost.





Chapter 6

The Blockchain Model of

Computation

6.1 Overview

Although Bitcoin is primarily intended as a payment system, in Chapter 3, we have shown that

Bitcoin’s underlying abstraction, the Nakamoto consensus protocol, can be used as a mechanism

for reaching agreement about arbitrary data values. It is well known in the literature that such

consensus protocols can be composed to implement other general purpose abstractions, such

as replicated state machines, and therefore a wide range of applications [96]. In fact, Bitcoin

already includes a small scripting language for “programming money” with access control policies.

Bitcoin’s recent competitor, Ethereum [103] (also built from a variation of Nakamoto consensus)

provides a general purpose and expressive programming interface for user-provided applications,

called “contracts.”1

A key challenge in defining applications is that the programs in this setting are inherently

“transparent,” since the underlying consensus algorithm reveals all of the information to the

public. If an application is to provide privacy, it must rely on an additional layer of cryptographic

protocols.

In this chapter, we define a formal model of blockchain programs. Our framework serves two

main uses:

• It can be used for specifying “transparent contracts,” such as those implemented directly

in Bitcoin and Ethereum.

• Our framework can also be used for formally specifying and constructing privacy-preserving

applications.

1We use the terms “contracts” and “smart contracts” interchangeably to refer to user-provided programs
running on a blockchain.

63
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Our main result in this chapter is a proof that the Nakamoto consensus protocol (our abstrac-

tion of the Bitcoin protocol, as defined in Chapter 3), can be used to implement any transparent

contract. This chapter therefore serves as a bridge between the Nakamoto consensus proto-

col defined in Chapter 3 and our development of privacy-preserving blockchain applications in

Chapter 7.

Our approach. We develop a simplified abstraction of the functionality that existing cryp-

tocurrency systems provide, eliding many practical details but capturing most salient aspects.

Our model includes pseudonymous interactions between users, a framework for defining “time-

aware” applications, and the ability of attackers to mount “front-running” attacks. We model

the cryptocurrency system as a functionality, i.e. as a trusted third party service.

Assuming that the decentralized consensus protocol is secure, smart contracts can be thought of

as a conceptual party (in reality decentralized) that can be trusted for correctness and availability

but not for privacy. Our model makes use of a mechanism called a transparent contract wrapper.

This wrapper is parameterized by an arbitrary program (i.e., called a “transparent contract”) and

runs the programs such that all of its internal state is made publicly visible, both to the adversary

and to honest parties. During a protocol, users interact with the contract by exchanging messages

(also referred to as transactions). Money can expressed as special data stored on the blockchain,

which is interpreted as a financial ledger. Our contracts can access and update the ledger to

implement money transfers between users (as represented by their pseudonymous public keys).

Our model allow us to easily capture the time and pseudonym features of cryptocurrencies. In

cryptocurrencies such as Bitcoin and Ethereum, time progresses in block intervals, and a smart

contract program is allowed to query the current time, and make decisions accordingly, e.g.,

make a refund operation after a timeout. In addition, our model captures the role of a smart

contract as a party trusted for correctness but not for privacy. Lastly, our formalism modularizes

our notations by factoring out common specifics related to the smart contract execution model,

and implementing these in central wrappers.

In a real-life cryptocurrency system such as Bitcoin or Ethereum, users can make up any number

of identities by generating new public keys. In our formal model, for simplicity, we assume that

there can be any number of identities in the system, but that they are fixed a priori. It is easy

to extend our model to capture registration of new identities dynamically. As mentioned later,

we allow each identity to generate an arbitrary (polynomial) number of pseudonyms.

6.2 Related Work

To keep our modeling simple, and in order to support our highly generalized view, we choose to

analyze a simplified abstraction of the Bitcoin protocol.

Other modeling efforts have focused instead on modeling the specific Bitcoin protocol itself. In

particular, a significant difference between our model protocol and Bitcoin is that our protocol

proceeds in well defined epochs, such that transactions are submitted at the beginning of an
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epoch and committed at the end. In reality, the Bitcoin protocol continuously processes new

transactions, in a pipelined fashion, and only reaches agreement in a stabilizing (rather than

a final) sense. Garay et al [47], as well as Pass and shelat [87] analyze more faithful models

of the Bitcoin protocol that capture this aspect. Even these protocols make significant sim-

plifications of the actual Bitcoin protocol. For example, the actual Bitcoin protocol features

dynamic adjustment of the puzzle difficulty, and therefore tolerates organically varying numbers

of participants.

Its features combine to make the blockchain a new computation model capable of enforcing

notions of financial fairness even in the presence of aborts. As is well-known in the cryptography

literature, fairness against aborts is in general impossible in standard models of interactive

protocol execution (e.g., secure multi-party computation), when the majority of parties can be

corrupted [7, 32]. In the blockchain model, protocol aborts can be made evident by timeouts.

Therefore, the blockchain can enforce financial remuneration to the honest counterparties in the

presence of protocol breach or aborts. Bentov et al. [18, 67, 68] formalized several financially

fair protocols using a “claim-or-refund” gadget, a simple primitive that can be implemented

even using Bitcoin’s scripting language. Compared to their model, our transparent contracts are

significantly more flexible and convenient to write.

Our most closely resembles the functionality provided by Ethereum, a so-called “Turing-complete”

cryptocurrency featuring a general purpose smart-contract programming language [103]. Ethereum

also features many other practical design innovations (e.g., a gas mechanism that prevents re-

source exhaustion attacks) that our high-level abstraction does not model. Although Ethereum

provides a formal definition of (a portion of) its protocol, it does not come with any specification

of its security guarantees. We address this shortcoming with our FBLOCKCHAIN framework, which

not only serves as a formal specification for the guarantees by our transparent contract platform,

but further provides a way to specify and construct secure and privacy-preserving applications

built on top.

6.3 Programs, Functionalities, and Wrappers

To make our notation simple for writing ideal functionalities and smart contracts, we make

a conscious notational choice of introducing wrapper functionalities. Wrapper functionalities

implement in a central place a set of common features (e.g., timer, ledger, pseudonyms) that are

applicable to all ideal functionalities and contracts in our smart contract model of execution. In

this way, we can modularize our notational system such that these common and tedious details

need not be repeated in writing ideal functionalities and contract programs.

Contract functionality wrapper FBLOCKCHAIN. A contract functionality wrapper FBLOCKCHAIN(C)

takes in a contract program, denoted C, and produces a contract functionality. The contract

program might either be transparent or privacy-preserving, as we’ll describe shortly. The func-

tionality wrapper is formally defined in Figure 6.1.
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The contract functionality wrapper allows for arbitrary synchronous (i.e., round-based and time-

aware) interactions between the contract program and the users. It also features a model of

pseudonyms, where users can create an arbitrary number of pseudonyms to interact with the

contract program.

In more detail, the functionality models the following features:

• Time, and batched processing of messages. In popular decentralized cryptocurrencies such as

Bitcoin and Ethereum, time progresses in block intervals marked by the creation of each new

block. Intuitively, our FBLOCKCHAIN(·) wrapper captures the following fact. In each round (i.e.,

block interval), the smart contract program may receive multiple messages (a.k.a. transac-

tions). The order of processing these transactions is determined by the miner who mines the

next block. In our model, we allow the adversary to specify an order of the messages collected

in a round, and our contract program will then process the messages in this adversary-specified

ordering.

• Rushing adversary. The contract wrapper FBLOCKCHAIN(·) naturally captures a rushing ad-

versary. Specifically, the adversary can first see all messages sent to the contract by honest

parties, and then decide its own messages for this round, as well as an ordering in which the

contract should process the messages during the next round. Modeling a rushing adversary

is important since it captures a class of well-known front-running attacks, e.g., those that

exploit transaction malleability [5, 15]. For example, in a “rock, paper, scissors” game, if in-

puts are sent in the clear, an adversary can decide its input based on the other party’s input.

An adversary can also try to modify transactions submitted by honest parties to potentially

redirect payments to itself. Since our model captures a rushing adversary, we can write ideal

functionalities that preclude such front-running attacks.

Transparent Contract Wrapper, T (·) Transparent contracts are contract programs that

can be trusted for correctness but not for privacy. More specifically, they have no private in-

ternal state, immediately leak their inputs/outputs to the adversary, and furthermore allow the

adversary to front-run messages sent from users within a round. We model this notion formally

by defining a transparent contract wrapper, denoted by T (·), that implements this behavior in a

general way: T (Contract) represents a transparent contract for any contract program Contract.

The transparent contract wrapper is defined in Figure 6.2. The main technical result of this

section is to show that the Nakamoto consensus protocol can be used to implement any trans-

parent contract defined by this wrapper. That is, we construct a protocol that UC-realizes

FBLOCKCHAIN(T (Contract)) for any transparent contract program Contract.

Blockchain Protocols. In the following chapter, our real world protocols will be defined as

protocols in the FBLOCKCHAIN(T (·))-hybrid world. Such a protocol is defined in two parts. The

first part is a transparent contract Contract, that specializes the behavior of the functionality. The

second part is local code to be run by each of the parties, for example to generate cryptographic

messages that are included in transactions posted on the blockchain.
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FBLOCKCHAIN(C) functionality

Given a contract program denoted C, the FBLOCKCHAIN(C) functionality is defined as below:

Include FBASIC (defined in Section 2.2.2.3).

Init: Upon initialization, perform the following:

Pseudonyms. The (initially empty) collection nyms contains pairs of the form (P, P̂ ) where

P is the real identity of a party and P̂ is a pseudonym used by that party.

Contract Initialization. Run the Init procedure of the C program.

GenNym:

Upon receiving gennym(payload) from an honest party P: Notify the adversary A of
gennym(payload). Wait for A to respond with a new nym prefix P̄ ′ such that P̄ ′ is not
a prefix of any element in nyms. The new pseudonym is P̄ := P̄ ′‖payload. Now let
nyms := nyms ∪ {(P, P̄ )}, and send P̄ to P .

Upon receiving gennym(P̄ ′‖payload) from a corrupted party P: if P̄ is not a prefix of any
element in nyms, let nyms := nyms ∪ {(P, P̄ ′‖payload)}.

Pseudonymous receive: On receiving a message of the form nymSend(m, P̄ ) from party P:

Assert (P, P̄ ) /∈ nyms

Assert nymSend(m, P̄ ) has not previously been processed

Pseudonymously deliver m to C from P

Anonymous receive: Upon receiving a message anonSend(m) from party P:

Assert m has not previously been processed

Anonymously deliver m to C

Other activations: Upon receiving any other message m from party P, pass m to C from P.

Figure 6.1: The FBLOCKCHAIN(C) functionality is parameterized by a contract program
denoted C, and allows pseudonymous interaction with the underlying contract.

Transparent Contract Wrapper T (C)
The contract C is assumed to be deterministic.

Init: Upon initialization do the following:

Run C.Init

Reveal the initial state of C to every honest party.

Leak the initial state of C to A.

Pseudonymous receive: Upon pseudonymously receiving a message m from P̄ ,

Leak (m, P̄ ) to the adversary A
Schedule pseudonymous delivery of m to C from P̄ by the end of the next epoch.

Anonymous receive: Upon anonymously receiving a message m:

Leak m to the adversary A
If m has not been sent before in this epoch, schedule anonymous delivery of m to C by the end of
the next epoch.

Expose State: On receiving exposestate from a party P, return the internal state of C to P.

Figure 6.2: Transparent contract wrapper T (·) exposes all of its internal states and messages
received to the adversary, and makes the functionality time-aware (messages received in one
epoch and queued and processed by the end of the next epoch), allowing the adversary to

determine the exact ordering.
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6.3.1 Modeling Pseudonyms

We model a notion of “pseudonymity” that provides a form of privacy, similar to that provided

by typical cryptocurrencies such as Bitcoin. Any user can generate an arbitrary (polynomially-

bounded) number of pseudonyms, and each pseudonym is “owned” by the party who generated

it. The correspondence of pseudonyms to real identities is hidden from the adversary.

Effectively, a pseudonym is a public key for a digital signature scheme, the corresponding private

key to which is known by the party who “owns” the pseudonym. The public contract functionality

allows parties to publish authenticated messages that are bound to a pseudonym of their choice.

Thus each interaction with the public contract is, in general, associated with a pseudonym but

not to a user’s real identity.

We abstract away the details of pseudonym management by implementing them in our wrap-

pers. This allows user-defined applications to be written very simply, as though using ordinary

identities, while enjoying the privacy benefits of pseudonymity.

Our wrapper provides a user-defined hook, gennym, that is invoked each time a party creates a

pseudonym. This allows the application to define an additional per-pseudonym payload, such

as application-specific public keys. From the point-of-view of the application, this is simply an

initialization subroutine invoked once for each participant.

Our wrapper provides several means for users to communicate with a contract. The most common

way is for a user to publish an authenticated message associated with one of their pseudonyms,

as described above. Additionally, anonSend allows a user to publish a message without reference

to any pseudonym at all.

6.3.2 Modeling Money

Rather than building a notion of money into our model, we show how to model money as a

transparent contract program, defined in Figure 6.3. We model money as a public ledger, which

associates quantities of money to pseudonyms. Users can transfer funds to each other (or among

their own pseudonyms) by sending “transfer” messages to the public contract (as with other

messages, these are delayed until the next round and may be delivered in any order). The ledger

state is public knowledge, and can be queried immediately using the exposestate instruction.

There are many conceivable policies for introducing new currency into such a system: for exam-

ple, Bitcoin “mints” new currency as a reward for each miner who solves a proof-of-work puzzles.

We take a simple approach of defining an arbitrary, publicly visible (i.e., common knowledge)

initial allocation that associates a quantity of money to each party’s real identity. Except for

this initial allocation, no money is created or destroyed. This invariant is immediately apparent

from the specification!
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ContractLedger

Init: A public ledger data structure ledger[P̄ ] stores the account balance of party P̄ . The initial
balance can be chosen by the environment E .

Transfer: Upon receipt of transfer($val, P̄r) from some pseudonym P̄s:

Assert ledger[P̄s] ≥ $val

ledger[P̄s] := ledger[P̄s]− $val

ledger[P̄r] := ledger[P̄r] + $val

Figure 6.3: Transparent ledger contract

6.4 Implementing Transparent Blockchain Contracts on

top of Nakamoto Consensus

We now prove the main result for this Chapter, which is that the Nakamoto Consensus protocol

suffices for implementing any transparent contract. To do this, we build a protocol ProtBlockchain

that makes use of the Nakamoto consensus protocol as a primitive.

Our protocol closely resembles the overall behavior of Ethereum, an actual deployed cryptocur-

rency with a smart contract programming system. In a nutshell, users interact with the contract

program by broadcasting messages called “transactions.” Participants in the protocol collect

and buffer transactions they hear about from others, and submit these as input to the underly-

ing consensus protocol. Our model also includes pseudonymous interactions with the contract,

where interactions are authenticated to the owner of a pseudonym. To implement this, we derive

pseudonyms from the public keys in a digital signature scheme, and require that pseudonymous

input to the contract must come in the form of a message signed with the corresponding private

key.

A practical difference between our protocol and real-life cryptocurrency systems like Bitcoin and

Ethereum is that our protocol runs the Nakamoto consensus subroutine many times sequentially

in order to guarantee that honest transactions within an epoch are included by the end of the

next epoch. As a performance optimization, most cryptocurrency systems run in a pipelined

fashion.

6.4.1 Blockchain Protocol

The protocol ProtBlockchain is formally defined in Figure 6.4. The consensus protocol proceeds

in epochs, where in each epoch we run several instances of the underlying consensus protocol.

Participants keep track of a buffer of unconfirmed transactions they have received as input from

the environment, and submit these as input to the underlying consensus protocol.

To manage pseudonymous interactions, we derive the pseudonym strings from the public keys in

a digital signature scheme, and require that “pseudonymous input” to the contract must come

in the form of a message signed with the corresponding private key.
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Protocol ProtBlockchain(C)
The ProtBlockchain protocol is parameterized by a scratch-off puzzle SOP, and an unforgeable signature
scheme SIG.

Init: Upon initialization, perform the following:

Receive the initial state for the contract C. Run a local instance of C, initialized with this
state.

Initialize a pending transactions buffer, buf := ∅
Initialize a committed transaction log, log := {}

GenNym: On input gennym(payload) from E , do the following:

Generate a new signing keypair (spk, ssk)← SIG.Keygensign(1λ).

Record P̄ := (spk‖payload) as a newly created pseudonym. Output P̄ to E .

Pseudonymous send: Upon receiving input nymSend(m, P̄ ), where P̄ is a previously generated
pseudonym,

Compute σ′ := SIG.Sign(ssk, (nonce,m)) where ssk is the recorded secret signing key corre-
sponding to P̄ , and nonce is a freshly generated random string. Let σ := (nonce, σ′).

Send multicast(ptx(m, P̄ , σ)) to the underlying FDIFFUSE functionality.

Anonymous send: Upon receiving input anonSend(m) from E :

Send multicast(atx(m)) to the underlying FDIFFUSE functionality.

Buffer incoming transactions: Upon receiving a message of the form multicast(ptx(m, P̄ , σ))
(or of the form multicast(atx(m))), append ptx(m) (or atx(m)) to the pending transactions
buffer buf.

Committing Transactions: We proceed in consecutive epochs, where epoch lasts for a duration
∆∗ = λxr̂+∆, where r̂ and x are the appropriately chosen parameters of the Nakamoto Consensus
protocol (see Section 3.4), and ∆ is the duration of one communication round. In each epoch, do
the following:

Wait for ∆ time to elapse (so that messages sent at the beginning of this epoch propagate
to every honest party). Let buf := buf be a snapshot of the buffer at this point.

Next, for each of λx iterations, repeat the following:

Run an instance of Nakamoto Consensus with buf as the input

When the Nakamoto Consensus protocol terminates with output newTxs (after r̂
rounds), add newTxs to the log of committed transactions, log, and set buf :=
buf − newTxs.

At the end of each epoch, do the following:

For each tx ∈ log that can be parsed as ptx(m, P̄ , (σ′, nonce)), assert that
SIG.Verify(P̄ .spk, (nonce,m), σ′) = 1, and that (m, nonce) has not been processed previ-
ously. Pass m to C as a pseudonymous message from P̄ .

For each tx ∈ log that can be parsed as atx(m), check that m has not been processed
previously. Pass m to C as an anonymous message.

Clear log := {}
Figure 6.4: Implementation of FBLOCKCHAIN(·) using Nakamoto consensus
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6.4.2 Ideal World Simulator

We now prove that the protocol in Figure 6.4 is a secure and correct implementation of FBLOCKCHAIN(T (C))

for an arbitrary transparent contract program C. For any real-world adversary A, we construct

an ideal-world simulator S, such that no polynomial-time environment E can distinguish whether

it is in the real or ideal world.

According to Canetti [27], to prove this theorem it suffices to construct a simulator S for the

dummy adversary that simply passes messages to and from the environment E . In Figure 6.5 we

define the dummy simulator for ProtBlockchain.

Theorem 6.1. Assuming that the signature scheme SIG is unforgeable, and the conditions are

satisfied for the Nakamoto Consensus protocol instantiated with SOP (as in Theorem 3.8, then

our protocol in Figure 6.4 securely emulates the ideal functionality FBLOCKCHAIN(T (C)).

6.4.2.1 Indistinguishability of Real and Ideal Worlds

To prove indistinguishability of the real and ideal worlds from the perspective of the environment,

we will go through a sequence of hybrid games.

Real world. We start with the real world and a dummy adversary that simply passes messages

to and from the environment E .

Hybrid 1. The simulator simulates the FDIFFUSE functionality internally. Since all messages

to the FDIFFUSE are public, simulating the contract functionality is trivial. Therefore, Hybrid 1

is identically distributed as the real world from the environment E ’s view.

Hybrid 2. Hybrid 2 is the same as Hybrid 1 except the following changes. When an honest

party sends a message to the contract (now simulated by the simulator S), it will sign the message

with a signature verifiable under an honestly generated nym. In Hybrid 1, the simulator will

replace all honest parties’ nyms and generate these nyms itself. In this way, the simulator will

simulate honest parties’ signatures by signing them itself. Hybrid 2 is identically distributed as

Hybrid 1 from the environment E ’s view.

Hybrid 3. Hybrid 3 is the same as Hybrid 2 except for the following changes. Whenever the

environment E passes to the simulator S a message signed on behalf of an honest party’s nym,

if the message/signature pair was not among the ones previously passed to the environment E ,

then the simulator S aborts.

Assume that the signature scheme employed is unforgeable; then the probability of aborting in

Hybrid 3 is negligible. Notice that from the environment E ’s view, Hybrid 3 would otherwise be

identically distributed as Hybrid 2 modulo aborting.
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Simulator S for ProtBlockchain

Init. The simulator S maintains an internal copy of the FDIFFUSE functionality, including a
leaks buffer a queue of scheduled tasks, as well as an internal execution of the ProtBlockchain
protocol.

Simulating honest parties.

• GenNym: Environment E sends input gennym(payload) to an honest party P: the simulator
S receives notification gennym(payload) from the ideal functionality. Simulator S honestly
generates a signing key as defined in Figure 6.4, and remembers the corresponding secret
keys. Finally, the simulator passes the nym P̄ = (spk, payload) to the ideal functionality.

• Pseudonymous Send. Environment E sends input nymSend(m, P̄ ) to an honest party P
that owns the pseudonym P̄ : the simulator S receives notification nymSend(m, P̄ ). Simulator
S generates a correct signature σ on the message m using the secret key associated with P̄ ,
and schedules delivery of multicast(ptx(m, P̄ , σ)) to every correct party in FDIFFUSE.

• Anonymous Send. Environment E sends input anonSend(m) to an honest party P:
the simulator S receives notification anonSend(m). Simulator S schedules delivery of
multicast(atx(m)) to every correct party in FDIFFUSE.

Simulating instructions to the dummy adversary.

• Deliver. Upon receiving deliver(i) from the environment E , pass deliver(i) to the internally
running instance of FDIFFUSE.

• Get Leaks. Upon receiving getleaks from the environment E , return the contents of leaks
in the internally running instance of FDIFFUSE.

Simulating corrupted parties.

• Multicast. Upon receiving multicast(m) from the environment E on behalf of a corrupted
party P, schedule m to be delivered to each simulated honest party in the next communication
round via the internally running instance of FDIFFUSE. This includes messages of the form
ptx(·) and atx(·), as well as messages related to the Nakamoto Consensus protocol.

• Applying Transactions. After the end of each epoch, we can assume that the contents
of log are identical for each party in the internally simulated protocol. Process each item in
log the same as in ProtBlockchain. For items of the form ptx(m, P̄ , σ), verify if σ is a valid
signature of m under P̄ , and if m has not been previously applied.

Figure 6.5: Simulator for ProtBlockchain.

That Hybrid 3 is computationally indistinguishable from the ideal simulation to any polynomial-

time environment E follows from the Agreement and Validity properties of the consensus protocol.

With high probability, the log after each epoch is identical for all parties. Furthermore, buf

contains every transaction submitted by an honest party prior to the beginning of the epoch;

by running the consensus protocol for λx consecutive iterations, we guarantee that with high

probability, the buf of some honest party is committed during at least one iteration. This

concludes the proof of Theorem 6.1.



Chapter 7

Privacy Preserving Smart

Contracts

7.1 Overview

Despite the expressiveness and power of blockchain and smart contracts, the present form of

these technologies lacks transactional privacy. The entire sequence of actions taken in a smart

contract is propagated across the network and/or recorded on the blockchain, and therefore is

publicly visible. Even though parties can create new pseudonymous public keys to increase their

anonymity, the values of all transactions and balances for each (pseudonymous) public key are

publicly visible. Further, recent works have also demonstrated deanonymization attacks by ana-

lyzing the transactional graph structures of cryptocurrencies [73, 91]. The privacy requirements

of many financial transactions will likely preclude the use of existing smart contract systems.

Although there has been progress in designing privacy-preserving cryptocurrencies such as Zero-

cash [15] and several others [37, 74, 100], these systems forgo programmability, and it is unclear

a priori how to enable programmability without exposing transactions and data in cleartext to

miners.

We propose Hawk, a framework for building privacy-preserving smart contracts. With Hawk,

a non-specialist programmer can easily write a Hawk program without having to implement

any cryptography. Our Hawk compiler automatically compiles the program to a cryptographic

protocol between the blockchain and the users. A Hawk program contains two parts:

• A private contract program denoted φpriv which takes in parties’ input data (e.g., choice in

a “rock, paper, scissors” game) as well as currency units (e.g., bids in an auction). The

program φpriv performs computation to determine the payout distribution among the parties.

For example, in an auction, winner’s bid goes to the seller, and others’ bids are refunded. The

private contract φpriv is meant to protect the participants’ data and the exchange of money.

• A public contract program denoted φpub that does not touch private data or money.

73
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Our Hawk compiler compiles the public contract to execute directly on the public blockchain,

and compiles the private contract φpriv into a cryptographic protocol involving the following

pieces: i) protocol logic to be executed by the blockchain; and ii) protocol logic to be executed

by contractual parties.

Security guarantees. Hawk’s security guarantees encompass two main aspects:

• On-chain privacy. On-chain privacy stipulates that transactional privacy be provided against

the public (i.e., against any party not involved in the contract) – unless the contractual parties

themselves voluntarily disclose information. Although in Hawk protocols, users exchange data

with the blockchain, and rely on it to ensure fairness against aborts, the flow of money and

amount transacted in the private contract φpriv is cryptographically hidden from the public’s

view.

• Contractual security. While on-chain privacy protects contractual parties’ privacy against

the public (i.e., parties not involved in the contract), contractual security protects parties in

the same contractual agreement from each other. Hawk assumes that contractual parties act

selfishly to maximize their own financial interest. In particular, they can arbitrarily deviate

from the prescribed protocol or even abort prematurely. Therefore, contractual security is a

multi-faceted notion that encompasses not only cryptographic notions of confidentiality and

authenticity, but also financial fairness in the presence of cheating and aborting behavior. The

best way to understand contractual security is through a concrete example, and we refer the

reader to Section 7.5 for a more detailed explanation.

Minimally trusted manager. Hawk-generated protocols assume a special contractual party

called a manager (e.g., an auction manager) besides the normal users. The manager aids the

efficient execution of our cryptographic protocols while being minimally trusted. A skeptical

reader may worry that our use of such a party trivializes our security guarantees; we dispel this

notion by directly explaining what a corrupt manager can and cannot do: Although a manager

can see the transactions that take place in a private contract, it cannot affect the outcome of the

contract, even when it colludes with other users. In the event that a manager aborts the protocol,

it can be financially penalized, and users obtain remuneration accordingly. The manager also

need not be trusted to maintain the security or privacy of the underlying currency (e.g., it cannot

double-spend, inflate the currency, or deanonymize users). Furthermore, if multiple contract

instances run concurrently, each contract may specify a different manager and the effects of a

corrupt manager are confined to that instance.

7.1.1 Conventions for Writing Programs

Thanks to our wrapper-based modularized notational system, The ideal program and the con-

tract program are the main locations where user-supplied, custom program logic is defined. We

use the following conventions for writing the ideal program and the contract program.
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Delayed processing in ideal programs. When writing the contract program, every message

received by the contract program is already delayed by a round due to the FWRAP(·) wrapper.

When writing the ideal program, we introduce a simple convention to denote delayed compu-

tation. Program instructions that are written in gray background denote computation that

does not take place immediately, but is deferred to the beginning of the next epoch. This is

a convenient shorthand because in our real-world protocol, effectively any computation done

by a contract functionality will be delayed. For example, in our Idealcash ideal program (see

Figure 7.1), whenever the ideal functionality receives a mint or pour message, the adversary is

notified immediately; however, processing of the messages is deferred till the next round. For-

mally, delayed processing can be implemented simply by storing state and invoking the delayed

program instructions on the next tick. To avoid ambiguity, we assume that by convention, the

delayed instructions are invoked at the beginning of the tick call. In other words, upon the next

timer click, the delayed instructions are executed first.

Pseudonymity. All party identifiers that appear in ideal programs, contract programs, and

user-side programs by default refer to pseudonyms. When we write “upon receiving message

from some P”, this accepts a message from any pseudonym. Whenever we write “upon receiving

message from P”, without the keyword some, this accepts a message from a fixed pseudonym

P , and typically which pseudonym we refer to is clear from the context.

Whenever we write “send m to FBLOCKCHAIN as nym P” inside a user program, this sends an

internal message (“send”, m, P ) to the protocol wrapper Π. The protocol wrapper will then

authenticate the message appropriately under pseudonym P . When the context is clear, we

avoid writing “as nym P”, and simply write “send m to FBLOCKCHAIN”. Our formal system also

allows users to send messages anonymously to a contract – although this option will not be used

in this paper.

We want to be able to allow the contract to have an initial state (i.e., an arbitrary initial allocation

of money for each party), which formally speaking, must depend on the pseudonyms. To allow for

this in our model, we let the functionality to depend on a protocol-specific pseudonym generation,

Keygen, as a parameter. During the initialization, the functionality generates a pseudonym for

each party. The secret key for each pseudonym is sent to each party, while the environment

receives the pseudonyms. Note that this does not amount to creating a PKI (i.e., with exactly

N publicly-known pseudonyms, which would trivialize the need for an anonymous consensus

protocol), since the adversary can also generate an arbitrary number of pseudonyms.

Ledger and money transfers. A public ledger is denoted ledger in our ideal programs and

contract programs. When a party sends amt to an ideal program or a contract program, this

represents an ordinary message transmission. Money transfers only take place when ideal pro-

grams or contract programs update the public ledger ledger. In other words, the symbol $ is only

adopted for readability (to distinguish variables associated with money and other variables), and

does not have special meaning or significance. One can simply think of this variable as having

the money type.
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7.2 Warmup: Private Cash and Money Transfers

7.2.1 Private Cash Specification Idealcash

To begin, we define the Idealcash contract program (in Figure 7.1), which specifies the require-

ments of a private ledger and currency transfer system. At a high-level, this functionality keeps

track of both the original ledger of publicly-visible (but pseudonymous) account balances (inher-

ited from ContractLedger), as well as a new ledger of private account balances (called coins).

We adopt the same mint and pour terminology from Zerocash [15]. A mint transaction allows

a user to move money from the public ledger into a new private coin he controls. A pour

transaction is used to transfer money to a recipient (referred to by their pseudonym). The

specification ensures the natural invariants: the total quantity of money is conserved and a

party can only spend money that they have previously received. However, unlike public ledger

transfers, a pour transaction does not reveal any information about which private coin is being

spent. This effectively breaks the transaction graph, thwarting attempts to reconstruct the

transaction history and deanonymize transactions.

Informally speaking, prior works such as Zerocash [15] are meant to realize (approximations of)

this ideal functionality – although technically this ought to be interpreted with the caveat that

these earlier works prove indistinguishability or game-based security instead UC-based simulation

security. As we discuss later, our simulation-based notion is subtly stronger.

Public ledger. The Idealcash contract also includes all the functionality of the transparent

ledger contract by inheriting from T (ContractLegder).

Mint. The mint operation allows a user P to transfer money from the public ledger denoted

ledger to the private pool denoted Coins[P]. With each transfer, a private coin for user P is

created, and associated with a value val.

For correctness, the ideal program Idealcash checks that the user P has sufficient funds in its

public ledger ledger[P] before creating the private coin.

Pour. The pour operation allows a user P to spend money in its private bank privately.

For simplicity, we define the simple case with two input coins and two output coins. This is

sufficient for users to transfer any amount of money by “making change,” although it would be

straightforward to support more efficient batch operations as well.

For correctness, the ideal program Idealcash checks the following: 1) for the two input coins, party

P indeed possesses private coins of the declared values; and 2) the two input coins sum up to

equal value as the two output coins, i.e., coins neither get created or vanish.
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Privacy. When an honest party P mints, the ideal-world adversary A learns the pair (P, val) –

since minting is raising coins from the public pool to the private pool. Operations on the public

pool are observable by A.

When an honest party P pours, however, the adversary A learns only the output pseudonyms

P1 and P2. It does not learn which coin in the private pool Coins is being spent nor the name of

the spender. Therefore, the spent coins are anonymous with respect to the private pool Coins.

To get strong anonymity, new pseudonyms P1 and P2 can be generated on the fly to receive each

pour. We stress that as long as pour hides the sender, this “breaks” the transaction graph, thus

preventing linking analysis.

If a corrupted party is the recipient of a pour, the adversary additionally learns the value of the

coin it receives.

Additional subtleties. Later in our protocol, honest parties keep track of a wallet of coins.

Whenever an honest party pours, it first checks if an appropriate coin exists in its local wallet

– and if so it immediately removes the coin from the wallet (i.e., without delay). In this way,

if an honest party makes multiple pour transactions in one round, it will always choose distinct

coins for each pour transaction. Therefore, in our Idealcashfunctionality, honest pourers’ coins

are immediately removed from Coins. Further, an honest party is not able to spend a coin paid

to itself until the next round. By contrast, corrupted parties are allowed to spend coins paid

to them in the same round – this is due to the fact that any message is routed immediately to

the adversary, and the adversary can also choose a permutation for all messages received by the

contract in the same round (see Section 6.3).

Another subtlety in the Idealcashfunctionality is that honest parties will always pour to ex-

isting pseudonyms. However, the functionality allows the adversary to pour to non-existing

pseudonyms denoted ⊥ – in this case, effectively the private coin goes into a blackhole and can-

not be retrieved. This enables a performance optimization in our ProtCash and ContractCash

protocol later – where we avoid including the cti’s in the NIZK of LPOUR (see Section 7.2). If a

malicious pourer chooses to compute the wrong cti, it is as if the recipient Pi did not receive the

pour, i.e., the pour is made to ⊥.

7.2.2 Construction of Private Cash

Our construction adopts a Zerocash-like protocol for implementing private cash and private

currency transfers. For completeness, we give a brief explanation below, and we mainly focus on

the pour operation which is technically more interesting. The contract ContractCash maintains

a set Coins of private coins. Each private coin is stored in the format

(P, coin := Comms($val))

where P denotes a party’s pseudonym, and coin commits to the coin’s value $val under random-

ness s.
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Idealcash

Include T (ContractLedger).

Init: Coins: a multiset of coins, each of the form (P, $val)
Mint: Upon receiving mint($val) from some P:

send mint(P, $val) to A

assert ledger[P] ≥ $val

ledger[P] := ledger[P]− $val

append (P, $val) to Coins

Pour: Upon receiving pour($val1, $val2,P1,P2, $val
′
1, $val

′
2) from P:

assert $val1 + $val2 = $val′1 + $val′2

if P is honest,

assert (P, $vali) ∈ Coins for i ∈ {1, 2}
assert Pi 6= ⊥ for i ∈ {1, 2}
remove one (P, $vali) from Coins for i ∈ {1, 2}
for i ∈ {1, 2}, if Pi is corrupted, send pour(i, Pi, $val′i) to A; else send pour(i,Pi) to A

if P is corrupted:

assert (P, $vali) ∈ Coins for i ∈ {1, 2}
remove one (P, $vali) from Coins for i ∈ {1, 2}

for i ∈ {1, 2}: add (Pi, $val′i) to Coins

for i ∈ {1, 2}: if Pi 6= ⊥, send pour($val′i) to Pi
Figure 7.1: Definition of Idealcash. Notation: ledger denotes the public ledger, and Coins
denotes the private pool of coins. As mentioned in Section 7.1.1, gray background denotes
batched and delayed activation. All party names correspond to pseudonyms due to notations

and conventions defined in Section 6.3.

During a pour operation, the spender P chooses two coins in Coins to spend, denoted (P, coin1)

and (P, coin2) where coini := Commsi($vali) for i ∈ {1, 2}. The pour operation pays val′1 and

val′2 amount to two output pseudonyms denoted P1 and P2 respectively, such that val1 + val2 =

val′1 + val′2. The spender chooses new randomness s′i for i ∈ {1, 2}, and computes the output

coins as (
Pi, coini := Comms′i

($val′i)
)

The spender gives the values s′i and val′i to the recipient Pi for Pi to be able to spend the coins

later.

Now, the spender computes a zero-knowledge proof to show that the output coins are constructed

appropriately, where correctness compasses the following aspects:

• Existence of coins being spent. The coins being spent (P, coin1) and (P, coin2) are indeed part

of the private pool Coins. We remark that here the zero-knowledge property allows the spender

to hide which coins it is spending – this is the key idea behind transactional privacy.

To prove this efficiently, ContractCash maintains a Merkle tree MT over the private pool Coins.

Membership in the set can be demonstrated by a Merkle branch consistent with the root hash,

and this is done in zero-knowledge.

• No double spending. Each coin (P, coin) has a cryptographically unique serial number sn that

can be computed as a pseudorandom function of P’s secret key and coin. To pour a coin, its
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serial number sn must be disclosed, and a zero-knowledge proof given to show the correctness

of sn. ContractCash checks that no sn is used twice.

• Money conservation. The zero-knowledge proof also attests to the fact that the input coins

and the output coins have equal total value.

We make some remarks about the security of the scheme. Intuitively, when an honest party pours

to an honest party, the adversary A does not learn the values of the output coins assuming that

the commitment scheme Comm is hiding, and the NIZK scheme we employ is computational zero-

knowledge. The adversary A can observe the nyms that receive the two output coins. However,

as we remarked earlier, since these nyms can be one-time, leaking them to the adversary would

be okay. Essentially we only need to break linkability at spend time to ensure transactional

privacy.

When a corrupted party P∗ pours to an honest party P, even though the adversary knows the

opening of the coin, it cannot spend the coin (P, coin) once the transaction takes effect by the

ContractCash, since P∗ cannot demonstrate knowledge of P’s secret key. We stress that since

the contract binds the owner’s nym P to the coin, only the owner can spend it even when the

opening of coin is disclosed.

7.2.3 Secure Emulation Proof for Private Cash

We now prove that the protocol in Figure 7.2 is a secure and correct implementation of FBLOCKCHAIN(Idealhawk).

For any real-world adversaryA, we construct an ideal-world simulator S, such that no polynomial-

time environment E can distinguish whether it is in the real or ideal world. We first describe

the construction of the simulator S and then argue the indistinguishability of the real and ideal

worlds.

Theorem 7.1. Assuming that the hash function in the Merkle tree is collision resistant, the

commitment scheme Comm is perfectly binding and computationally hiding, the NIZK scheme is

computationally zero-knowledge and simulation sound extractable, the encryption schemes ENC

and SENC are perfectly correct and semantically secure, the PRF scheme PRF is secure, then

our protocol in Figure 7.2 securely emulates the ideal functionality F(Idealcash).

7.2.3.1 Simulator Wrapper

Looking ahead, we will need to use many of the same mechanisms for simulating our full ap-

plication as for private cash. Therefore we factor out much of the functionality of this into a

simulator wrapper. The simulator wrapper is formally defined in Figure 7.3. Below we describe

the high level approach of our simulation strategy, and the role of the simulator wrapper.

Due to Canetti [27], it suffices to construct a simulator S for the dummy adversary that simply

passes messages to and from the environment E . The ideal-world simulator S also interacts with

the FBLOCKCHAIN(Ideal) functionality in the ideal world.
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Since the real world dummy adversary would be able to reveal the entire state of the transparent

contract to the environment upon request (via the exposestate instruction), the simulator

wrapper must also be able to provide a similar view. To help with this, the simulator wrapper

maintains an internal simulation of the FBLOCKCHAIN(contract) functionality, which can be viewed

at any time.

A key challenge comes from the fact that our ideal functionalities have private state, which are

represented by commitments in our protocols. Updates to the private state come along with

zero knowledge proofs in the protocol. The simulator must be able to create plausible-looking

proofs and commitments about information that it does not know! To take care of this, the

simulator uses the simulator setup NIZK.K̂, which enables the simulator to create false proofs

and commitments.

A second challenge is that the simulator must be able to decrypt messages sent from corrupted

partes to honest parties. As one example, a pour transaction that sends coins from a corrupted

party to an honest party must contain an encryption of the amount of coins, which the honest

must be able to decrypt. To achieve this, the simulator generates encryption keypairs for the

simulated honest parties, and keeps the secret key available.

The simulator wrapper also maintains a perfect simulation of the public ledger ledger. Since

the state of ledger is publicly visible even in the ideal functionality, the simulator maintains a

perfect correspondence between ledger in the ideal world and ledger in the local simulation of

FBLOCKCHAIN(T (C)).

In summary, the simulator wrapper performs the following behaviors:

• The simulator wrapper runs an internal instance of the real world functionality, FBLOCKCHAIN(T (C)).

• The simulator wrapper runs the simulated setup NIZK.K̂ to create the crs, and retains the

“trapdoor” information for forging proofs and extracting witnesses.

• The simulator wrapper simulates the additional payload for the pseudonyms of honest

parties, consisting of the PRF secret PRFsk and the public key encryption secret key esk.

• The simulator wrapper maintains a perfect simulation of the public ledger ledger.

7.2.3.2 Ideal World Simulator for Idealcash

Below we construct the Idealcash-specific portion of our simulator simP. Our overall simulator S
can be obtained by applying the simulator wrapper S(simP). The simulator wrapper modularizes

the simulator construction by factoring out the common part of the simulation pertaining to all

protocols in this model of execution.

Recall that the simulator wrapper performs the ordinary setup procedure, but retains the “trap-

door” information used in creating the crs for the NIZK proof system, allowing it to forge proofs

for false statement and to extract witnesses from valid proofs. Such a pour transaction contains a

zero-knowledge proof involving the values of coins being spent or created; the simulator must rely
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on its ability to extract witnesses in order to learn these values and trigger FBLOCKCHAIN(Idealcash)

appropriately.

The environment may also send mint and pour instructions to honest parties that in the ideal

world would be forwarded directly to FBLOCKCHAIN(Idealcash). These activate the simulator, but

only reveal partial information about the instruction — in particular, the simulator does not

learn the values of the coins being spent. The simulator handles this by passing bogus (but

plausible-looking) transactions to ContractCash.

Thus the simulator must translate transactions submitted by corrupt parties to the contract into

ideal world instructions, and must translate ideal world instructions into transactions published

on the contract.

The simulator simP is defined in more detail below:

Simulating corrupted parties. The following messages are sent by the environment E to

the simulator S(simP) which then forwards it on to both the internally simulated contract

G(ContractCash) and the inner simulator simP.

• simP receives a pseudonymous mint message mint($val, r). No extra action is necessary.

• simP receives an anonymous pour message,

pour({sni,Pi, coini, cti}i∈{1,2}}). The simulator uses τ to extract the witness from π, which

includes the sender P and values $val1, $val2, $val′1 and $val′2. If Pi is an uncorrupted party,

then the simulator must check whether each encryption cti is performed correctly, since the

NIZK proof does not guarante that this is the case. The simulator performs a trial decryp-

tion using Pi.esk; if the decryption is not a valid opening of coini, then the simulator must

avoid causing Pi in the ideal world to output anything (since Pi in the real world would

not output anything either). The simulator therefore substitutes some default value (e.g.,

the name of any corrupt party P) for the recipient’s pseudonym. The simulator forwards

pour($val1, $val2,P†1 ,P
†
2 , $val

′
1, $val

′
2) anonymously to FBLOCKCHAIN(Idealcash), where P†i = P if

Pi is uncorrupted and decryption fails, and P†i = Pi otherwise.

Simulating honest parties. When the environment E sends inputs to honest parties, the

simulator S needs to simulate messages that corrupted parties receive, from honest parties or

from functionalities in the real world. The honest parties will be simulated as below:

• Environment E gives a mint instruction to party P. The simulator simP receives mint(P, $val, r)
from the ideal functionality FBLOCKCHAIN(Idealcash). The simulator has enough information

to run the honest protocol, and posts a valid mint transaction to the contract.

• Environment E gives a pour instruction to party P. The simulator simP receives pour(P1,P2)

from FBLOCKCHAIN(Idealcash). However, the simulator does not learn the name of the honest

sender P, or the correct values for each input coin vali (for i ∈ {1, 2}). Instead, the sim-

ulator uses τ to create a false proof using arbitrary values for these values in the witness.
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To generate each serial number sni in the witness, the simulator chooses a random element

from the codomain of PRF. For each recipient Pi (for i ∈ {1, 2}), the simulator behaves

differently depending on whether or not Pi is corrupted:

Case 1: Pi is honest. The simulator does not know the correct output value, so instead sets

val′i := 0, and computes coin′i and cti as normal. The environment therefore sees a

commitment and an encryption of 0, but without Pi.esk it cannot distinguish between

an encryption of 0 or of the correct value.

Case 2: Pi is corrupted. Since the ideal world recipient would receive $val′i from FCASH, and since

Pi is corrupted, the simulator learns the correct value $val′i directly. Hence coini is a

correct encryption of $val′i under Pi’s registered encryption public key.

7.2.3.3 Indistinguishability of Real and Ideal Worlds

To prove indistinguishability of the real and ideal worlds from the perspective of the environment,

we will go through a sequence of hybrid games.

Real world. We start with the real world with a dummy adversary that simply passes messages

to and from the environment E .

Hybrid 1. Hybrid 1 is the same as the real world, except that now the adversary (also referred

to as the simulator) will call (ĉrs, τ, ek)← NIZK.K̂(1λ) to perform a simulated setup for the NIZK

scheme. The simulator will pass the simulated ĉrs to the environment E . When an honest party

P publishes a NIZK proof, the simulator will replace the real proof with a simulated NIZK

proof before passing it onto the environment E . The simulated NIZK proof can be computed

by calling the NIZK.P̂(ĉrs, τ, ·) algorithm which takes only the statement as input but does not

require knowledge of a witness.

Fact 2. It is immediately clear that if the NIZK scheme is computational zero-knowledge, then

no polynomial-time environment E can distinguish Hybrid 1 from the real world except with

negligible probability.

Hybrid 2. The simulator simulates the FBLOCKCHAIN(T (ContractCash)) functionality. Since all

messages to the FBLOCKCHAIN(T (ContractCash)) functionality are public, simulating the contract

functionality is trivial. Therefore, Hybrid 2 is identically distributed as Hybrid 1 from the

environment E ’s view.

Hybrid 3. Hybrid 3 is the same as Hybrid 2 except the following changes. When an honest

party sends a message to the contract (now simulated by the simulator S), it will sign the message

with a signature verifiable under an honestly generated nym. In Hybrid 3, the simulator will

replace all honest parties’ nyms and generate these nyms itself. In this way, the simulator will

simulate honest parties’ signatures by signing them itself. Hybrid 3 is identically distributed as

Hybrid 2 from the environment E ’s view.
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Hybrid 4. Hybrid 4 is the same as Hybrid 3 except for the following changes:

• When an honest party P produces a ciphertext cti for a recipient Pi, and if the recipient

is also uncorrupted, then the simulator will replace this ciphertext with an encryption of

0 before passing it onto the environment E .

• When an honest party P produces a commitment coin, then the simulator replaces this

commitment with a commitment to 0.

• When an honest party P computes a pseudorandom serial number sn, the simulator replaces

this with a randomly chosen value from the codomain of PRF.

Fact 3. It is immediately clear that if the encryption scheme is semantically secure, if PRF

is a pseudorandom function, and if Comm is a perfectly hiding commitment scheme, then no

polynomial-time environment E can distinguish Hybrid 4 from Hybrid 3 except with negligible

probability.

Hybrid 5. Hybrid 5 is the same as Hybrid 4 except for the following changes. Whenever the

environment E passes to the simulator S a message signed on behalf of an honest party’s nym,

if the message and signature pair was not among the ones previously passed to the environment

E , then the simulator S aborts.

Fact 4. Assume that the signature scheme employed is secure; then the probability of aborting

in Hybrid 5 is negligible. Notice that from the environment E ’s view, Hybrid 5 would otherwise

be identically distributed as Hybrid 4 modulo aborting.

Hybrid 6. Hybrid 6 is the same as Hybrid 5 except for the following changes. Whenever the

environment passes pour(π, {sni,Pi, coini, cti}) to the simulator (on behalf of corrupted party

P), if the proof π verifies under statement, then the simulator will call the NIZK’s extractor

algorithm E to extract witness. If the NIZK π verifies but the extracted witness does not satisfy

the relation LPOUR(statement,witness), then abort the simulation.

Fact 5. Assume that the NIZK is simulation sound extractable, then the probability of aborting

in Hybrid 6 is negligible. Notice that from the environment E ’s view, Hybrid 6 would otherwise

be identically distributed as Hybrid 5 modulo aborting.

Finally, observe that Hybrid 6 is computationally indistinguishable from the ideal simulation S
unless one of the following bad events happens:

• A value val′ decrypted by an honest recipient is different from that extracted by the simulator.

However, given that the encryption scheme is perfectly correct, this cannot happen.

• A commitment coin is different than any stored in

ContractCash.coins, yet it is valid according to the relation LPOUR. Given that the merkle

tree MT is computed using collision-resistant a hash function, this occurs with at most neg-

ligible probability.
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• The honest public key generation algorithm results in key collisions. Obviously, this happens

with negligible probability if the encryption and signature schemes are secure.

Fact 6. Given that the encryption scheme is semantically secure and perfectly correct, and that

the signature scheme is secure, then Hybrid 6 is computationally indistinguishable from the ideal

simulation to any polynomial-time environment E .

7.2.4 Technical Subtleties in Zerocash

In general, a simulation-based security definition is more straightforward to write and understand

than ad-hoc indistinguishability games – although it is often more difficult to prove or require

a protocol with more overhead. Below we highlight a subtle weakness with Zerocash’s security

definition [15], which motivates our stronger definition.

The privacy guarantees of Zerocash [15] are defined by a “Ledger Indistinguishability” game (in

[15], Appendix C.1). In this game, the attacker (adaptively) generates two sequences of queries,

Qleft and Qright. Each query can either be a raw “insert” transaction (which corresponds in

our model to a transaction submitted by a corrupted party) or else a “mint” or “pour” query

(which corresponds in our model to an instruction from the environment to an honest party).

The attacker receives (incrementally) a pair of views of protocol executions, Vleft and Vright,

according to one of the following two cases, and tries to discern which case occurred: either

Vright is generated by applying all the queries in Qright and respectively for Vright; or else Vleft

is generated by interweaving the “insert” queries of Qleft with the “mint” and “pour” queries of

Qright, and Vright is generated y interweaving the “insert” queries of Qright with the “mint” and

“pour” queries of Qleft. The two sequences of queries are constrained to be “publicly consistent”,

which effectively defines the information leaked to the adversary. For example, the ith queries in

both sequences must be of the same type (either “mint”, “pour”, or “insert”), and if a “pour”

query includes an output to a corrupted recipient, then the output value must be the same in

both queries.

However, the definition of “public consistency” is subtly overconstraining: it requires that if the

ith query in one sequence is an (honest) “pour” query that spends a coin previously created by a

(corrupt) “insert” query, then the ith queries in both sequences must spend coins of equal value

created by prior “insert” queries. Effectively, this means that if a corrupted party sends a coin

to an honest party, then the adversary may be alerted when the honest party spends it.

We stress that this does not imply any flaw with the Zerocash construction itself — however,

there is no obvious path to proving their scheme secure under a simulation based paradigm. Our

scheme avoids this problem by using an simulation extractable NIZK instead of a zkSNARK.



Privacy Preserving Smart Contracts 85

7.3 Combining Privacy with Programmable Logic

7.3.1 Overview

So far, ContractCash provides roughly the same service as Zerocash [15], only supporting direct

money transfers between users. In this section, we show how to enable transactional privacy and

programmable logic simultaneously.

We consider a “private smart contract” arranged between N parties, Pi for 1 ≤ i ≤ N . The

parties to the contract may or may not also be parties that participate (as “miners”) in the

underlying consensus protocol. The application is defined by user-provided function, φpriv. Each

of the parties provides a private input to the contract, including both a string and a quantity

of private cash. After all the inputs are collected, they are provided as input to the function

φpriv, which produces an output for each party (also consisting an arbitrary string and quantity

of cash). Roughly, we desire the following two requirements: First, the computation should be

privacy-preserving, in the sense that it does not reveal information about the inputs or outputs

of the parties to each other or to the public. Second, the computation should be performed

correctly (i.e., the parties receive the correct outputs) and should satisfy the same invariants as

Idealcash(e.g., neither creating nor destroying money).

In this section we develop a protocol for such applications, based on zero-knowledge proofs. Our

protocol also relies on a semi-trusted party, called the manager, who is responsible for collecting

the parties’ inputs and producing the zero-knowledge proofs. We provide fine-grained guarantees

that restrict how much the manager can influence the protocol. In particular, the manager does

not learn any party’s input values until after all of the inputs are committed (e.g., the adversary

cannot “front-run” in a sealed-bid auction), and the manager cannot produce incorrect outputs.

These guarantees are captured in our ideal functionality specification, as explained shortly.

The content of this chapter was first published an Oakland 2016 conference paper [61]. The

conference version also includes a practical protocol instantiation and optimized implementation

due primarily to Ahmed Kosba. The contribution claimed in this thesis is restricted to the

high-level protocol formalism and compiler design.

7.4 Private Smart Contract Specification

We now describe our cryptography abstraction in the form of ideal programs. Ideal programs

define the correctness and security requirements we wish to attain by writing a specification

assuming the existence of a fully trusted party. We will later prove that our real-world protocols

(based on smart contracts) securely emulate the ideal programs.

Overview. With a private ledger specified, we then define the additional Hawk-specific primi-

tives including freeze, compute, and finalize that are essential for enabling transactional privacy

and programmability simultaneously.
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The formal specification of the ideal program Idealhawk is provided in Figure 7.4. Below, we

provide some explanation.

Freeze. In freeze, a party tells Idealhawk to remove one coin from the private coins pool Coins,

and freeze it in the contract by adding it to ContractCoins. The party’s private input denoted

in is also recorded in ContractCoins. Idealhawk checks that P has not called freeze earlier, and

that a coin (P, val) exists in Coins before proceeding with the freeze.

Compute. When a party P calls compute, its private input in and the value of its frozen coin

val are disclosed to the manager PM.

Finalize. In finalize, the manager PM submits a public input inM to Idealhawk. Idealhawk

now computes the outcome of φpriv on all parties’ inputs and frozen coin values, and redistribute

the ContractCoins based on the outcome of φpriv. To ensure money conservation, the ideal

program Idealhawk checks that the sum of frozen coins is equal to the sum of output coins.

Interaction with public contract. The Idealhawk functionality is also parameterized by

an ordinary public contract φpub, which is included in Idealhawk as a sub-module. During a

finalize, Idealhawk calls φpub.check. The public contract φpub typically serves the following

purposes:

• Check the well-formedness of the manager’s input inM. For example, in our financial deriva-

tives application (Section 7.5), the public contract φpub asserts that the input corresponds to

the price of a stock as reported by the stock exchange’s authentic data feed.

• Redistribute public deposits. If parties or the manager have aborted, or if a party has provided

invalid input (e.g., less than a minimum bet) the public contract φpub can now redistribute

the parties’ public deposits to ensure financial fairness. For example, in our “Rock, Paper,

Scissors” example (see Section 7.5), the private contract φpriv checks if each party has frozen

the minimal bet. If not, φpriv includes that information in out so that φpub pays that party’s

public deposit to others.

Security and privacy requirements. The Idealhawk program specifies the following privacy

guarantees. When an honest party P freezes money (e.g., a bid), the adversary should not

observe the amount frozen. However, the adversary can observe the party’s pseudonym P. We

note that leaking the pseudonym P does not hurt privacy, since a party can simply create a new

pseudonym P and pour to this new pseudonym immediately before the freeze.

When an honest party calls compute, the manager PM gets to observe its input and frozen coin’s

value. However, the public and other contractual parties do not observe anything (unless the

manager voluntarily discloses information).

Finally, during a finalize operation, the output out is declassified to the public – note that out

can be empty if we do not wish to declassify any information to the public.
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It is clear to see that our ideal program Idealhawk satisfies input independent privacy and authen-

ticity against a dishonest manager. Further, it ensures posterior privacy as long as the manager

does not voluntarily disclose information. Intuitive explanations of these security/privacy prop-

erties were provided in Section 7.5.

Timing and aborts. Our ideal program Idealhawk requires that freeze operations are per-

formed by time T1, and that compute operations are performed by time T2. If a user freezes coins

but does not open by time T2, our ideal program Idealhawk treats (ini, vali) := (0,⊥), and the

user Pi essentially forfeits its frozen coins. Managerial aborts are not handled inside Idealhawk,

but by the public portion of the contract φpub.

Simplifying assumptions. For clarity, our basic version of Idealhawk is a stripped down version

of our implementation. Specifically, our basic Idealhawk and protocols do not realize refunds of

frozen coins upon managerial abort. It is straightforward to accommodate this by adding this

behavior to the transparent contract. We also assume that the set of pseudonyms participating

in the contract as well as timeouts T1 and T2 are hard-coded in the program, while in reality

these could easily be chosen dynamically.

7.4.1 Protocol

The protocol is defined in Figure 7.5. We give an explanation of the new activation points.

Freeze. We support a new operation called freeze, that does not spend directly to a user,

but commits the money as well as an accompanying private input to a smart contract. This is

done using a pour-like protocol:

• The user P chooses a private coin (P, coin) ∈ Coins, where coin := Comms($val). Using

its secret key, P computes the serial number sn for coin – to be disclosed with the freeze

operation to prevent double-spending.

• The user P computes a commitment (val||in||k) to the contract where in denotes its input, and

k is a symmetric encryption key that is introduced due to a practical optimization explained

later in Section 7.4.4.

• The user P now makes a zero-knowledge proof attesting to similar statements as in a pour

operation, i.e., that the spent coin exists in the pool Coins, the sn is correctly constructed, and

that the val committed to the contract equals the value of the coin being spent. See LFREEZE
in Figure 7.5 for details of the NP statement being proven.

Compute. Next, computation takes place off-chain to compute the payout distribution {val′i}i∈[N ]

and a proof of correctness. In Hawk, we rely on a minimally trusted manager PM to perform

computation. All parties would open their inputs to the manager PM, and this is done by
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encrypting the opening to the manager’s public key:

ct := ENC(PM.epk, r, ($val‖in‖k‖s′))

The ciphertext ct is submitted to the smart contract along with appropriate zero-knowledge

proofs of correctness. While the user can also directly send the opening to the manager off-

chain, passing the ciphertext ct through the smart contract would make any aborts evident such

that the contract can financially punish an aborting user. Alternatively, it is also possible to

perform the opening off-chain optimistically, and allowing the manager to submit a dispute to

the contract in the event of a user abort. In this case, the blamed user must submit the opening

on-chain within a timeout.

After obtaining the openings, the manager now computes the payout distribution {val′i}i∈[N ]

and public output out by applying the private contract φpriv. The manager also constructs a

zero-knowledge proof attesting to the outcomes.

Finalize. When the manager submits the outcome of φpriv and a zero-knowledge proof of cor-

rectness to ContractHawk, ContractHawk verifies the proof and redistributes the frozen money

accordingly. Here ContractHawk also passes the manager’s public input inM and public output

out to a public contract denoted C. The public contract C can be invoked to check the validity

of the manager’s input, as well as redistribute public collateral deposit.

Subtleties related to the NIZK proofs. Some subtle technicalities arise when we use SNARKs

to instantiate NIZK proofs. As mentioned in Theorem 7.2, we assume that our NIZK scheme sat-

isfies simulation sound extractability. Unfortunately, ordinary SNARKs do not offer simulation

sound extractability – and our simulator cannot simply use the SNARK’s extractor since the

SNARK extractor is non-blackbox, and using the SNARK extractor in a UC-style simulation

proof would require running the environment in the extractor!

We therefore rely a generic transformation [62] to build a simulation sound extractable NIZK

from an ordinary SNARK scheme.

We now prove our main result, Theorem 7.2 (see Section 7.3). Just as we did for private cash

in Theorem 7.1, we will construct an ideal-world simulator S for every real-world adversary A,

such that no polynomial-time environment E can distinguish whether it is in the real or ideal

world.

7.4.2 Ideal World Simulator

Our ideal program (Idealhawk) and construction (ContractHawk and ΠHAWK) borrows from our

private cash definition and construction in a non-blackbox way (i.e., by duplicating the relevant

behaviors). As such, our simulator program simP also duplicates the behavior of the simulator

from Section 7.2.3.2 involving mint and pour interactions. Hence we will here explain the

behavior involving the additional freeze, compute, and finalize interactions.
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Init. Same as in Section 7.2.3.

Simulating corrupted parties. The following messages are sent by the environment E to

the simulator S(simP) which then forwards it on to both the internally simulated contract

FBLOCKCHAIN(T (ContractHawk)) and the inner simulator simP.

• Corrupt party P submits a transaction freeze(π, sn, cm) to the contract. The simulator for-

wards this transaction to the contract, but also uses the trapdoor τ to extract a witness from

π, including $val and in. The simulator then sends freeze($val, in) to FHAWK.

• Corrupt party P sumbits a transaction compute(π, ct) to the contract. The simulator forwards

this to the contract and sends compute to FHAWK. The simulator also uses τ to extract a

witness from π, including ki, which is used later. These is stored as CorruptOpeni := ki.

• Corrupt party PM submits a transaction

finalize(π, inM, out,{coin′i, cti}). The simulator forwards this to the contract, and simply

sends finalize(inM) to FHAWK.

Simulating honest parties. When the environment E sends inputs to honest parties, the

simulator S needs to simulate messages that corrupted parties receive, from honest parties or

from functionalities in the real world. The honest parties will be simulated as below:

• Environment E gives a freeze instruction to party P. The simulator simP receives

freeze(P) from FBLOCKCHAIN(Idealhawk). The simulator does not have any information

about the actual committed values for $val or in. Instead, the simulator create a bogus com-

mitment

cm := Comms(0‖⊥‖⊥) that will later be opened (via a false proof) to an arbitrary

value. To generate the serial number sn, the simulator chooses a random element from

the codomain of PRF. Finally, the simulator uses τ to generate a forged proof π and sends

freeze(π, sn, cm) to the contract.

• Environment E gives a compute instruction to party P. The simulator simP receives

compute(P) from FBLOCKCHAIN(Idealhawk). The simulator behaves differently depending on

whether or not the manager PM is corrupted.

Case 1: PM is honest. The simulator does not know values $val or in. Instead, the simu-

lator samples an encryption randomness r and generates an encryption of 0, ct :=

ENC(PM.epk, r, 0). Finally, the simulator uses the trapdoor τ to create a false proof

π that the commitment cm and ciphertext ct are consistent. The simulator then

passes compute(π, ct) to the contract.

Case 2: PM is corrupted. Since the manager PM in the ideal world would learn $val, in, and

k at this point, the simulator learns these values instead. Hence it samples an encryp-

tion randomness r and computes a valid encryption ct := ENC(PM.epk, r, ($val‖in‖k)).

The simulator next uses τ to create a proof π attesting that ct is consistent with cm.

Finally, the simulator sends compute(π, ct) to the contract.
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• Environment E gives a finalize instruction to party PM. The simulator simP receives

finalize(inM, out) from FBLOCKCHAIN(Idealhawk). The simulator generates the output coin′i

for each party Pi depending on whether Pi is corrupted or not:

– Pi is honest: The simulator does not know the correct output value for Pi, so instead cre-

ates a bogus commitment coin′i := Comms′i
(0) and a bogus ciphertext ct′i := SENCki(s

′
i‖0)

for sampled randomnesses ki and s′i.

– Pi is corrupted: Since the ideal world recipient would receive $val′i from FBLOCKCHAIN(Idealhawk),

the simulator learns the correct value $val′i directly. Notice that since Pi was corrupted,

the simulator has access to ki := CorruptOpeni, which it extracted earlier. The sim-

ulator therefore draws a randomness s′i, and computes coin′i := Comms′i
($val′i) and

cti := SENCki(s
′
i‖$val

′
i).

The simulator finally constructs a forged proof π using the trapdoor τ , and then passes

finalize(π, inM, out, {coin′i, cti}i∈[N ]) to the contract.

7.4.3 Indistinguishability of Real and Ideal Worlds

To prove indistinguishability of the real and ideal worlds from the perspective of the environment,

we will go through a sequence of hybrid games.

Real world. We start with the real world with a dummy adversary that simply passes messages

to and from the environment E .

Hybrid 1. Hybrid 1 is the same as the real world, except that now the adversary (also referred

to as the simulator) will call (ĉrs, τ, ek)← NIZK.K̂(1λ) to perform a simulated setup for the NIZK

scheme. The simulator will pass the simulated ĉrs to the environment E . When an honest party

P publishes a NIZK proof, the simulator will replace the real proof with a simulated NIZK

proof before passing it onto the environment E . The simulated NIZK proof can be computed

by calling the NIZK.P̂(ĉrs, τ, ·) algorithm which takes only the statement as input but does not

require knowledge of a witness.

Fact 7. It is immediately clear that if the NIZK scheme is computational zero-knowledge, then

no polynomial-time environment E can distinguish Hybrid 1 from the real world except with

negligible probability.

Hybrid 2. The simulator simulates the FBLOCKCHAIN(T (ContractHawk)) functionality. Since all

messages to the FBLOCKCHAIN(T (ContractHawk)) functionality are public, simulating the contract

functionality is trivial. Therefore, Hybrid 2 is identically distributed as Hybrid 1 from the

environment E ’s view.
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Hybrid 3. Hybrid 3 is the same as Hybrid 2 except the following changes. When an honest

party sends a message to the contract (now simulated by the simulator S), it will sign the message

with a signature verifiable under an honestly generated nym. In Hybrid 3, the simulator will

replace all honest parties’ nyms and generate these nyms itself. In this way, the simulator will

simulate honest parties’ signatures by signing them itself. Hybrid 3 is identically distributed to

Hybrid 2 from the environment E ’s view.

Hybrid 4. Hybrid 4 is the same as Hybrid 3 except for the following changes:

• When an honest party P produces a ciphertext cti for a recipient Pi, and if the recipient

is also uncorrupted, then the simulator will replace this ciphertext with an encryption of

0 before passing it onto the environment E .

• When an honest party P produces a commitment coin or cm, then the simulator replaces

this commitment with a commitment to 0.

• When an honest party P computes a pseudorandom serial number sn, the simulator replaces

this with a randomly chosen value from the codomain of PRF.

Fact 8. It is immediately clear that if the encryption scheme is semantically secure, if PRF

is a pseudorandom function, and if Comm is a perfectly hiding commitment scheme, then no

polynomial-time environment E can distinguish Hybrid 4 from Hybrid 3 except with negligible

probability.

Hybrid 5. Hybrid 5 is the same as Hybrid 4 except for the following changes. Whenever the

environment E passes to the simulator S a message signed on behalf of an honest party’s nym,

if the message and signature pair was not among the ones previously passed to the environment

E , then the simulator S aborts.

Fact 9. Assume that the signature scheme employed is secure; then the probability of aborting

in Hybrid 5 is negligible. Notice that from the environment E ’s view, Hybrid 5 would otherwise

be identically distributed as Hybrid 4 modulo aborting.

Hybrid 6. Hybrid 6 is the same as Hybrid 5 except for the following changes. Whenever the

environment passes pour(π, {sni,Pi, coini, cti}) (or freeze(π, sn, cm)) to the simulator (on behalf

of corrupted party P), if the proof π verifies under statement, then the simulator will call the

NIZK’s extractor algorithm E to extract witness. If the NIZK π verifies but the extracted witness

does not satisfy the relation LPOUR(statement,witness) (or LFREEZE(statement,witness)), then abort

the simulation.

Fact 10. Assume that the NIZK is simulation sound extractable, then the probability of aborting

in Hybrid 6 is negligible. Notice that from the environment E ’s view, Hybrid 6 would otherwise

be identically distributed as Hybrid 5 modulo aborting.

Finally, observe that Hybrid 6 is computationally indistinguishable from the ideal simulation S
unless one of the following bad events happens:
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• A value val′ decrypted by an honest recipient is different from that extracted by the simulator.

However, given that the encryption scheme is perfectly correct, this cannot happen.

• A commitment coin is different than any stored in

ContractHawk.coins, yet it is valid according to the relation LPOUR. Given that the Merkle

tree MT is computed using collision-resistant a hash function, this occurs with at most neg-

ligible probability.

• The honest public key generation algorithm results in key collisions. Obviously, this happens

with negligible probability if the encryption and signature schemes are secure.

Fact 11. Given that the encryption scheme is semantically secure and perfectly correct, and that

the signature scheme is secure, then Hybrid 6 is computationally indistinguishable from the ideal

simulation to any polynomial-time environment E .

Theorem 7.2. Assuming that the hash function in the Merkle tree is collision resistant, the

commitment scheme Comm is perfectly binding and computationally hiding, the NIZK scheme is

computationally zero-knowledge and simulation sound extractable, the encryption schemes ENC

and SENC are perfectly correct and semantically secure, the PRF scheme PRF is secure, then,

our protocols in Figures 7.2 and 7.5 securely emulates the ideal functionality F(Idealhawk).

7.4.4 Practical Considerations

Our scheme’s main performance bottleneck is computing NIZK proofs. Specifically, NIZK proofs

must be computed whenever i) a user invokes a pour, freeze, or a compute operation; and ii)

the manager calls finalize. In an implementation of Hawk, Kosba et al. [61] use a state-of-

the-art simulation extractable NIZKconstructions based on zkSNARKs [14, 62] as explained in

Section 2.2.3.

Efficient SNARK circuits. A SNARK prover’s performance is mainly determined by the

number of multiplication gates in the algebraic circuit to be proven [14, 86]. To achieve efficiency,

we use circuits that have been carefully optimmized in two main ways. First, we use crypto-

graphic primitives that are SNARK-friendly, i.e. efficiently realizable as arithmetic circuits under

a specific SNARK parametrization. For example, we use a SNARK-friendly collision-resistant

hash function [17, 62] to realize the Merkle tree circuit. Second, we build customized circuits

directly instead of relying on compilers from generic high-level languages (i.e., we avoid relying

on the Pinocchio C compiler [86] for implementing cryptography). For example, our circuits

rely also on standard SHA-256, RSA-OAEP encryption, and RSA signature verification (with

2048-bit keys for both), so we use the hand-optimized these components due to Kosba et al. [62]

to reduce circuit size.

An optimization using symmetric encryption. We now briefly explain a performance

optimization incorporated into our protocol. Since producing the NIZK proofs is the main

performance bottleneck in our prototypes, we focus on minimizing the circuit sizes for the NIZK

proofs. In particular, we focus on minimizing the cost of the O(N)-sized finalize circuit by
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trading off expense in the other proofs in our scheme (for freeze and pour), which are only O(1)-

sized. During finalize, the manager encrypts each party Pi’s output coins to Pi’s key, resulting

in a ciphertext cti. The ciphertexts {cti}i∈[N ] would then be submitted to the contract along

with appropriate SNARK proofs of correctness. Here, if a public-key encryption is employed to

generate the cti’s, it would result in a relatively large SNARK circuit size. Instead, we rely on a

symmetric-key encryption scheme denoted SENC in Figure 7.5. This requires that the manager

and each Pi perform a key exchange to establish a symmetric key ki. During an compute, the

user encrypts this ki to the manager’s public key PM.epk, and prove that the k encrypted is

consistent with the k committed to earlier in cmi. The SNARK proof during finalize now only

needs to include commitments and symmetric encryptions instead of public key encryptions in

the circuit – the latter much more expensive.

7.5 Hawk Implementation and Examples

7.5.1 Protocol Compiler

Our Hawk compiler consists of several steps, as explained below:

1. Preprocessing: First, the input Hawk program is split into its public contract and private

contract components. The public contract is Serpent code, and can be executed directly

atop an ordinary cryptocurrency platform such as Ethereum. The private contract is writ-

ten in a subset of the C language, and is passed as input to the Pinocchio arithmetic circuit

compiler [86]. Keywords such as HawkDeclareParties are implemented as C preprocessor

macros, and serve to define the input (Inp) and output (Outp) datatypes. Currently, our

private contract inherits the limitations of the Pinocchio compiler, e.g., cannot support

dynamic-length loops. In the future, we can relax these limitations by employing recursive

composition of SNARKs.

2. Circuit Augmentation: After compiling the preprocessed private contract code with Pinoc-

chio, we have an arithmetic circuit representing the input/output relation φpriv. This be-

comes a subcomponent of a larger arithmetic circuit, which we assemble using a customized

circuit assembly tool (described in [61, 62]). This tool is parameterized by the number

of parties and the input/output datatypes, and attaches cryptographic constraints, such

as computing commitments and encryptions over each party’s output value, and asserting

that the input and output values satisfy the balance property.

3. Cryptographic Protocol: Finally, the augmented arithmetic circuit is used as input to a

state-of-the-art zkSNARK library, libsnark [14]. We finally compile an executable pro-

gram for the parties to compute the libsnark proofs according to our protocol.

7.5.2 Example Application: Sealed Bid Auction

We illustrate our protocol and the role of our compiler by explaining an example application

that implements a privacy-preserving sealed bid auction.
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Example program. Figure 7.6 shows a Hawk program for implementing a sealed, second-price

auction where the highest bidder wins, but pays the second highest price. Second-price auctions

are known to incentivize truthful bidding under certain assumptions, [101] and it is important

that bidders submit bids without knowing the bid of the other people. Our example auction

program contains a private contract φpriv that determines the winning bidder and the price to

be paid; and a public contract φpub that relies on public deposits to protect bidders from an

aborting manager. Furthermore, even after the auction, only the manager learns the bids of the

parties. The payment from the winning bidder to the seller, as well as the refunds to all the

losing bidders, are all executed as private money transfers; this is in contrast to prior schemes

such as [6] that must publicly reveal the bids at the end.

Contractual security requirements. Hawk will compile this auction program to a crypto-

graphic protocol. As mentioned earlier, as long as the bidders and the manager do not voluntarily

disclose information, transaction privacy is maintained against the public. Hawk also guarantees

the following contractual security requirements for parties in the contract:

• Input independent privacy. Each user does not see others’ bids before committing to their

own. This way, users bids are independent of others’ bids. Hawk guarantees input independent

privacy even against a malicious manager.

• Posterior privacy. As long as the manager does not disclose information, users’ bids are kept

private from each other (and from the public) even after the auction.

• Financial fairness. If a party aborts or if the auction manager aborts, the aborting party

should be financially penalized while the remaining parties receive compensation. Such fairness

guarantees are not attainable in general by off-chain only protocols such as secure multi-party

computation [4, 18]. As explained later, Hawk offers built-in mechanisms for enforcing refunds

of private bids after certain timeouts.

Hawk also allows the programmer to define additional rules, as part of the Hawk contract, that

govern financial fairness.

• Security against a dishonest manager. We ensure authenticity against a dishonest manager:

besides aborting, a dishonest manager cannot affect the outcome of the auction and the redis-

tribution of money, even when it colludes with a subset of the users. We stress that to ensure

the above, input independent privacy against a faulty manager is a prerequisite. Moreover, if

the manager aborts, it can be financially penalized, and the participants obtain corresponding

remuneration.

An auction with the above security and privacy requirements cannot be trivially implemented

atop existing cryptocurrency systems such as Ethereum [103] or Zerocash [15]. The former allows

for programmability but does not guarantee transactional privacy, while the latter guarantees

transactional privacy but at the price of even reduced programmability than Bitcoin.

Aborting and timeouts. Aborting are dealt with using timeouts. A Hawk program such as

Figure 7.6 declares timeout parameters using the HawkDeclareTimeouts special syntax. Three

timeouts are declared where T1 < T2 < T3:
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T1 : The Hawk contract stops collecting bids after T1.

T2 : All users should have opened their bids to the manager within T2; if a user submitted a

bid but fails to open by T2, its input bid is treated as 0 (and any other potential input data

treated as ⊥), such that the manager can continue.

T3 : If the manager aborts, users can reclaim their private bids after time T3.

7.5.3 Other Examples

We provide the Hawk programs for several other example applications.

Crowdfunding: (Figure 7.8 A Kickstarter-style crowdfunding campaign, (also known as an assur-

ance contract in economics literature [11]) overcomes the “free-rider problem,” allowing a large

number of parties to contribute funds towards some social good. If the minimum donation tar-

get is reached before the deadline, then the donations are transferred to a designated party (the

entrepreneur); otherwise, the donations are refunded. Hawk preserves privacy in the following

sense: a) the donations pledged are kept private until the deadline; and b) if the contract fails,

only the manager learns the amount by which the donations were insufficient. These privacy

properties may conceivably have a positive effect on the willingness of entrepreneurs to launch a

crowdfund campaign and its likelihood of success.

Rock Paper Scissors: (Figure 7.7) A two-player lottery game, and naturally generalized to an N -

player version. Our Hawk implementation provides the same notion of financial fairness as in [4,

18] and provides stronger security/privacy guarantees. If any party (including the manager),

cheats or aborts, the remaining honest parties receive the maximum amount they might have

won otherwise. Furthermore, we go beyond prior works [4, 18] by concealing the players’ moves

and the pseudonym of the winner to everyone except the manager.

“Swap” Financial Instrument: (Figure 7.9 An individual with a risky investment portfolio (e.g,

one who owns a large number of Bitcoins) may hedge his risks by purchasing insurance (e.g., by

effectively betting against the price of Bitcoin with another individual). Our example implements

a simple swap instrument where the price of a stock at some future date (as reported by a trusted

authority specified in the public contract) determines which of two parties receives a payout. The

private contract ensures the privacy of both the details of the agreement (i.e., the price threshold)

and the outcome.

Crowdfunding example. In the crowdfunding example in Figure 7.8, parties donate money

for a kickstarter project. If the total raised funding exceeds a pre-set budget denoted BUDGET,

then the campaign is successful and the kickstarter obtains the total donations. Otherwise, all

donations are returned to the donors after a timeout. In this case, no public deposit is necessary

to ensure the incentive compatibility of the contract. If a party does not open after freezing its

money, the money is unrecoverable by anyone.

Swap instrument example. In this financial swap instrument, Alice is betting on the stock

price exceeding a certain threshold at a future point of time, while Bob is betting on the reverse.
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If the stock price is below the threshold, Alice obtains $20; else Bob obtains $20. As mentioned

earlier in Section 7.5, such a financial swap can be used as a means of insurance to hedge

invenstment risks. This swap contract makes use of public deposits to provide financial fairness

when either Alice or Bob cheats.

This swap assumes that the manager is a well-known public entity such as a stock exchange.

Therefore, the contract does not protect against the manager aborting. In the event that the

manager aborts, the aborting event can be observed in public, and therefore external mechanisms

(e.g., legal enforcement or reputation) can be leveraged to punish the manager.
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ContractCash

Init: crs: a reference string for the underlying
NIZK system
Coins: a set of coin commitments, initially
∅
SpentCoins: set of spent serial numbers,
initially ∅

Mint: Upon receiving mint($val, s) from some
party P,
coin := Comms($val)
assert (P, coin) /∈ Coins
assert ledger[P] ≥ $val
ledger[P] := ledger[P]− $val
add (P, coin) to Coins

Pour: Anonymous receive
pour(π, {sni,Pi, coini, cti}i∈{1,2}})

let MT be a merkle tree built over Coins
statement :=
(MT.root, {sni,Pi, coini}i∈{1,2})
assert NIZK.Verify(LPOUR, π, statement)
for i ∈ {1, 2},

assert sni /∈ SpentCoins
assert (Pi, coini) /∈ Coins
add sni to SpentCoins
add (P, coini) to Coins
send pour(coini, cti) to Pi

Relation (stmt,wit) ∈ LPOUR is defined as:

parse stmt as (MT.root, {sni,Pi, coin′i}i∈{1,2})
parse wit as (P, skprf, {branchi, si, $vali, s′i, ri, $val′i})
assert P.pkprf = PRFskprf(0)
assert $val1 + $val2 = $val′1 + $val′2
for i ∈ {1, 2},
coini := Commsi($vali)
assert MerkleBranch(MT.root, branchi, (P‖coini))
assert sni = PRFskprf(P‖coini)
assert coin′i = Comms′i

($val′i)

Protocol ProtCash

Init: Wallet: stores P’s spendable coins, initially ∅
GenNym:

create encryption keys (epk, esk)← Keygenenc(1λ).

sample a random seed skprf

pkprf := PRFskprf (0)

store skprf and esk for later use

return (pkprf, epk)

Mint: On input mint($val),

sample a commitment randomness s

coin := Comms($val)

store (s, $val, coin) in Wallet

send mint($val, s) to ContractCash

Pour (as sender): On input pour($val1, $val2, P1,
P2, $val′1, $val′2),

assert $val1 + $val2 = $val′1 + $val′2

for i ∈ {1, 2}, assert (si, $vali, coini) ∈ Wallet for
some (si, coini)

let MT be a merkle tree over ContractCash.Coins

for i ∈ {1, 2}:
remove one (si, $vali, coini) from Wallet

sni := PRFskprf (P‖coini)
let branchi be the branch of (P, coini) in MT

sample randomness s′i, ri
coin′i := Comms′i

($val′i)

cti := ENC(Pi.epk, ri, $val′i‖s′i)
statement := (MT.root, {sni,Pi, coin′i}i∈{1,2})

witness := (P, skprf, {branchi, si, $vali, s′i, ri, $val
′
i})

π := NIZK.Prove(LPOUR, statement,witness)

AnonSend(pour(π, {sni,Pi, coin′i, cti}i∈{1,2})) to
ContractCash

Pour (as recipient): On receive pour(coin, ct) from
ContractCash):

let ($val‖s) := DEC(skenc, ct)

assert Comms($val) = coin

store (s, $val, coin) in Wallet

output pour($val)

Figure 7.2: ProtCash construction. A trusted setup phase generates the NIZK’s common
reference string crs. For notational convenience, we omit writing the crs explicitly in the
construction. The Merkle tree MT is stored in the contract and not computed on the fly – we

omit stating this in the protocol for notational simplicity.
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S(simP)

Init. The simulator S simulates a FBLOCKCHAIN(contract) instance internally. Here S calls
FBLOCKCHAIN(contract).Init to initialize the internal states of the transparent contract function-
ality.
The simulator simP runs (ĉrs, τ, ek)← NIZK.K̂(1λ), and gives ĉrs to the environment E .

Simulating honest parties.

• GenNym: Environment E sends input gennym to an honest party P: simulator S receives no-
tification gennym from the ideal functionality. Simulator S honestly generates an encryption
key (epk, esk) := ENC.K(1λ). and remembers the corresponding secret keys. The wrapper
generates and records the PRF keypair, (pkPRF, skPRF) and returns payload := (epk, pkPRF).

• Ledger Operations. If ideal functionality sends transfer($val, Pr, Ps), then update the
ledger in the simulated FBLOCKCHAIN(T (Contract)) instance accordingly.

• Other activations. Other messages are forwarded to the inner simulator program simP.

Simulating corrupted parties.

• Expose. Upon receiving exposestate from the environment E , expose all states of the
internally simulated FBLOCKCHAIN(T (Contract)).

• Pseudonymous send. Upon receiving pseudonymous(m, P̄ ) from the environment E on
behalf of corrupted party P : Forward to internally simulated FBLOCKCHAIN(T (contract)). If
the message is of the format transfer, $val, Pr, Ps), then pass this to the ideal functionality.
Otherwise, forward this to simP.

• Anonymous send. Upon receiving anonymous(m) from the environment E on behalf of
corrupted party P : Forward to internally simulated FBLOCKCHAIN, and forward to simP.

• Instructions to the dummy adversary.

Deliver. Upon receiving deliver(i) from the environment E , pass deliver(i) to the inter-
nally running instance of FBLOCKCHAIN.

Get Leaks. Upon receiving getleaks from the environment E , return the contents of
leaks in the internally running instance of FBLOCKCHAIN.

Figure 7.3: Simulator wrapper.
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Idealhawk(PM, {Pi}i∈[N ], T1, T2, φpriv, φpub)

Init: Call Idealcash.Init. Additionally:

ContractCoins: a set of coins and private inputs received by this contract, each of the
form (P, in, $val). Initialize ContractCoins := ∅.

Freeze: Upon receiving freeze($vali, ini) from Pi for some i ∈ [N ]:

assert current time T < T1

assert Pi has not called freeze earlier.

assert at least one copy of (Pi, $vali) ∈ Coins

send freeze(Pi) to A
add (Pi, $vali, ini) to ContractCoins

remove one (Pi, $vali) from Coins

Compute: Upon receiving compute from Pi for some i ∈ [N ]:

assert current time T1 ≤ T < T2

if PM is corrupted, send compute(Pi, $vali, ini) to A
else send compute(Pi) to A
let (Pi, $vali, ini) be the item in ContractCoins corresponding to Pi
send compute(Pi, $vali, ini) to PM

Finalize: Upon receiving finalize(inM, out) from PM:

assert current time T ≥ T2

assert PM has not called finalize earlier

for i ∈ [N ]:

let ($vali, ini) := (0,⊥) if Pi has not called compute

({$val′i}, out†) := φpriv({$vali, ini}, inM)

assert out† = out

assert
∑
i∈[N ] $vali =

∑
i∈[N ] $val′i

send finalize(inM, out) to A
for each corrupted Pi that called compute: send (Pi, $val′i) to A
call φpub.check(inM, out)

for i ∈ [N ] such that Pi called compute:

add (Pi, $val′i) to Coins

send finalize($val′i) to Pi
φpub: Run a local instance of public contract φpub. Messages between the adversary to φpub, and

from φpub to parties are forwarded directly.
Upon receiving message pub(m) from party P:

notify A of pub(m)

send m to φpub on behalf of P

Idealcash: include Idealcash (Figure 7.1).

Figure 7.4: Definition of Idealhawk. Notations: ContractCoins denotes frozen coins owned
by the contract; Coins denotes the global private coin pool defined by Idealcash; and (ini, vali)

denotes the input data and frozen coin value of party Pi.
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ContractHawk(PM, {Pi}i∈[N ], T1, T2, φpriv, φpub)

Init: See Idealhawk (Figure 7.4) for description of
parameters
Call ContractCash.Init.

Freeze: Upon receiving freeze(π, sni, cmi) from
Pi:

assert current time T ≤ T1

assert this is the first freeze from Pi
let MT be a merkle tree built over Coins
assert sni /∈ SpentCoins
statement := (MT.root, sni, cmi)
assert NIZK.Verify(LFREEZE, π, statement)
add sni to SpentCoins and store cmi for later

Compute: On receive compute(π, ct) from Pi:
assert T1 ≤ T < T2 for current time T
assert NIZK.Verify(LCOMPUTE, π, (PM, cmi, ct))
send compute(Pi, ct) to PM
Finalize: On receiving

finalize(π, inM, out, {coin′i, cti}i∈[N ])
from PM:

assert current time T ≥ T2

for every Pi that has not called compute, set
cmi := ⊥
statement := (inM, out, {cmi, coin

′
i, cti}i∈[N ])

assert NIZK.Verify(LFINALIZE, π, statement)
for i ∈ [N ]:

assert coin′i /∈ Coins
add coin′i to Coins
send finalize(coin′i, cti) to Pi

Call φpub.check(inM, out)

ContractCash: include ContractCash
φpub : include user-defined public contract φpub

Relation (stmt,wit) ∈ LFREEZE defined as:

parse stmt as (MT.root, sn, cm)
parse wit as
(P, coin, skprf, branch, s, $val, in, k, s′)
coin := Comms($val)
assert MerkleBranch(MT.root, branch, (P‖coin))
assert P.pkprf = skprf(0)
assert sn = PRFskprf(P‖coin)
assert cm = Comms′($val‖in‖k)

Relation (stmt,wit) ∈ LCOMPUTE defined as:

parse stmt as (PM, cm, ct)
parse wit as ($val, in, k, s′, r)
assert cm = Comms′($val‖in‖k)
assert ct = ENC(PM.epk, r, ($val‖in‖k‖s′))

Relation (stmt,wit) ∈ LFINALIZE defined as:

parse stmt as (inM, out, {cmi, coin
′
i, cti}i∈[N ])

parse wit as {si, $vali, ini, s′i, ki}i∈[N ]

({$val′i}i∈[N ], out) := φpriv({$vali, ini}i∈[N ], inM)
assert

∑
i∈[N ] $vali =

∑
i∈[N ] $val′i

for i ∈ [N ]:

assert cmi = Commsi($vali‖ini‖ki))
∨($vali, ini, ki, si, cmi) = (0,⊥,⊥,⊥,⊥)

assert cti = SENCki(s
′
i‖$val′i)

assert coin′i = Comms′i
($val′i)

Protocol
ProtHawk(PM, {Pi}i∈[N ], T1, T2, φpriv, φpub)

Init: Call ProtCash.Init.

Protocol for a party P ∈ {Pi}i∈[N ]:

Freeze: On input freeze($val, in) as party P:
assert current time T < T1

assert this is the first freeze input
let MT be a merkle tree over Contract.Coins
assert that some entry (s, $val, coin) ∈ Wallet
for some (s, coin)
remove one (s, $val, coin) from Wallet
sn := PRFskprf(P‖coin)
let branch be the branch of (P, coin) in MT
sample a symmetric encryption key k
sample a commitment randomness s′

cm := Comms′($val‖in‖k)
statement := (MT.root, sn, cm)
witness := (P, coin, skprf, branch, s, $val, in, k, s′)
π := NIZK.Prove(LFREEZE, statement,witness)
send freeze(π, sn, cm) to ContractHawk
store in, cm, $val, s′, and k to use later (in
compute)

Compute: On input compute as party P:
assert current time T1 ≤ T < T2

sample encryption randomness r
ct := ENC(PM.epk, r, ($val‖in‖k‖s′))
π := NIZK.Prove((PM, cm, ct), ($val, in, k, s′, r))
send compute(π, ct) to ContractHawk

Finalize: Receive finalize(coin, ct) from
ContractHawk:

decrypt (s‖$val) := SDECk(ct)
store (s, $val, coin) in Wallet
output finalize($val)

Protocol for manager PM:

Compute: On receive compute(Pi, ct) from
ContractHawk:

decrypt and store ($vali‖ini‖ki‖si) := DEC(epk, ct)
store cmi := Commsi($vali‖ini‖ki)
output (Pi, $vali, ini)
If this is the last compute received:

for i ∈ [N ] such that Pi has not called compute,
($vali, ini, ki, si, cmi) := (0,⊥,⊥,⊥,⊥)

({$val′i}i∈[N ], out) := φpriv({$vali, ini}i∈[N ], inM)

store and output ({$val′i}i∈[N ], out)

Finalize: On input finalize(inM, out):
assert current time T ≥ T2

for i ∈ [N ]:
sample a commitment randomness s′i
coin′i := Comms′i

($val′i)

cti := SENCki(s
′
i‖$val′i)

statement := (inM, out, {cmi, coin
′
i, cti}i∈[N ])

witness := {si, $vali, ini, s′i, ki}i∈[N ]

π := NIZK.Prove(statement,witness)
send finalize(π, inM, out, {coin′i, cti})
ContractHawk

ProtCash: include ProtCash.

Figure 7.5: ProtHawk construction.
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1 HawkDeclareParties(Seller,/* N parties */);

2 HawkDeclareTimeouts(/* hardcoded timeouts */);

3 // Private contract φpriv

4 private contract auction(Inp &in, Outp &out) {
5 int winner = -1;

6 int bestprice = -1;

7 int secondprice = -1;

8 for (int i = 0; i < N; i++) {
9 if (in.party[i].$val > bestprice) {

10 secondprice = bestprice;

11 bestprice = in.party[i].$val;
12 winner = i;

13 } else if (in.party[i].$val > secondprice) {
14 secondprice = in.party[i].$val;
15 }
16 }

17 // Winner pays secondprice to seller

18 // Everyone else is refunded

19 out.Seller.$val = secondprice;

20 out.party[winner].$val = bestprice - secondprice;

21 out.winner = winner;

22 for (int i = 0; i < N; i++) {
23 if (i != winner)

24 out.party[i].$val = in.party[i].$val;
25 }
26 }

27 // Public contract φpub

28 public contract deposit {
29 // Manager deposits $N

30 def check():

31 send $N to Manager

32 def managerTimeOut():

33 for (i in range($N)):
34 send $1 to party[i]

35 }
Figure 7.6: Hawk contract for a second-price sealed auction. Code described in this paper
is an approximation of our real implementation. In the public contract, the syntax “send $N
to P” corresponds to the following semantics in our cryptographic formalism: ledger[P ] :=

ledger[P ] + $N – see Section 6.3.
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1 typedef enum {ROCK, PAPER, SCISSORS} Move;

2 typedef enum {DRAW, WIN, LOSE} Outcome;

3 typedef enum {OK, A CHEAT, B CHEAT} Output;

4 // Private Contract parameters

5 HawkDeclareParties(Alice, Bob);

6 HawkDeclareTimeouts(/* hardcoded timeouts */);

7 HawkDeclareInput(Move move);

8 Outcome outcome(Move a, Move b) {
9 return (a - b) % 3;

10 }
11 private contract game(Inp &in, Outp &out) {
12 if (in.Alice.$val != $1) out.out = A CHEAT;

13 if (in.Bob.$val != $1) out.out = B CHEAT;

14 Outcome o = outcome(in.Alice.move, in.Bob.move);

15 if (o == WIN) out.Alice.$val = $2;
16 else if (o == LOSE) out.Bob.$val = $2;
17 else out.Alice.$val = out.Bob.$val = $1;
18 }

19 public contract deposit() {
20 // Alice and Bob each deposit $2

21 // Manager deposits $4

22 def check(Output o):

23 send $4 to Manager

24 if (o == A CHEAT): send $4 to Bob

25 if (o == B CHEAT): send $4 to Alice

26 if (o == OK):

27 send $2 to Alice

28 send $2 to Bob

29 def managerTimedOut():

30 send $4 to Bob

31 send $4 to Alice

32 }
Figure 7.7: Hawk program for a rock-paper-scissors game. This program defines both
a private contract and a public contract. The private contract guarantees that only Alice,
Bob, and the Manager learn the outcome of the game. Public collateral deposits are used to
guarantee financial fairness such that if any of the parties cheat, the remaining honest parties

receive monetary compensation.
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1 // Raise $10,000 from up to N donors

2 #define BUDGET $10000

3 HawkDeclareParties(Entrepreneur, /* N Parties */);

4 HawkDeclareTimeouts(/* hardcoded timeouts */);

5 private contract crowdfund(Inp &in, Outp &out) {
6 int sum = 0;

7 for (int i = 0; i < N; i++) {
8 sum += in.p[i].$val;
9 }

10 if (sum >= BUDGET) {
11 // Campaign successful

12 out.Entrepreneur.$val = sum;

13 } else {
14 // Campaign unsuccessful

15 for (int i = 0; i < N; i++) {
16 out.p[i].$val = in.p[i].$val; // refund

17 }
18 }
19 }

Figure 7.8: Hawk contract for a kickstarter-style crowdfunding contract. No public portion is
required. An attacker who freezes but does not open would not be able to recover his money.
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1 typedef enum {OK, A CHEAT, B CHEAT} Output

2 HawkDeclareParties(Alice, Bob);

3 HawkDeclareTimeouts(/* hardcoded timeouts */);

4 HawkDeclarePublicInput(int stockprice,

int threshold[5]);

5 HawkDeclareOutput(Output o);

6 int threshold comm[5] = {/* harcoded */};

6 private contract swap(Inp &in, Outp &out) {
7 if (sha1(in.Alice.threshold) != threshold comm)

out.o = A CHEAT;

7 if (in.Alice.$val != $10) out.o = A CHEAT;

8 if (in.Bob.$val != $10) out.o = B CHEAT;

8
9 if (in.stockprice < in.Alice.threshold[0])

out.Alice.$val = $20;
10 else out.Bob.$val = $20;
11 }

12 public contract deposit {
13 def receiveStockPrice(stockprice):

14 // Alice and Bob each deposits $10

15 // Assume the stock price authority is trusted

16 // to send this contract the price

17 assert msg.sender == StockPriceAuthority

18 self.stockprice = stockprice

19 def check(int stockprice, Output o):

20 assert stockprice == self.stockprice

21 if (o == A CHEAT): send $20 to Bob

22 if (o == B CHEAT): send $20 to Alice

23 if (o == OK):

24 send $10 to Alice

25 send $10 to Bob

26 }
Figure 7.9: Hawk program for a risk-swap financial instrument. In this case, we assume that
the manager is a well-known entity such as a stock exchange, and therefore the contract does
not protect against the manager defaulting. An aborting manager (e.g., a stock exchange) can
be held accountable through external means such as legal enforcement or reputation, since

aborting is observable by the public.



Chapter 8

Conclusion

The goal of this thesis has been to construct a provably-secure cryptocurrency protocol, also

layer-by-layer. Our contributions are based mainly on two new abstractions. The first abstrac-

tion is a new variant of computational puzzles, called scratch-off puzzles (SOPs). This definition

generalizes the puzzle used in Bitcoin, but captures its essential security requirements; indeed

in Chapter 2 we generically showed that the Nakamoto consensus protocol can securely be in-

stantiated with any SOP. Besides modeling existing protocols, this abstraction also provides an

effective way to design upgrades for cryptocurrencies: by instantiating Nakamoto consensus with

alternative puzzles that have beneficial side effects. In Chapter 3 we constructed scratch-off puz-

zles that offer improved incentives and discourage harmful coalitions from forming. In Chapter

4 we constructed a scratch-off puzzle that provides archival data storage as a secondary func-

tion, recycling some of the computational effort. These puzzle constructions address important

problems facing the cryptocurrency ecosystem today. We use our framework to make formal

arguments about their security.

The second abstraction (Chapter 5) is a “blockchain contract,” which represents an application

built on top of a public transaction log. This abstraction includes both “transparent contracts,”

which can be implemented directly on top of a public network like Bitcoin and Ethereum because

they have no hidden state; and “private contracts,” which we implement (in Chapter 6) using a

novel cryptographic protocol, Hawk, based on zero-knowledge proofs. While existing cryptocur-

rency systems provide either programmability (like Ethereum [103]) or transaction privacy (like

Zerocash [16]), Hawk is the first protocol to provide both. Hawk is also practical, and includes a

correct-by-construction compiler for user-defined applications.

Our work demonstrates several virtues of the provable security approach. First, by building

formal models, we can better understand even complex and emergent systems. We showed

that Bitcoin embodies a legitimately novel protocol design in the field of distributed systems,

circumventing prior impossibility results for anonymous systems. This novelty provides a partial

explanation for its surprising success. Second, by seeking general abstractions, we find natural

places to extend the protocol, gaining additional functionality and additional security.
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