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For more than 20 years, black-box impossibility results have been used to argue the in-
feasibility of constructing certain cryptographic primitives (e.g., key agreement) from others
(e.g., one-way functions). In this dissertation we further extend the frontier of this field by
demonstrating several new impossibility results as well as a new framework for studying a
more general class of constructions.

Our first two results demonstrate impossibility of black-box constructions of two com-
monly used cryptographic primitives. In our first result we study the feasibility of black-box
constructions of predicate encryption schemes from standard assumptions and demonstrate
strong limitations on the types of schemes that can be constructed. In our second result we
study black-box constructions of constant-round zero-knowledge proofs from one-way per-
mutations and show that, under commonly believed complexity assumptions, no such con-
structions exist.

A widely recognized limitation of black-box impossibility results, however, is that they
say nothing about the usefulness of (known) non-black-box techniques. This state of affairs
is unsatisfying as we would at least like to rule out constructions using the set of techniques
we have at our disposal. With this motivation in mind, in the final result of this disserta-
tion we propose a new framework for black-box constructions with a non-black-box flavor,
specifically, those that rely on zero-knowledge proofs relative to some oracle. Our framework
is powerful enough to capture a large class of known constructions, however we show that
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Chapter 1

Introduction

A central goal of theoretical cryptography is to explore relationships between various
cryptographic primitives and, in particular, to show constructions of various “high-level”
cryptographic objects (encryption schemes, key agreement protocols, etc.) based on “low-
level” cryptographic tools (such as one-way functions). This line of research has been very
successful, and we now know, for example, that one-way functions suffice for constructing
all the primitives of private-key cryptography [121, 18, 59, 56, 73] as well as digital signature
schemes [92, 109]. In other cases, however, constructions of certain primitives from others are
unknown: for example, we do not currently know how to construct public-key encryption
schemes based on one-way functions. Given this failure, it is natural to wonder whether such
constructions are inherently impossible. Unfortunately, we cannot rule out all such construc-
tions as long as we believe that the object in question exists in the real world: if we believe
that RSA encryption (say) is secure, then a valid construction of public-key encryption from
any one-way function f consists of simply ignoring f and outputting the code for the RSA
encryption scheme. Yet this is clearly not what is intended.

In an effort to capture what is meant by a “natural” construction of one primitive from
another, Impagliazzo and Rudich [76] formalized the notion of a black-box construction. In-
formally, a black-box construction of primitive Q from primitive P is a construction of Q that
uses only the input/output characteristics of an implementation of P , but does not rely on
any internal details as to how P is implemented. Moreover, Q should be “secure” as long as
P is “secure” (each in their respective senses). This notion allowed Impagliazzo and Rudich to
reason about the existence of such constructions. They demonstrated the power of this model
by showing that there does not exist a black-box construction of key agreement from one-way
functions. Their work opened a wealth of research opportunities to study the relationships
among the various primitives that are used in cryptography. This has led to many interesting
results demonstrating separations between primitives [117, 85, 52, 54, 49, 53, 68, 9, 10]. We
review the techniques used by these and other results in Chapter 3 and show two new sep-
arations in Chapters 4 and 5. As the majority of known constructions in cryptography are
in fact black-box, such results give strong evidence that drastically new techniques will be
needed for these constructions.

However, a recognized drawback of existing black-box impossibility results is that they
say nothing regarding whether these results might be circumvented using non-black-box tech-
niques. While it is true that most constructions in cryptography are black-box, we have ex-
amples of non-black-box constructions as well. One striking example is given by the ob-
servation that all known constructions of CCA-secure public-key encryption schemes based
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on trapdoor permutations [93, 37, 114, 88] are, in fact, not black-box. (Interestingly, a par-
tial black-box separation is known [53].) Other non-black-box constructions include those of
[38, 12, 11, 2, 44, 5]. For a more detailed summary see Section 6.2.

If black-box constructions are supposed to be representative of existing techniques, we
should update our definition of what “black-box” means. In the final result of this disserta-
tion, we propose a framework to do exactly this, allowing us to go beyond black-box sep-
arations. Specifically, we suggest a model that incorporates a rich class of non-black-box
techniques: those that rely on zero-knowledge proofs. We accomplish this by augmenting the
basic, black-box model — in which there is only an oracle O implementing some primitive
P — with a zero-knowledge (ZK) oracle that allows parties to prove statements relative to O in
zero knowledge. (Technically, a ZK oracle allows zero-knowledge proofs for any language in
NPO.) We call any construction using black-box access toO and its associated ZK oracle an aug-
mented black-box construction. Given primitives P and Q, we can then ask whether there
exists an augmented black-box construction of Q from P ; an impossibility result demonstrat-
ing that no such construction exists rules out a broader class of approaches to constructing
one from the other. Since the technique of using zero-knowledge proofs is by far the most
commonly used non-black-box construction technique, our framework captures a meaning-
fully larger class of constructions than [76]. Of course, as with all impossibility results, such
a result says nothing about whether some other non-black-box techniques might apply (and,
in fact, the non-black-box results of, e.g., [11, 2, 5] do not fall within our framework); never-
theless, impossibility results are still useful insofar as they show us where we must look and
what dead ends we must avoid if we hope to circumvent them.

1.1 Summary of Contributions

In this dissertation, we study the power of black-box and augmented black-box con-
structions in relating several cryptographic primitives. We begin with some preliminary defi-
nitions in Chapter 2. Then, in Chapter 3, we review the definitions of black-box constructions
and the techniques used to prove black-box separation results. We additionally give a brief
survey of the prior work in this area. Then in Chapters 4, 5 and 6 we present our results:

• In Chapter 4, we investigate the possibility of constructing secure predicate encryption
schemes [24, 81] from trapdoor permutations or CCA-secure encryption. In a predicate
encryption scheme every ciphertext is associated with an attribute I and every secret
key corresponds to a predicate f . A secret key SKf can decrypt a ciphertext associated
with attribute I if and only if f(I) = 1. We identify a combinatorial property on the
predicates and attributes of a predicate encryption scheme such that a black-box con-
struction of predicate encryption from trapdoor permutations is impossible. To demon-
strate the usefulness of this property we show that it is in fact satisfied by several im-
portant special cases of predicate encryption such as identity-based encryption [116, 21],
forward-secure encryption [30] and broadcast encryption [42]. A preliminary version of
this work has appeared previously [83].

• In Chapter 5, we investigate the round complexity of black-box constructions of zero-
knowledge proofs [63]. Specifically, we look at the feasibility of constructing constant-
round zero-knowledge proofs from one-way permutations. We identify the adaptiv-
ity of the simulator’s queries to the cheating verifier as a key property for studying
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such constructions. We then show that, under widely believed complexity assump-
tions, there is no black-box construction of constant-round zero-knowledge proofs with
constant (and even logarithmic) simulator adaptivity from one-way permutations. In
fact, even if we do not restrict the simulator adaptivity, we show that such a construc-
tion would lead to a major breakthrough in complexity theory and is thus likely to be
difficult to find. A preliminary version of this work has appeared previously [65].

• In Chapter 6, we introduce a new framework for separation results that allows us to
go beyond traditional black-box separations and prove separations for a richer class of
constructions. Specifically, we define augmented black-box constructions to capture the
class of non-black-box constructions using zero-knowledge proofs relative to a base
primitive. We validate this model by demonstrating that it indeed captures known
non-black-box constructions such as the construction of CCA-secure encryption from
trapdoor permutations [93, 114]. Then, we initiate the study of augmented black-box
separations by showing that there is no augmented black-box construction of secure
(perfect completeness) key agreement from one-way functions. A preliminary version
has appeared previously [26].
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Chapter 2

Preliminaries

2.1 Notation

Throughout this thesis, we let n ∈ N denote the security parameter. Efficient computation
is modeled by a probabilistic polynomial time (ppt) Turing machine M receiving 1n as an
input. A ppt Turing machine is one for which there exists a polynomial poly such that, for
all inputs x and all random tapes r, M(x; r) runs in time bounded by poly(|x|). Note that by
giving M the string 1n as an input, we guarantee that M can run in time at least poly(n). We
will also need the following two definitions. An expected polynomial time Turing machineM
is one for which there exists a polynomial poly such that, for all inputs x, the expected running
time of M(x; r)(over the choice of r) is bounded by poly(|x|). A non-uniform Turing machine
is a pair (M,a) where M is a two-input polynomial time Turing machine and a = a1, a2, . . . is
an infinite sequence of strings such that there exists a polynomial poly for which |an| ≤ poly(n)
for all n. On input x, we define the output of this machine to be M(x, a|x|) where a|x| is a non-
uniform advice string depending on the length of x. Since non-uniform Turing machines
are equivalent to (non-uniform) families of circuits, we will often refer to such machines as
circuits rather than Turing machines.

We write {0, 1}n to denote the set of binary strings of length n and {0, 1}∗ to indicate the
set of all finite, binary strings. For a set S, we write x ← S to indicate that the value of x
is sampled uniformly from S. We use 〈A(xa), B(xb)〉(x) = (ya, yb) to represent an interactive
protocol between two interactive Turing machinesA andB on common input x, whereA also
has private input xa and receives output ya and B has private input xb and private output yb.
When only one of the parties receives output we will abuse notation to write 〈A,B〉 = a to
indicate this single output.

Negligible Functions: We will often need to argue that an event occurs with very low prob-
ability. For this purpose, we use the following definition of a negligible function to indicate a
function that goes to 0 faster than any inverse polynomial.

Definition 2.1.1 (Negligible function) We call a function negl : N → R+ negligible if for every
polynomial poly, there exists an N such that for all n > N , negl(n) < 1

poly(n) .

We say that a function g : N→ R+ is overwhelming if 1− g(·) is negligible.
Additionally, we will need to argue that some events occur with noticeable probability.

For this purpose, we use the following definition of a noticeable function to indicate a function
that is lower bounded by an inverse polynomial (for large enough n). Note that it is possible
for a function to be neither negligible nor noticeable.
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Definition 2.1.2 (Noticeable function) We say that a function f : N → R+ is noticeable if there
exists a polynomial poly and an N such that for all n > N , f(n) > 1

poly(n) .

Oracle Algorithms: In this dissertation we will often talk about oracle algorithms or oracle
Turing machines. An oracle Turing machine is a Turing machine M that is allowed to make
oracle queries to a function f : {0, 1}∗ → {0, 1}∗. Whenever M makes a query x to f , it
receives the answer f(x) in a single computation step. We write Mf to indicate a machine M
with oracle access to f . We will also use this notation to represent black-box access to another
Turing machine. That is MA will be used to indicate a machine M that may make “oracle”
queries to a (possibly inefficient) machine A. Such a query will only take a single time step
and we assume that M does not see how the computation is actually performed.

In this thesis, we make extensive use of the following oracles. A random oracle, denoted
by O : {0, 1}∗ → {0, 1}∗, is an oracle evaluating a random length-preserving function. That

is, O def
= {On : {0, 1}n → {0, 1}n}n∈N where each On is chosen uniformly at random from

the set of all length-preserving functions on {0, 1}n. A PSPACE-complete oracle, denoted
by PSPACE, is an oracle deciding membership in some PSPACE-complete language such as
Quantified Boolean Formula.

2.2 Probabilistic Lemmas

We now provide several probabilistic lemmas that we will use in this dissertation. The
first such lemma is the Borel-Cantelli Lemma. This lemma says that for any infinite sequence
of events if the sum of their probabilities is finite then the probability that infinitely many of
them happen is 0. The following statement of the lemma is due to [75].

Lemma 2.2.1 (Borel-Cantelli Lemma) Let B1, B2, . . . be a sequence of events on the same proba-
bility space. Then

∑∞
n=1 Pr[Bn] <∞ implies that Pr[

∧∞
k=1

∨
n≥k Bn] = 0.

A second lemma that we will use is Markov’s inequality. This inequality bounds the proba-
bility that a random variable significantly deviates from its expected value.

Lemma 2.2.2 (Markov’s Inequality) Let X be a random variable assuming only non-negative val-
ues. Then for any t > 0, Pr[X ≥ t] ≤ E[X]

t , where E[X] denotes the expectation of X .

2.3 Cryptographic Primitives

In this section we define some basic cryptographic primitives that will be discussed
throughout this dissertation. We leave the definitions of more complicated primitives to the
corresponding chapters. Our definitions follow the presentation of [79].

2.3.1 Basic Primitives

We begin with the definitions of two very basic cryptographic primitives. The first of
these primitive is a one-way function which is the most basic of all cryptographic primitives
and is necessary for all constructions that we will discuss.

Definition 2.3.1 A function f : {0, 1}∗ → {0, 1}∗ is a one-way function (OWF) if the following
two conditions hold:
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• (Easy to Compute:) There exists a polynomial-time algorithm Mf such that Mf (x) = f(x) for
all x.

• (Hard to Invert:) For every ppt algorithm A, there exists a negligible function negl such that

Pr
x←{0,1}n

[A(f(x)) ∈ f−1(f(x))] ≤ negl(n).

If, for each n, f is a function from {0, 1}n to {0, 1}n then we say that n is a length-preserving
one-way function. If, for each n, f is a permutation on {0, 1}n then we call this a one-way
permutation (OWP).

The next primitive we define is a pseudorandom generator [18, 121]. A pseudorandom gen-
erator (PRG) is a deterministic algorithm that receives a short truly random seed and stretches
it into a long pseudorandom string, where a pseudorandom string is one that is computa-
tionally indistinguishable from a random string of the same length. To make this definition
formal we first define what it means for two probability ensembles to be computationally
indistinguishable.

Definition 2.3.2 Two probability ensembles X def
= {Xn}n∈N and Y def

= {Yn}n∈N are computation-
ally indistinguishable if, for every ppt distinguisher D there exists a negligible function negl such
that:

|Pr[D(1n, Xn) = 1]− Pr[D(1n, Yn) = 1]| ≤ negl(n)

where the notation D(1n, Xn) means that x is chosen according to distribution Xn and then D(1n, x)
is run.

Additionally, we say that X and Y are indistinguishable for non-uniform distinguishers, if the
above holds for any non-uniform polynomial time distinguisher D.

We let Un denote the uniform distribution over {0, 1}n. We can now define a pseudorandom
generator as follows.

Definition 2.3.3 Let l(·) be a polynomial and letG be a deterministic polynomial-time algorithm such
that for any s ∈ {0, 1}n, G outputs a string of length l(n). G is a pseudorandom generator (PRG)
if:

• (Expansion:) For every n ∈ N it holds that l(n) > n.

• (Pseudorandomness:) The ensemble {G(Un)}n∈N is computationally indistinguishable from the
ensemble U def

= {Ul(n)}n∈N.

The random input s given to G is called the seed. The function l(·) is called the expansion factor of
G.

2.3.2 Public-Key Primitives

We now shift to the public-key world and define a few commonly used primitives. First
we define secure key agreement, which is a protocol allowing two parties, Alice and Bob, to
agree on a secret key in the presence of an eavesdropper. This primitive will figure extensively
in our discussion of black-box separations and also in our results in Chapter 6.
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Definition 2.3.4 A key agreement protocol Π is a pair of algorithm (A,B) for Alice and Bob re-
spectively. On input 1n, A and B choose independent random coins, participate in an interactive
protocol and output kA, kB ∈ {0, 1}n respectively. Using previously defined notation, Π is the proto-
col 〈A(rA), B(rB)〉(1n) = (kA, kB). We require that Π have perfect completeness. That is, for all
random strings for Alice and Bob we have kA = kB .

We say that a key agreement protocol Π is secure in the presence of an eavesdropper if for
every ppt eavesdropper Eve there exists a negligible function negl such that

Pr[KAeavA,Π(n) = 1] ≤ 1

2
+ negl(n)

where KAeavA,Π(n) is the following experiment.

1. On input 1n, A and B execute protocol Π. This results in output (trans, k) where trans is a
transcript of all the messages exchanged and k is the output key.

2. A random bit b← {0, 1} is chosen. If b = 0 then choose k̂ ← {0, 1}n and if b = 1 set k̂ = k.

3. Eve is given (trans, k̂) and outputs a bit b′.

4. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise.

Next, we define two standard security notions for public-key encryption. Namely,
chosen-plaintext (CPA) and chosen-ciphertext (CCA) secure encryption. What we call CCA-
security is also commonly known as CCA-2 security.

Definition 2.3.5 A public-key encryption scheme is a tuple of ppt algorithms (G, E ,D) such that:

• G takes as input the security parameter 1n and outputs the public and secret keys (pk, sk).

• E takes as input a public key pk and a message m and outputs a ciphertext c. We write c =
Epk(m). If we wish to explicitly specify the randomness r used by E we will write Epk(m; r).

• D takes as input a ciphertext c and the secret key sk and outputs a message m = Dsk(c).

In this dissertation we require that the encryption scheme have perfect correctness. That is, for any
pair of keys (pk, sk) output by G,

Pr[Dsk(Epk(m)) = m] = 1.

First, we define what it means for a public-key encryption scheme to be secure under a
chosen-plaintext attack.

Definition 2.3.6 A public-key encryption scheme Π = (G, E ,D) is CPA-secure if for all ppt adver-
saries A, there exists a negligible function negl such that:

Pr[PubKcpa
A,Π(n) = 1] ≤ 1

2
+ negl(n)

where, PubKcpa
A,Π(n) is the output of the following experiment

1. G(1n) is run to obtain (pk, sk).

2. A is given pk and outputs a pair of messages (m0,m1) of the same length. Note that A can
evaluate Epk(·) since it knows pk.

7



3. A random b ← {0, 1} is chosen and then c = Epk(mb) is given to the adversary. c is called the
challenge ciphertext.

4. A outputs a bit b′.

5. The output of the experiment is 1 if b′ = b and 0 otherwise.

A stronger notion of security for public-key encryption is that of chosen ciphertext secu-
rity where the adversary is additionally given access to a decryption oracle. Formally,

Definition 2.3.7 A public-key encryption scheme Π = (G, E ,D) is CCA-secure if for all ppt adver-
saries A, there exists a negligible function negl such that:

Pr[PubKcca
A,Π(n) = 1] ≤ 1

2
+ negl(n)

where, PubKcca
A,Π(n) is the output of the following experiment

1. G(1n) is run to obtain (pk, sk).

2. A is given pk and access to a decryption oracle Dsk(·) and outputs a pair of messages (m0,m1)
of the same length.

3. A random b← {0, 1} is chosen and then c = Epk(mb) is given to the adversary.

4. A continues to interact with the decryption oracle, but may not request a decryption of c. Finally,
A outputs a bit b′.

5. The output of the experiment is 1 if b′ = b and 0 otherwise.

2.3.3 Zero-Knowledge Proofs

Here we give a definition of zero-knowledge proofs [63] for a language L that we will use
in this dissertation. A zero-knowledge proof is a two-party protocol in which one party, the
prover, can convince the other party, the verifier, that some statement x is in L without the
verifier learning anything other than that x ∈ L. To demonstrate that the verifier does not
learn too much a polynomial time simulator is given that (without having a witness w for
the statement x ∈ L) can output a view indistinguishable from the verifier’s view in his
interaction with an honest prover. Since the verifier can just run the simulator himself, this
guarantees that he did not learn anything additional from the proof. We focus on the restricted
case of black-box zero-knowledge where the simulator only accesses the cheating verifier as a
black-box while generating the simulated transcript. This definition of zero-knowledge was
introduced in the works of Goldreich et al. [62, 58] and we follow the presentation of [55].

Definition 2.3.8 Fix a language L ∈ NP and a corresponding NP relation RL. For n ∈ N, let
Ln

def
= L ∩ {0, 1}n and Rn

def
= {(x,w) | (x,w) ∈ RL and x ∈ Ln}. An efficient prover interactive

proof system for L is a pair of ppt interactive algorithms (P, V ), where only V has output, such that
the following two conditions hold:

• (Perfect Completeness:) For every (x,w) ∈ RL,

Pr[〈P (w), V 〉(x) = 1] = 1
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• (Negligible Soundness:) For every x /∈ L and any (possibly unbounded) adversarial prover P ∗

there exists a negligible function negl such that,

Pr[〈P ∗, V 〉(x) = 1] ≤ negl(|x|)

We say that (P, V ) is black-box zero-knowledge (BBZK) if additionally the following holds:

• (Black-Box Zero-Knowledge:) There exists an expected polynomial time simulator S such that
for any non-uniform polynomial time cheating verifier V ∗ the following two ensembles are in-
distinguishable by non-uniform polynomial time distinguishers.

– {〈P (w), V ∗〉(x)}(x,w)∈RL
(the output of V ∗ after interacting with the honest prover on

witness w for the fact that x ∈ L)

– {SV ∗(x)}(x,w)∈RL
(the simulated output of V ∗ produced by the simulator S using black-

box access to V ∗)

Some discussion is in order. First, without loss of generality, we assume that the cheat-
ing verifier V ∗ outputs its entire view, so simulating its output is equivalent to simulating
its view. By making both the verifier and distinguisher non-uniform, we also require zero-
knowledge to hold with respect to verifiers (and distinguishers) receiving auxiliary input.
This is necessary for zero-knowledge to be preserved under sequential composition (see [55]
for a discussion).

Our definition differs from the standard one in the following ways. First, we only define
zero-knowledge proofs for the case that L ∈ NP. This allows us to make the honest prover P
efficient when given an NP witness w. Second, we require that zero-knowledge proofs have
perfect completeness and negligible soundness error. Finally, we require that the simulation
be black-box. That is, we require a universal simulator S that is able to simulate the view of
any cheating verifier V ∗ while only making black-box queries to V ∗. Note that this notion of
black-box simulation is quite different from the notion of black-box constructions discussed
in this thesis. In black-box simulation, black-box refers to the access that the simulator has to
the cheating verifier, whereas in a black-box construction, black-box access refers to the way
the construction uses the underlying primitive.
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Chapter 3

Black-Box Constructions and
Separations

In this chapter, we introduce the concept of a black-box construction of a primitive Q from
a primitive P . In Section 3.1, we review the definitions of several different types of black-box
constructions and the relationships between them. Then, in Section 3.2, we define the concept
of a black-box separation of Q from P and give a survey of the techniques and results proving
such separations for various primitives.

3.1 Definitions of Black-Box Constructions

Intuitively, a construction of primitive Q from primitive P is black-box if it treats P as an
oracle, only looking at the input/output behavior of P and not at how P is implemented. To
make the above intuition into a formal definition we first need to define what a primitive is
and exactly what it means to construct one primitive from another. In this section, we provide
the necessary language for doing this. Following the definitions of Reingold et al. [108], we
define several types of black-box constructions and discuss the relationships between them.
We note that all the definitions in this section are presented for the case of uniform adversaries
and do not necessarily apply to non-uniform or information theoretic notions of security.

3.1.1 Cryptographic Primitives

A cryptographic primitive consists of two components: a correctness requirement speci-
fying what the primitive should do and a security requirement specifying what it means for
an attacker to break the primitive’s security. A secure implementation of the primitive should
then satisfy the correctness requirement and also be secure against any polynomial time at-
tacker. That is, no probabilistic polynomial time attacker should be able to break any of the
security requirements. More formally,

Definition 3.1.1 A primitive P is a pair (FP , RP ), where FP is a set of functions f : {0, 1}∗ →
{0, 1}∗ and RP is a relation over pairs (f,M) where f ∈ RP and M is a (possibly inefficient) Turing
machine.

• We say that a function f implements P if f ∈ FP . Additionally, we say that f efficiently
implements P if f ∈ FP and f is computable by a ppt machine.
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• A machine M P -breaks implementation f ∈ FP if the pair (f,M) ∈ RP . Thus, a secure
implementation of P is a function f ∈ FP such that no ppt machine P -breaks f .

• A primitive P exists if there exists an efficient and secure implementation f of P .

The set FP in the above definition is used to capture the correctness requirements. That
is, any function f ∈ FP will have the correct input and output space and will have the proper
behavior. For example, in the case when P is a length-preserving one-way function, any such
f must map inputs of length n to outputs of length n. However, this does not say anything
about the security of f . This is captured by the set RP , which, for each f ∈ FP , contains
all the machines that will break the security of f as an implementation of P . By carefully
defining which machinesM are in this set for a function f , we can capture the desired security
property. For example, for the case of one-way functions we would define (f,M) ∈ RP if
there is a polynomial p such that Prx←{0,1}n [M(f(x)) ∈ f−1(f(x))] > 1/p(n) for infinitely
many values of n.

We will often want to argue that some primitive P can be securely instantiated using an
oracle O. That is, there exists an efficient implementation of P using O such that no efficient
adversary with oracle access to O can break its security. More formally,

Definition 3.1.2 For an oracle O : {0, 1}∗ → {0, 1}∗, we say that:

• O implements primitive P if there exists an implementation f ∈ FP that is computable by a
ppt machine with oracle access to O.

• Implementation f is secure relative to O if there is no ppt oracle machine M such that MO

P -breaks f .

• A primitive P exists relative to O if O implements P via implementation f which is secure
relative to O.

3.1.2 Cryptographic Constructions

Now that we know what a cryptographic primitive is, we can define what it means to
construct primitive Q from primitive P . A cryptographic construction consists of two algo-
rithms, a construction G turning an instance of P into an instance of Q and a security reduction
S showing that if we can break the construction of Q then we can also break the underlying
instantiation of P . Here, we will only consider black-box constructions. That is, the con-
struction of Q will treat P as an oracle. Following [108], we define several variants of such
constructions that vary in how the adversary breaking Q is used by the security reduction.
We only give definitions relevant to this work. For additional definitions and discussion we
refer the reader to [108].

We begin with the definition of a fully black-box construction of Q from P . In a fully
black-box construction it is additionally required that the security reduction use the adversary
breaking the security of Q as a black-box. More formally,

Definition 3.1.3 There exists a fully black-box construction of primitive Q = (FQ, RQ) from prim-
itive P = (FP , RP ), if there exist ppt oracle machines G and S such that:

• For every implementation f ∈ FP , Gf ∈ FQ (Gf implements Q)
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• For every implementation f ∈ FP and every (possibly inefficient) machine M , if M Q-breaks
Gf then SM,f P -breaks f .

This construction consists of two components: the constructionG and the security reduction
S. As in all black-box constructions, we require that G use the primitive P as a black-box. In
fact we require that a universalGwork for all f . What makes this construction fully black-box
is that the security reduction uses the (possibly inefficient) adversary M breaking the security
of Q in a black-box way to break the security of P . In particular, S must work for any such
adversary, even an inefficient one. Interestingly, the vast majority of known constructions in
cryptography satisfy this very strong requirement.

Next, we define a less restricted type of construction called a semi black-box construction.
In such a construction the security reduction S no longer uses the Q-adversary as a black-box
and may be different for each M . However, since we now require that M be polynomial-time
it may no longer be able to evaluate the possibly inefficient implementation f . Thus, we give
M access to an oracle evaluating f . More formally,

Definition 3.1.4 There exists a semi black-box construction of primitiveQ = (FQ, RQ) from prim-
itive P = (FP , RP ) if there exists a ppt oracle machine G such that:

• For every implementation f ∈ FP , Gf ∈ FQ (Gf implements Q)

• For every implementation f ∈ FP , if there exists a ppt oracle machineM such thatMf Q-breaks
Gf , then there exists a ppt oracle machine S such that Sf P -breaks f .

The key difference between a semi black-box and a fully black-box construction is the fact
that the security reduction is defined based on the Q-adversary M . In particular, this means
that a different reduction, dependent on the code ofM , can be used for eachM . However, this
security reduction still has a black-box component because ofM ’s oracle access to the possibly
inefficient implementation f . The security reduction may not know the exact queries that M
makes to f and must work regardless of what the answers to these queries are. For a complete
discussion and for a definition of a black-box construction with a truly non-black-box security
reduction (a weakly black-box construction) we refer the reader to [108].

We can actually relax the definition a little more. This time, we leave the security re-
duction alone and instead focus on the construction G. In the previous two definitions, we
required a universal construction G that worked for every f . However, it is sufficient that, for
every implementation f , there exists a construction G. We still require that such a construc-
tion be black-box in that it only accesses f as a black-box. More formally,

Definition 3.1.5 There exists a ∀∃semi black-box construction of primitive Q = (FQ, RQ) from
primitive P = (FP , RP ) if, for every implementation f ∈ FP , there exists a ppt oracle machine G
such that:

• Gf ∈ FQ (Gf implements Q)

• If there exists a ppt oracle machine M such that Mf Q-breaks Gf , then there exists a ppt oracle
machine S such that Sf P -breaks f .

We also define a related notion from complexity theory of a relativizing construction [4].
These are constructions that remain secure relative to any oracle. It turns out that relativizing
constructions are very useful for reasoning about black-box constructions. Formally,
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Figure 3.1: Relationships Between Black-Box Constructions

Definition 3.1.6 There exists a relativizing construction of primitiveQ = (FQ, RQ) from primitive
P = (FP , RP ) if for any oracle O : {0, 1}∗ → {0, 1}∗, if P exists relative to O then so does Q.

We conclude with the following lemma due to [108] demonstrating some simple relation-
ships between the above definitions. These relationships are summarized in Figure 3.1. The
proof of this lemma follows easily from the definitions and is omitted.

Lemma 3.1.7 For any two primitives P and Q, we have the following:

1. If there exists a fully black-box construction of Q from P , then there exists a semi black-box
construction of Q from P and a relativizing construction of Q from P .

2. If there exists either a semi black-box or a relativizing construction ofQ from P , then there exists
a ∀∃semi black-box construction of Q from P .

3.2 Black-Box Separation Techniques and Results

As mentioned earlier, an important goal in cryptography is to construct “high level”
primitives from “low level” ones. This line of research has been very successful, and we have
many results showing constructions of cryptographic primitives from each other. However,
other constructions, such as the construction of public-key encryption from one-way func-
tions, have been more elusive. This phenomenon has caused people to ask whether such
constructions are inherently impossible. Unfortunately, as noted earlier, it is impossible to
rule out such a construction as long as we believe that public-key encryption exists. Thus,
a general impossibility result ruling out all constructions of public-key encryption from one-
way functions is not achievable.

Instead, Impagliazzo and Rudich [76] suggested looking at the restricted class of black-
box constructions discussed in the previous section. Since the vast majority of cryptographic
constructions are black-box, this rules out most known approaches. Under this restriction,
they were able to show the first known black-box separation between two primitives. They did
this by reasoning about relativizing constructions. Specifically, they showed the following
theorem.

Theorem 3.2.1 ([76]) There is no relativizing construction of secure key agreement from one-way
functions.

We note that Impagliazzo and Rudich [76] actually prove the stronger result that there
is no relativizing construction of key agreement with noticeable (rather than perfect) com-
pleteness from one-way permutations. Since fully black-box constructions imply relativizing
constructions this also implies a separation under fully black-box constructions. We introduce
some language to talk about such black-box separations.
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Definition 3.2.2 We say that there is a fully black-box separation of primitive Q from primitive P
if there does not exist a fully black-box construction of Q from P .

Analogously, we can define separations under all the types of black-box constructions dis-
cussed in Section 3.1. Thus, Theorem 3.2.1 shows that there is a relativizing separation and a
fully black-box separation of key agreement from one-way functions.

This result initiated a very active and successful field of study demonstrating black-box
separations between various cryptographic primitives showing that, at least for the case of
black-box constructions, the world of cryptographic primitives is quite complex. We now
review some of the most common techniques used to prove these separations and the var-
ious results that they have been used for. These reviews are meant to give a sketch of the
techniques and results and we refer the reader to the cited works for the complete details.

3.2.1 One-Oracle Techniques

A Separating Oracle:
This is the original technique suggested by Impagliazzo and Rudich [76] and to this day re-
mains the most commonly used technique for proving black-box separations. This technique
proceeds by proving that there is no relativizing construction of primitiveQ from primitive P .
This is done by demonstrating an oracleO such that P exists relative toO, but no construction
GO of primitive Q is secure. We call O a separating oracle. More formally, these separations
rely on the following fact.

Fact 3.2.3 To show that there is no relativizing construction from primitiveP to primitiveQ, it suffices
to show a separating oracle O such that:

• P exists relative to O.

• There exists a ppt oracle machine M , such that MO Q-breaks any ppt oracle construction GO.

Impagliazzo and Rudich [76] prove their separation as follows. First, they use the Borel-
Cantelli lemma to show that a random oracleO is one-way with probability 1 (over the choice
of O). This holds even against an unbounded adversary making at most polynomially many
queries to O. Next, they show an (inefficient) adversary Eve who breaks the security of any
construction, (AO, BO), of key agreement while making O(n6) queries to a random O, where
the probability that Eve succeeds is again over the choice of O. Roughly, this Eve works by
finding all queries made toO by bothA andB (see [76] for a discussion of why this is enough).
Since Eve only makes polynomially many queries to O, this is sufficient to rule out a fully-
black-box construction, as Eve cannot be used to invert a random O. In fact, this weaker
result is the stopping point of most follow up work. (We discuss this approach in more detail
in Section 3.2.5.) To achieve a relativizing separation, Impagliazzo and Rudich next show that
Eve is efficient if P = NP. Then they apply the Borel-Cantelli lemma again to argue that there
is a fixed oracle Ô relative to which Eve breaks any construction of key-agreement, but Ô
is one-way against any adversary asking polynomially many queries. Finally, using the fact
that P = NP relative to a PSPACE oracle [4], the joint oracle (Ô,PSPACE) gives the necessary
separating oracle.

Note, that this also suffices to prove the stronger statement that, if P = NP there is no
∀∃semi black-box construction of KA from OWF’s, since in this case Eve is efficient as re-
quired and the additional PSPACE oracle is not necessary. This requirement that P = NP was
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subsequently removed by Reingold et al. [108] using an “embedding technique” originally
due to Simon [117]. This technique embeds both Ô and the PSPACE oracle into a single oracle
while preserving the one-wayness of Ô. Relative to this oracle, one-way functions exist but
there is an efficient adversary that breaks the security of key agreement. Thus, combined they
prove,

Theorem 3.2.4 ([76] and [108]) There is no ∀∃semi black-box construction of secure key agreement
from one-way functions.

This result was recently improved by Barak and Mahmoody-Ghidary [10], who showed
a more efficient adversary demonstrating a fully black-box separation of key agreement from
one-way functions (and even one-way permutations). Namely, they show an attacker Eve that
breaks any construction of key agreement for a random oracle O while making only O(n2)
queries to the oracle. The improved attacker and analysis have since been used by several
works [34, 82] to separate fair coin tossing and blind signatures from one-way functions.

Many other works have used this technique to prove black-box separation results. We
review some of them here. We do not define all of the discussed primitives and refer the
reader to the cited works for the necessary definitions. In the setting of secret-key crytogra-
phy, Rudich [112], Kahn et al. [77] and Chang et al. [31] showed that one-way permutations
can not be constructed from a variety of primitives. Additionally, Simon [117] showed a sep-
aration of collision resistant hash-functions from one-way functions and Fischlin [43] showed
a separation of non-interactive statistically-hiding commitments from one-way permutations
and even one-to-one trapdoor functions.

In the setting of public-key cryptography, Rudich [113] showed a separation between
k-round and (k + 1)-round key agreement and his techniques were extended by Gertner et
al. [52] to show separations between key agreement, CPA-secure public-key encryption and
oblivious transfer. A number of works have also looked at the possibility of constructing
CCA-secure encryption. Specifically, Gertner et al. [53] showed a partial separation of CCA-
secure encryption from CPA-secure encryption. Addressing specific techniques for construct-
ing CCA-secure encryption, Vahlis [119] showed a separation of trapdoor functions secure
under correlated inputs from trapdoor permutations and Kiltz et al. [84] showed a separa-
tion of correlation secure trapdoor functions from adaptive trapdoor functions. Additionally,
Boneh et al. [22] showed a separation of identity-based encryption from trapdoor permuta-
tions.

All of the above results argue about the feasibility of a certain construction. A somewhat
different line of work, also using the same technique, has looked instead at bounding the
efficiency of black-box constructions. Specifically, Kim et al. [85] and Barak and Mahmoody-
Ghidari [9] use this technique to prove lower bounds on the efficiency of black-box construc-
tions of universal one-way hash functions and digital signature schemes from one-way func-
tions.

An Oracle For Each Construction:
A twist on this technique was proposed by Brakerski et al. [25]. Rather than showing a single
separating oracle, the authors give a different oracle for each potential construction. That is,
for each construction G they show an oracle O relative to which primitive P exists, but GO is
not a secure implementation ofQ. More formally, their result is summarized by the following,

Fact 3.2.5 To show that there is no semi black-box construction from primitive P to primitive Q, it
suffices to show that for any ppt construction G, there exists an oracle O such that:
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• P exists relative to O.

• There is a ppt oracle machine M such that MO breaks the Q-security of GO.

The authors use this technique to show that there is no construction of weak verifiable
random functions from one-way permutations. Note that unlike the separating oracle tech-
nique, this only rules out semi black-box rather than relativizing (and ∀∃semi black-box) con-
structions as it can only prove that for each construction there is some oracle for which it fails
rather than an oracle for which all constructions fail.

3.2.2 Two-Oracle Techniques

A Breaker Oracle:
A different technique for black-box separations was first formalized by Hsiao and Reyzin [75]
who used it to separate public-coin collision-resistant hash functions from private-coin ones.
To separate primitiveQ from primitive P , this technique makes use of two oracles: a “helper”
oracle A to guarantee P -security and a “breaker” oracle B to break the Q-security of any
construction using A. More formally, the separation is captured by the following fact,

Fact 3.2.6 To show that there is no fully black-box construction of primitive Q from primitive P , it
suffice to show two oracles A and B such that,

• There is an ppt oracle machine L such that LA implements P .

• For any ppt oracle machine G, if GA implements Q then there exists a ppt adversary M such
that MA,B breaks the Q-security of GA.

• There is no ppt oracle machine S such that SA,B breaks the P -security of LA.

This big difference between this technique and the one-oracle techniques is that the con-
struction G is not given access to the breaker oracle B. In fact, if G were given both A and
B then this would indeed become a one-oracle separation with oracle (A,B). However, not
giving B to G allows B to be defined dependent on the oracles used by the construction (in
this case just A) without having to worry about any “self-referencing”. Specifically, much care
must be taken to design an oracle B that can break constructions that may use B (as is done
in [117]) and this can be avoided by using this technique. A major drawback of this approach
is that it only rules out fully black-box constructions. This is due to the fact that the adversary
MA,B may not be efficient when only given access to A.

This approach has also seen a fair amount of use and we now review some of the re-
sults. The most well known of these are the works of Haitner et al. [68, 69] which, building
on the work of Wee [120], show lower bounds on the round complexity of statistically hid-
ing commitments and the communication complexity of private information retrieval proto-
cols based on trapdoor permutations. These works define a breaker oracle Sam which finds
collisions in interactive protocols. This oracle has since been used by a number of works
(e.g. [111, 65, 105, 71, 104]) and will be discussed in more detail in Chapter 5. Some other
results using this approach include Boldyreva et al. [19] who rule out constructions of non-
malleable hash-functions from one-way permutations and Matsuda et al. [90] who rule out
constructions of one-way permutations from injective length-increasing one-way functions.

This technique was also used by Hofheinz [74] and Haitner and Holenstein [70] to
demonstrate strongly-black-box separations of commitment schemes secure under selective
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opening (SO-COM) and key-dependent message (KDM) secure encryption schemes from any
cryptographic assumption. What makes these separations strongly-black-box is that they
only rule out constructions that, besides being black-box in the underlying primitive, are also
black-box in their use of some additional function given as part of the definition of the primi-
tive. Specifically, in the case of SO-COM [74], it is required that the construction be black-box
in the underlying message distribution, while in the case of KDM-secure encryption [70], it is
required that the construction treat the KDM query function as a black-box.

A Construction Dependent Breaker Oracle:
A somewhat different two-oracle technique was introduced by Gertner et al. [54] to separate
trapdoor functions from public-key encryption. Rather than define a universal “breaker”
oracle as in [75], they allow the breaker oracle to depend on the construction. Formally, their
separation is captured by the following.

Fact 3.2.7 To show that there is no fully black-box construction of primitive Q from primitive P , it
suffices to show that there exists an oracle A such that:

• There is an ppt oracle machine L such that LA implements P .

• For any ppt oracle machine G, if GA implements Q then there exists an oracle B such that:

– There exists a ppt adversary M such that MA,B breaks the Q-security of GA.

– There is no ppt oracle machine S such that SA,B breaks the P -security of LA.

Just as in the previous two-oracle technique, this approach only rules out fully black-box
constructions. The major advantage of this technique is that a different breaker oracle can be
used for every construction and thus can be tailor-made to break a specific construction rather
than giving a general attack against all constructions.

3.2.3 Simulation Based Techniques

Simulating the Helper Oracle:
We now discuss a significantly different technique for showing black-box separations origi-
nally proposed by Gennaro and Trevisan [50]. This technique was further refined by Gennaro
et al. [48] and our presentation follows the merged version of these two works [49]. The
main result of these works is to give lower bounds on the efficiency of black-box construc-
tions of various cryptographic primitives (e.g. pseudorandom generators, universal one-way
hash functions, encryption and signatures schemes) from one-way and trapdoor permuta-
tions. Specifically, they prove that if a black-box construction of one of these primitives makes
“few” queries to the one-way function then there exists an unconditional instantiation of the
primitive in question. Since the unconditional existence of any of these primitives would im-
ply that P 6= NP, this is viewed as strong evidence that such a construction will be very hard
to find. Note that, unlike the separations discussed previously, this does not prove that such
a construction does not exist, only that it will be hard to find. Our presentation here focuses
on the result lower-bounding the efficiency of weakly black-box constructions of pseudoran-
dom generators (PRGs) from one-way permutations. For the other results we refer the reader
to [49].

The first step, as before, is to prove that a random permutation is one-way. Here, a very
different technique called the reconstruction lemma is used to show that a random permutation
on n-bit strings is, with high probability, one-way even against non-uniform adversaries of
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size 2Ω(n). This reconstruction lemma has since been used in a number of works (e.g. [120, 68,
69]) and we will elaborate on it a little later.

Using this result, the intuition behind the proof for the case of PRGs is as follows. Let
S = 2n/5 (the constant here is arbitrary) and let GO be a secure construction of a PRG us-
ing oracle access to a one-way permutation O. We let O be a permutation that is a random
permutation on its first t = Θ(logS) bits and is the identity function on the remaining n − t
bits. From the above result about random permutations, it follows that O is one-way against
non-uniform adversaries of size S, and hence G must be secure against any such adversary
when instantiated with O. Let q be the number of queries that G makes to O. Notice that the
answer to every O query can be exactly described by t random bits as we only need to know
the output on the first t bits of the query (the remaining bits of the output are the same as the
corresponding bits in the query). Thus, it is possible to answer all ofG’s queries using at most
q · t random bits. Therefore, G can be converted into a PRG G′ that does not useO. Instead G′

uses the first q · t bits of its random seed to “simulate” the oracle O for G. If q is sufficiently
small and the expansion factor of G is sufficiently large, the output of G′ is still longer than
its seed making G′ an unconditional PRG secure against (non-uniform) adversaries of size S.
Since the existence of such a PRG implies that P 6= NP such a black-box construction is likely
to be hard to find. Note also that this proof technique does not use the security reduction at
all and thus only requires that the construction be black-box without any restriction on how
the security reduction accesses the adversary. Thus, this technique can rule out even weakly
black-box constructions.

Meta-Reductions: Simulating the Adversary
A somewhat similar approach for demonstrating fully black-box separations between two
primitives is the technique of using meta-reductions. The main idea of this approach is to build
“a reduction against the reduction”. That is, we show that if there exists a security reduction
from the security of a primitive Q to a primitive P then we can use this reduction to break
P -security. In a little more detail, we start by assuming that primitive P exists. Now assume
that a black-box security reduction S exists from the security of primitive Q to the security of
primitive P . That is, given any adversary A that Q-breaks an instantiation of Q, SA P -breaks
the underlying instantiation of P . Now, for any such S, we construct a meta-reduction S′ that
“simulates” the adversary A to the real reduction S. Specifically, S′ runs S while simulating
the answers to any queries S makes to A. As long as S can not distinguish this simulated
adversary from the real one S′ yields a ppt procedure for breaking the security of P without
any oracles. However, the existence of such a procedure contradicts the assumption that P
is secure. The black-box separation is then proven by showing a meta-reduction that works
for any security reduction S. Meta-reductions have two important properties that distinguish
them from the techniques described earlier. First, meta-reductions do not depend on the
construction of Q from P but only on the security reduction. Thus, they can rule out the
existence of any construction as long as the security reduction is black-box. Second, meta-
reductions allow the assumed primitive P to be arbitrary making it possible to prove that Q
can not be securely instantiated based on any cryptographic assumption.

This technique was originally proposed by Boneh and Venkatesan [23] in the context
of algebraic reductions from factoring to low-exponent RSA. Since then meta-reductions
have received a fair amount of use. Some examples of problems studied using this tech-
nique include the feasibility of instantiating efficient signature schemes in the standard
model [32, 36, 35, 96, 47], the possibility of CCA-secure encryption based on factoring [97],
relations between one-more style cryptographic assumptions [28, 29] and the feasibility of
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three-move blind signature schemes [45].

3.2.4 Security of the Base Primitive

All but one of the approaches mentioned above rely on building an oracle such that prim-
itive P exists relative to that oracle. We now review the techniques for finding such an oracle.

Using The Borel-Cantelli Lemma:
This technique was introduced by Impagliazzo and Rudich [76] for the case of uniform ad-
versaries. We describe it here for the case of proving that a random oracle O is one-way.

Recall that a random oracle O = {On}n∈N is a collection of oracles where each On is
chosen uniformly from the space of functions from {0, 1}n to {0, 1}n. The first step is to show
that for any fixed ppt oracle adversaryA there exists a polynomial poly such that for any n ∈ N
and any x ∈ {0, 1}n we have that

Pr
O

[
AO(O(x)) ∈ O−1(O(x))

]
≤ poly(n)

2n
. (3.1)

where the above probability is taken over the choice of O and poly(n) is a bound on the
running time of A. This is proven by a simple lazy-sampling argument where we view any
point of O that has not been queried by A as unfixed. Thus, the only way to invert O is to
query it on a point that returns y = O(x). However, on each query asked the probability that
it returns y is exactly 1/2n giving the above.

Next, for any n ∈ N, any fixed ppt adversary A running in time poly(n) and any fixed
oracle O, let En,A,O denote the event that O is such that

Pr
x←{0,1}n

[
AO(O(x)) ∈ O−1(O(x))

]
>
n2 · poly(n)

2n
.

By Equation 3.1, we have that the expected probability (over the choice of O) that A inverts
O(x) is at most poly(n)

2n . Thus, using Markov’s inequality, we get that for any fixed A running
in time poly(n)

Pr
O

[En,A,O] ≤ 1

n2
.

Then, since
∑∞

n=1
1
n2 <∞, the Borel-Cantelli lemma implies that the probability over the

choice of O that En,A,O occurs for infinitely many n is zero. Thus, for measure 1 of oracles O
we have that for any A there exists a negligible function negl such that

Pr
x←{0,1}n

[
AO(O(x)) ∈ O−1(O(x))

]
≤ n2 · poly(n)

2n
< negl(n) .

Thus, by removing a set of measure 0 oracles for each of the (countably many) machines
A, we get that for measure 1 of random oracles O it holds that for all ppt adversaries A,
the probability that A inverts O is negligible. To summarize, we have proven the following
theorem.

Theorem 3.2.8 With probability 1 over the choice of O, O is one-way against all ppt adversaries.

In fact, since the above proof relativizes and thus must also hold relative to a PSPACE
oracle, we get that this is true even for computationally unbounded adversaries as long as
they only make polynomially many oracle queries to O.
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The Reconstruction Lemma:
An alternative approach for proving that a base primitive P exists was given by Gennaro et
al. [49]. Specifically, they show that, with overwhelming probability, a random permutation
π : {0, 1}n → {0, 1}n is one-way against any non-uniform adversary of size S = 2n/5 for
sufficiently large n. A major benefit of this approach is that we can get a concrete bound on
the probability that a random permutation on n bits is one way. Additionally, this allows one
to prove that π is one-way even against non-uniform adversaries. This result is summarized
by the following theorem.

Theorem 3.2.9 For all sufficiently large n, a random π ← Πn is 2n/5-hard with probability at least
1− 2−2n/2 .

Here Πn is the set of all permutations over n bits and a permutation π is S-hard if for any
circuit A of size less than or equal to S, Pry←{0,1}n [Aπ(y) = π−1(y)] ≤ 1

S .
This theorem is proven using the reconstruction lemma. This is an argument that shows

that if there exists a small circuitA that can invert π with high probability, thenA can be used
to give a short description of the random permutation π. Since there are many permutations
on {0, 1}n this leads to a contradiction. More formally, the reconstruction lemma says,

Lemma 3.2.10 (Reconstruction Lemma) Let A be a circuit that makes q queries to a permutation
π : {0, 1}n → {0, 1}n, and for which Pry[Aπ(y) = π−1(y)] ≥ ε. Then π can be described using at
most

2 log
(
2n

a

)
+ log ((2n − a)!)

bits (given A), where a = ε2n

q+1 .

We now sketch the proof of Theorem 3.2.9. Here, we only provide a high-level outline of
the proof and refer the reader to [49] for the details. LetA be a circuit of size S = 2n/5. Clearly,
Amakes at most q = 2n/5 queries to π. It is easy to show that any such circuit has a (relatively)
short description. Thus, by Lemma 3.2.10, any permutation π that can be inverted by Amust
also have a short description. However, since there are very many permutations on n-bits,
only a tiny fraction of them can have such a short description. Thus, the probability over the
choice of π ← Πn that A succeeds in inverting π must be very small. Finally, taking a union
bound over all the possible circuits of size S, we get that the probability (over the choice of
π ← Πn) that there exists a circuitA of size at most S that inverts π is also very small, proving
the theorem.

3.2.5 On The Existence of a Separating Oracle

In many of the techniques described in the previous section we talk about a fixed separat-
ing oracle such that primitive P exists relative to this oracle. For the case of one-way functions
or permutations the existence of such a fixed oracle is, in fact, implied by either of the results
from Section 3.2.4. For example, consider the case of one-way permutations. Theorem 3.2.9
shows that for any polynomial poly there exists a negligible function negl such that

Pr
π←Πn

[
∃A s.t. Pr

y←{0,1}n
[Aπ(y) = π−1(y)] ≥ 1/poly(n)

]
< negl(n) (3.2)

where A is of size poly(n).
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This statement implies the existence of an oracle Π̂
def
= {π̂n}n∈N such that Π̂ is a one-way

permutation. Such an oracle can be constructed by taking, for each n, some permutation π̂n
that satisfies the above equation. The existence of such an oracle is clearly necessary if one
wants to prove a relativizing separation and it also gives a fixed oracle that can be used in fur-
ther constructions. However, if the goal is only to prove a fully black-box separation, it is not
necessary for such a fixed oracle to exist. A technique formalized by Barak and Mahmoody-
Ghidari [9] (although already used many times before this) shows that it is sufficient to prove
that a random permutation oracle is one-way rather than that any fixed permutation oracle is
one-way. That is, it is enough to prove that for any polynomial poly there exists a negligible
function negl such that for any A of size poly(n)

Pr
π←Πn,y←{0,1}n

[Aπ(y) = π−1(y)] ≤ negl(n) (3.3)

We now demonstrate why the above is sufficient to prove a fully black-box separation.
Consider the case of a fully black-box construction of a key-agreement protocol from one-
way permutation. To simplify presentation we assume that, on input 1n, the construction
only queries the one-way permutation on inputs of length n. Thus, to analyze the probability
that Eve succeeds on security parameter n, it is enough to consider the probability space over
the choice of permutation πn. We omit the subscript n for the rest of this discussion.

To prove a separation, we need to show an adversary E that breaks the security of any

constructionGπ = (Aπ, Bπ) for a random permutation oracle π. Let T def
= 〈Aπ(ra), B

π(rb)〉(1n)
be the transcript of an execution of Gπ where A has randomness ra and B has randomness rb
and let k be the output key. Then for any adversary E breaking the security ofGπ, there exists
a polynomial poly1 such that

Pr
π←Πn,ra←{0,1}n,rb←{0,1}n

[Eπ(T ) = k] > 1/poly1(n)

By an averaging argument, we get that

Pr
π←Πn

[
Pr

ra,rb←{0,1}n
[Eπ(T ) = k] >

1

2poly1(n)

]
>

1

2poly1(n)

Now, for a fixed adversary E, we say that an oracle π is “bad” with respect to E (denoted
by BADE) if Pr[Eπ(T ) = k] > 1

2poly1(n) . For any such oracle, the assumed fully black-box
construction guarantees the existence of a polynomial size security reduction S such that
SE,π inverts π. That is, there exists a polynomial poly2 such that,

Pr
y←{0,1}n

[SE,π(y) = π−1(y)] > 1/poly2(n)

Note that S makes polynomially many queries to E and each of these can be simulated
using at most polynomially many queries to π (since E is polynomial size). Thus, there is a
polynomial size adversary Ŝ that runs S simulating the answers to all of S’s queries toE such
that Ŝ inverts any π that is BADE . However, since Prπ←Πn [π is BADE ] ≥ 1

2poly1(n) , we get that

there is a polynomial poly such that Ŝ is of size at most poly(n) and

Pr
π←Πn,y←{0,1}n

[
Ŝ(y) = π−1(y)

]
>

1

2poly1(n) · poly2(n)
>

1

poly(n)
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This, however, contradicts equation 3.3 and thus no such construction exists.
However, we wish to point out that this approach leads to a strictly weaker result than

what is achieved by using Equation 3.2. Specifically, Equation 3.3 only shows that P is secure
for a random oracle but fails to guarantee that there exists any fixed oracle relative to which
primitive P is secure. To see this consider the following primitive. We say that an adversary
A 0n-inverts a permutation π if it outputs π−1(0n). Now, it is easy to prove, by a lazy-sampling
argument, that for any polynomial poly there exists a negligible function negl such that for any
non-uniform A of size at most poly(n)

Pr
π←Πn

[A 0n-inverts π] ≤ negl(n).

However, for any fixed random permutation oracle Π̂
def
= {π̂n}n∈N there exists a non-uniform

polynomial size adversary A (defined dependent on Π̂) that 0n-inverts π̂n with probability 1
for all n. Such anA is given by an adversary that receives as non-uniform advice the sequence
of strings a = π̂−1

1 (0), π̂−1
2 (00), . . . and on input 1n simply outputs an = π̂−1

n (0n). Thus, even
though 0n-uninvertability holds for a random permutation oracle π, it can not hold for any
fixed oracle π̂. Similar considerations arise in the case of collision-resistance and several other
primitives. For a more detailed discussion of such issues having to do with oracle-dependent
auxiliary-input see [118]. Due to this counter-example, this approach should not be used
whenever a fixed oracle implementing P is desired.
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Chapter 4

Black-Box Constructions of Predicate
Encryption

4.1 Introduction

In this chapter we present the first of our black-box separation results. Specifically, we
study the possibility of black-box constructions of predicate encryption from trapdoor per-
mutations.

In a predicate encryption scheme [24, 81] an authority generates a master public key and a
master secret key, and uses the master secret key to derive personal secret keys for individual
users. A personal secret key corresponds to a predicate in some class F , and ciphertexts
are associated (by the sender) with an attribute in some set A; a ciphertext associated with
the attribute I ∈ A can be decrypted by a secret key SKf corresponding to the predicate
f ∈ F if and only if f(I) = 1. The basic security guarantee provided by such schemes
is that a ciphertext associated with attribute I hides all information about the underlying
message unless one holds a personal secret key giving the explicit ability to decrypt; i.e.,
if an adversary A holds keys SKf1 , . . . , SKf` , then A learns nothing about the message if
f1(I) = · · · = f`(I) = 0. (A formal definition is given later.)

By choosing F and A appropriately, predicate encryption yields as special cases many
notions that are interesting in their own right. For example, by taking A = {0, 1}n and let-
ting F = {fID}ID∈{0,1}n be the class of point functions (so that fID(ID′) = 1 iff ID = ID′)
we recover the notion of identity-based encryption (IBE) [116, 21]. It can be similarly seen
that predicate encryption encompasses fuzzy IBE [115], forward-secure (public-key) encryp-
tion [30], (public-key) broadcast encryption [42], attribute-based encryption [66, 16, 94], and
more.

Most (though not all) existing constructions of predicate encryption schemes rely on bi-
linear maps. A natural question is: what are the minimal assumptions on which predicate encryp-
tion can be based? Of course, the answer will depend on the specific predicate class F and
attribute set A we are interested in; in particular, Boneh and Waters [24] show that if F is
polynomial size then (for any A) one can construct a predicate encryption scheme for (F ,A)
from any (standard) public-key encryption scheme. On the other hand, Boneh et al. [22] have
recently shown that there is no black-box construction of IBE from trapdoor permutations.
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4.1.1 Our Results

The specific question we consider is: for which (F ,A) can we give a (black-box) construction
of a predicate encryption scheme over (F ,A) based on CPA-secure encryption? We show a charac-
terization of (F ,A) under which no such construction exists. Before describing our results in
more detail, we provide some background intuition.

A natural combinatorial construction of a predicate encryption scheme for some (F ,A)
from a CPA-secure encryption scheme (Gen,Enc,Dec) is as follows: The authority includes
several public keys pk1, . . . , pkq from the underlying encryption scheme in the master pub-
lic key, and each personal secret key is some appropriate subset of the corresponding secret
keys sk1, . . . , skq. Encryption of a message m with respect to an attribute I requires “sharing”
m in some way to yieldm1, . . . ,mq, and the resulting ciphertext is Encpk1(m1), . . . ,Encpkq(mq).
Intuitively, this works if:

Correctness: Let SKf = {ski1 , . . . , skit} be a personal secret key with f(I) = 1. Then the set
of “shares” mi1 , . . . ,mit should enable recovery of m.

Security: Let {ski1 , . . . , skik} =
⋃
f∈F :f(I)=0 SKf . Then the set of “shares” mi1 , . . . ,mik

should leak no information about m.

Roughly, our result can be interpreted as showing that this is essentially the only way to con-
struct predicate encryption (in a black-box manner) from CPA-secure encryption (or even
trapdoor permutations). We now provide further details.

Impossibility results. Our negative results are in the same model used by Boneh et al. [22],
which builds on the model used in the seminal work of Impagliazzo and Rudich [76]. Specif-
ically, as in [22] our negative results hold relative to a random oracle (with trapdoor) and so
rule out black-box constructions from trapdoor permutations as well as from any (standard)
public-key encryption scheme secure against chosen-ciphertext attacks. All the separations in
this chapter are fully black-box under the definitions from Chapter 3.

A slightly informal statement of our result follows. Fix {(Fn,An)}n∈N, a sequence
of predicate classes and attribute sets indexed by the security parameter n. We say that

{(Fn,An)}n can be q-covered if for every set system {Sf}f∈Fn with Sf ⊆ [q(n)] ([q] def
=

{1, . . . , q}), there are polynomially-many predicates f∗, f1, . . . , fp ∈ Fn such that, with high
probability:

1. Sf∗ ⊆
⋃p
i=1 Sfi .

2. There exists an I ∈ An with f1(I) = · · · = fp(I) = 0 but f∗(I) = 1.

{(Fn,An)}n is easily covered if it is q-covered for every polynomial q. We show:

Main Theorem (informal). If {(Fn,An)}n is easily covered, there is no black-box construction
of a predicate encryption scheme over {(Fn,An)}n based on trapdoor permutations (or CCA-secure
encryption).

Intuitively, if {(Fn,An)}n is easily covered then the combinatorial approach discussed earlier
cannot work: letting q(n) be the (necessarily) polynomial number of keys for the underly-
ing (standard) encryption scheme, no matter how the secret keys {ski}qi=1 are apportioned
to the personal secret keys {SKf}f∈Fn , an adversary can carry out the following attack (cf.
Definition 4.2.2 , below):

1. Request the keys SKf1 , . . . , SKfp , where each SKfi = {sk1, . . . , } ⊆ {ski}qi=1.
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2. Request the challenge ciphertext C to be encrypted using an attribute I for which
f1(I) = · · · = fp(I) = 0 but f∗(I) = 1.

3. Compute the key SKf∗ ⊆
⋃
i SKfi and use this key to decrypt C.

This constitutes a valid attack since SKf∗ suffices to decrypt C yet the adversary only re-
quested the keys SKf1 , . . . , SKfp , none of which suffices on its own to decrypt C.

Turning this intuition into a formal proof must, in particular, implicitly show that the
combinatorial approach sketched earlier is essentially the only black-box approach to building
predicate encryption schemes from trapdoor permutations. Moreover, we actually prove a
stronger quantitative version of the above theorem showing, roughly, that if {(Fn,An)}n is
q-covered then any predicate encryption scheme over {(Fn,An)}n must use at least q + 1
underlying encryption keys.

One might wonder whether the “easily covered” condition is useful for determining
whether there exist black-box constructions of predicate encryption schemes over {(Fn,An)}n
of interest. We show that it is, in that the following corollary can be proven fairly easily given
the above:

Corollary There are no black-box constructions of (1) identity-based encryption1, (2) forward-secure
encryption (for a super-polynomial number of time periods), or (3) broadcast encryption (where a
super-polynomial number of users can be excluded) from trapdoor permutations.

The first result was already proved in [22]; the point is that our impossibility result serves as
a strict generalization of theirs. To the best of our knowledge, results (2) and (3) do not follow
from result (1), as we do not know a construction of IBE from forward-secure encryption or
broadcast encryption with small (but super-polynomial) number of revoked users. We also
show quantitative versions of the above corollary that bound, e.g., the number of encryption
keys needed to construct forward-secure encryption for any N = poly(n) time periods.

4.1.2 Comparison to the Results of Boneh et al.

Our proof relies heavily on the impossibility result from [22] for IBE, and indeed our
proofs share the same high-level structure. Our contribution lies in finding the right abstrac-
tion and generalization (specifically, the “easily covered” property described above) of the
specific property used by Boneh et al. in the particular case of IBE, adapting their proof to
our setting, and applying their ideas to the more general case of predicate encryption. Our
generalization, in turn, allows us to show impossibility for several cryptosystems of interest
besides IBE (cf. the corollary stated earlier).

4.2 Definitions

4.2.1 Predicate Encryption

We provide a functional definition of predicate encryption, followed by a weak definition
of security that we use in proving impossibility (thus making the result stronger) as well as
the standard definition of security [81].

1Of course, anything that implies IBE — e.g., attribute-based encryption — is also ruled out.
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Definition 4.2.1 Fix {(Fn,An)}n∈N, where each Fn is a set of (efficiently computable) predicates
over the set of attributes An. A predicate encryption scheme over {Fn,An}n∈N consists of four
PPT algorithms PE = (Setup,KeyGen,Enc,Dec) such that:

• Setup is a deterministic algorithm that takes as input a master secret key MSK ∈ {0, 1}n and
outputs a master public key MPK.

• KeyGen is a deterministic algorithm that takes as input the master secret key MSK and a pred-
icate f ∈ Fn and outputs a secret key SKf = KeyGenMSK(f). (The assumption that KeyGen
is deterministic is without loss of generality, since MSK may include a key for a pseudorandom
function.)

• Enc takes as input the public keyMPK, an attribute I ∈ An, and a bit b. It outputs a ciphertext
C ← EncMPK(I, b).

• Dec takes as input a secret key SKf and ciphertext C. It outputs either a bit b or the distin-
guished symbol ⊥.

It is required that for all n, all MSK ∈ {0, 1}n and MPK = Setup(MSK), all f ∈ Fn and SKf =
KeyGenMSK(f), all I ∈ An, and all b ∈ {0, 1}, that if f(I) = 1 then DecSKf

(EncMPK(I, b)) = b.

For our impossibility result, we rule out constructions achieving even a weak definition of
security:

Definition 4.2.2 A predicate encryption scheme over (F ,A) is weakly payload hiding if the advan-
tage of any PPT adversary A in the following game is negligible:

1. A(1n) outputs I∗ ∈ An and (f1, . . . , fp) ∈ Fn such that fi(I∗) = 0 for all i.

2. A random MSK ∈ {0, 1}n is chosen; let MPK := Setup(MSK) and SKfi :=
KeyGen(MSK, fi) for all i. A random b ∈ {0, 1} is chosen, and a random ciphertext
C∗ ← EncMPK(I∗, b) is computed. A is given (MPK,SKf1 , . . . , SKfp , C

∗).

3. A outputs b′ and succeeds if b′ = b.

The advantage of A is defined as
∣∣Pr[A succeeds]− 1

2

∣∣.
The standard security definition [81] follows:

Definition 4.2.3 A predicate encryption scheme over (F ,A) is payload hiding if the advantage of
any PPT adversary A in the following game is negligible:

1. A random MSK ∈ {0, 1}n is chosen, and A is given MPK := Setup(MSK).

2. A may adaptively request keys SKf1 , . . . corresponding to the predicates f1, . . . ∈ Fn.

3. At some point,A outputs I∗ ∈ An. A random b ∈ {0, 1} is chosen andA is given the ciphertext
C∗ ← EncMPK(I∗, b). A may continue to request keys for predicates of its choice.

4. A outputs b′ and succeeds if (1) A never requested a key for a predicate f with f(I∗) = 1, and
(2) b′ = b.

The advantage of A is defined as
∣∣Pr[A succeeds]− 1

2

∣∣.
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4.2.2 A Random Trapdoor Permutation Oracle

We demonstrate our separations by showing a distribution over oracles such that, with
overwhelming probability over the choice ofO from this distribution, trapdoor permutations
and CCA-secure encryption exist relative to O (even against non-uniform adversaries) yet
any construction of a predicate encryption scheme (for certain (F ,A)) using black-box access
to O can be broken with noticeable probability (over the choice of O) by a polynomial time
adversary given oracle access to O and a PSPACE oracle. We refer the reader to Section 3.2.5
for a discussion on why this suffices to prove the separation. The distribution over oracles
O = (g, e, d) is defined as follows, for each n ∈ N:

• g is chosen uniformly from the space of permutations on {0, 1}n. We view g as taking a
secret key sk as input, and returning a public key pk.

• e: {0, 1}n × {0, 1}n → {0, 1}n maps a public key pk and a “message” m ∈ {0, 1}n to an
output “ciphertext” c ∈ {0, 1}n. It is chosen uniformly subject to the constraint that, for
every pk, the function e(pk, ·) is a permutation on {0, 1}n.

• d: {0, 1}n × {0, 1}n → {0, 1}n maps a secret key sk and a ciphertext c to a message m.
We require that d(sk, c) outputs the unique m for which e(g(sk),m) = c.

One can show [49, 22] that with overwhelming probability over the choice of O from this
distribution, O is a trapdoor permutation even against an unbounded and non-uniform ad-
versary making at most polynomially many queries to O. Moreover, since the components
of O are chosen at random subject to the above constraints (and not with some “defect” as in,
e.g., [49]), oracle O also implies CCA-secure encryption [15].

We denote a query α to O as, e.g., α def
= [g(sk) = pk] and similarly for e and d queries. In

describing our attack in the next section, we often use a partial oracle O′ that is defined only
on some subset of the possible inputs. We always enforce that such oracles be consistent:

Definition 4.2.4 A partial oracle O′ = (g′, e′, d′) is consistent if:

1. For every pk ∈ {0, 1}n, the (partial) function e′(pk, ·) is one-to-one.

2. For every sk ∈ {0, 1}n, the (partial) function d′(sk, ·) is one-to-one.

3. For all x ∈ {0, 1}n, and all sk such that g′(sk) = pk is defined, the value e′(pk, x) = c is
defined if and only if d′(sk, c) = x is defined.

4.3 A General Impossibility Result for Predicate Encryption

Here we define a combinatorial property on (Fn,An) and formally state our impossibility
result. Then, in Section 4.4, we describe an adversary attacking any black-box construction
of a predicate encryption scheme satisfying the conditions of our theorem and analyze its
probability of success.

Fix a set F and a positive integer q, and let [q]
def
= {1, . . . , q}. An F-set system over [q] is a

collection of sets {Sf}f∈F where each f ∈ F is associated with a set Sf ⊆ [q].

Definition 4.3.1 Let {(Fn,An)}n∈N be a sequence of predicates and attributes. We say
{(Fn,An)}n∈N can be q-covered if there exist ppt algorithms (A1, A2, A3), where A2(1n, f) is deter-
ministic and outputs I ∈ An with f(I) = 1, such that for n sufficiently large:
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For any Fn-set system {Sf}f∈Fn over [q(n)], if we compute

f∗ ← A1(1n); I∗ = A2(1n, f∗); f1, . . . , fp ← A3(1n, f∗),

then with probability at least 4/5,

1. Sf∗ ⊆
⋃
Sfi ;

2. fi(I∗) = 0 for all i.

{(Fn,An)}n∈N is easily covered if it can be q-covered for every polynomial q.

Although the above definition may seem rather complex and hard to use, we show in Sec-
tion 4.5 that it can be applied quite easily to several interesting classes of predicate encryption
schemes. Moreover, the definition is natural given the attack we will describe in the following
section.

A black-box construction of a predicate encryption scheme PE =
(SetupO,KeyGenO,EncO,DecO) is q-bounded if each of its algorithms makes at most q
queries to O. We now state our main result, a proof of this theorem appears in Section 4.4:

Theorem 4.3.2 (Main Theorem) If {(Fn,An)} can be q-covered, there is no q-bounded (fully)
black-box construction of a weakly payload hiding predicate encryption scheme over {(Fn,An)} from
trapdoor permutations (or CCA-secure encryption).

Since each algorithm defining the predicate encryption scheme can make at most
polynomially-many queries to its oracle, we have

Corollary 4.3.3 If {(Fn,An)} is easily covered, there is no (fully) black-box construction of a weakly
payload hiding predicate encryption scheme over {(Fn,An)} from trapdoor permutations (or CCA-
secure encryption).

4.4 Proof of Main Theorem

We now prove Theorem 4.3.2 by demonstrating an adversary A that breaks the security
of any black-box construction of a predicate encryption scheme for an easily covered family of
predicates and attributes. We first describe the adversary A in Section 4.4.1 and then analyze
its success probability in the sections that follow.

4.4.1 The Attack

Fix an {(Fn,An)} that can be q-covered, and let PE = (Setup,KeyGen,Enc,Dec) be a pred-
icate encryption scheme over {(Fn,An)} each of whose algorithms makes at most q = poly(n)
queries toO = (g, e, d). We assume, without loss of generality, that before any algorithm of PE
makes a query of the form [d(sk, ?)], it first makes the query [g(sk)]. We additionally assume
that PE only queries O on inputs of length polynomially related to n.

We begin the proof of Theorem 4.3.2 by describing an adversary A attacking PE. Ad-
versary A is given access to O and makes a polynomial number of calls to this oracle; as
described,A is not efficient but it runs in polynomial time given access to a PSPACE oracle (or
if P = NP). We then prove that A succeeds with non-negligible probability over the choice of
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O, the randomness ofA and the security game. This suffices to prove black-box impossibility
as explained in Section 3.2.5.

Let A1, A2, and A3 be as guaranteed by Definition 4.3.1, and let p = poly(n) bound the
number of predicates output by A3. ThroughoutA’s execution, when it makes a query toO it
stores the query and the response in a list L. We also require that beforeAmakes any query of
the form [d(sk, ?)], it first makes the query [g(sk)]. Furthermore, once the query [g(sk) = pk]
has been made then [e(pk, x) = y] is added to L if and only if [d(sk, y) = x] is added to L.

Setup and challenge. A(1n) does the following

1. A computes f∗ ← A1(1n), I∗ = A2(1n, f∗) and (f1, . . . , fp)← A3(1n, f∗).

(a) If fi(I∗) = 0 for all i, then A outputs (I∗, f1, . . . , fp) and receives in return the
values (MPK,SKf1 , . . . , SKfp , C

∗) from the challenger (cf. Definition 2).

(b) Otherwise, A aborts and outputs a random bit b′ ← {0, 1}.

Step 1: Discovering important public keys. For i = 1 to p, adversary A does the following:

1. Compute Ifi = A2(1n, fi), and choose random b← {0, 1} and r ← {0, 1}n.

2. Compute DecOSKfi

(
EncOMPK(Ifi , b; r)

)
, storing all O-queries in the list L.

Step 2: Discovering frequent queries for I∗. A repeats the following q · p3 times: Choose
random b← {0, 1} and r ← {0, 1}n; compute EncOMPK(I∗, b; r), storing all O-queries in L.

Step 3: Discovering secret queries and decrypting the challenge. A chooses k ← [q · p3] and
runs the following k times.

1. A uniformly generates a secret key MSK ′ and a consistent partial oracle O′ for which
SetupO

′
(MSK ′) = MPK; for all i it holds that KeyGenO

′
MSK′(fi) = SKfi ; the oracle O′ is

consistent with L; and SK ′f∗
def
= KeyGenO

′
MSK′(f

∗) is defined.

We denote by L′ the set of queries in O′ that are not in L (the “invented queries”).
Note that |L′| ≤ q · (p + 2), at most q queries made by Setup and q queries for each of
SKf∗ , SKf1 , . . . , SKfp made by KeyGen(f).

2. A chooses b ← {0, 1} and r ← {0, 1}n, and computes C = EncOMPK(I∗, b; r) (storing all
O-queries in L). Then:

(a) In iteration k′ < k, adversaryA computes DecO
′′

SK′
f∗

(C) (whereO′′ is defined below).

(b) In iteration k, adversary A computes b′ = DecO
′′

SK′
f∗

(C∗) (where O′′ is defined be-
low).

Output: A Outputs the bit b′ computed in the kth iteration of step 3.

Before defining the oracle O′′ used above, we introduce some notation. Let L, O′, and
MSK ′ be as above, and note that we can view L and O′ as a tuple of (partial) functions
(g, e, d) and (g′, e′, d′) where g′, e′, and d′ extend g, e, and d, respectively. Define the following:

• Q′S is the set of pk for which [g′(sk) = pk] is queried during computation of
SetupO

′
(MSK ′).
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• Q′K is the set of pk for which [g′(sk) = pk] is queried during computation of
KeyGenO

′
MSK′(f) for some f ∈ {f∗, f1, . . . , fp}.

• Q′K−S = Q′K \ Q′S .

• Lg is the set of pk for which the query [g(sk) = pk] is in L.

Note thatA can compute each of these sets from its view. Note further thatQ′S ,Q′K ,Q′K−S ,O′
are fixed throughout an iteration of step 3, but Lg may change as queries are answered.

Oracle O′′ is defined as follows. For any query whose answer is defined by O′, return
that answer. Otherwise:

1. For an encryption query e(pk, x) with pk ∈ Q′K−S \ Lg, return a random y consistent
with the rest of O′′ (i.e., ensuring that e remains one-to-one). Act analogously for a
decryption query d(sk, y) with pk ∈ Q′K−S \ Lg (where pk = g(sk)).

2. For a decryption query d(sk, y), if there exists a pk such that [g(sk) = pk] ∈ O′ but2 there
exists an sk′ 6= sk with [g(sk′) = pk] ∈ L, then use O′′ to answer the query d(sk′, y).

3. In any other case, query the real oracle O and return the result. Store the query/answer
in L (note that this might affect Lg as well).

The following lemma completes the proof of Theorem 4.3.2:

Lemma 4.4.1 The probability, over the choice of O, the randomness of A and the security game, that
A succeeds is 29

50 −O
(

1
p2

)
, which is noticeably greater than 1/2 for n sufficiently large.

We now give a full proof of the above in Sections 4.4.2 - 4.4.6. Specifically, in Section 4.4.2
we describe a series of experiments that aid in our analysis and then analyze the properties
of these experiments in the remaining sections. The proof is largely similar to the one from
[22] (the full proof of this result is in Papakonstantinou’s thesis [98]), with the main difference
being Claim 4.4.5. This claim is where we make use of the “easily covered” property of the
predicates.

4.4.2 Defining Four Experiments

We now begin the proof of Lemma 4.4.1 by analyzing the success probability of the adver-
saryA. Toward this end, we describe a series of experiments, the first of which corresponds to
adversary A interacting in the experiment from Definition 4.2.2. We show that, as long as no
“bad” events (to be defined later) occur, the statistical distance between the transcripts gen-
erated in each of these experiments is not too large. This allows us to bound the adversary’s
success probability by comparing it to an appropriate event in the final experiment. We note
that, unless specified otherwise, all probabilities in the remainder of this section are over the
choice of random oracle O (from the distribution in Section 4.2.2) as well as the randomness
of A and the security game.

Expt0: This corresponds to adversary A interacting in the experiment from Definition 4.2.2.

Expt1: This is the same as Expt0 except that O′′ (as defined after the kth repetition of step 3) is
used instead of O to compute the challenge ciphertext C∗.

2While O′ is initially chosen to be consistent, a conflict can occur since L is updated as A makes additional
queries to the real oracle O.
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Expt2: This is the same as Expt1 except that O′′ never queries O (cf. step 3 in the definition of
O′′); instead, any such queries are answered randomly (subject to ensuring that O′′ remains
consistent).

Expt3: This is the following experiment with no adversary and using the real oracle O:

Setup and challenge.

1. Compute f∗ ← A1(1n), I∗ = A2(1n, f∗), and {f1, . . . , fp} ← A3(1n, f∗).

2. Choose at random MSK ← {0, 1}n and compute MPK = SetupO(MSK). If fi(I∗) = 1
for some i, abort and output a random bit.

3. For every predicate f ∈ {f∗, f1, . . . , fp} compute SKf = KeyGenOMSK(f).

Step 1: Discovering important public keys. For i = 1 to p do:

1. Compute Ifi ← A2(1n, fi), and choose random b← {0, 1} and r ← {0, 1}n.

2. Compute DecOSKfi
(EncOMPK(Ifi , b; r)).

Step 2: Decrypting the challenge.

1. Choose r ← {0, 1}n, b← {0, 1} and compute C∗ = EncOMPK(I∗, b; r).

2. Compute b′ = DecOSKf∗
(C∗) and output b′. Note that b′ = b always.

This completes the description of Expt3.

For i ∈ {0, 1, 2}we will be interested in the following transcripts defined in the course of
Expti. These transcripts contain, in particular, all oracle queries/answers made and received.

• transisetup: The transcript of the setup phase. This includes the computation ofMPK and
SKf1 , . . . , SKfp , as well as the computation of SKf∗ for the f∗ chosen by the adversary.
(Even though SKf∗ is not computed in the experiment, SKf∗ is well defined given f∗,
MSK and O.) Note that the adversary never sees this transcript.

• transipks: The transcript of step 1 (“discovering important public keys”).

• transifreq: The transcript of step 2 (“discovering frequent queries for I∗”).

• transisim-setup: This is the transcript defined by the adversary’s choice ofMSK ′ andO′ in
the kth repetition of step 3, and can be viewed as the adversary’s “guess” for transisetup.

• transi∗: The transcript of the encryption of C/decryption of C∗ in the kth repetition of
step 3.

• transi = (transisetup, trans
i
pks, trans

i
sim-setup, trans

i
∗).

For Expt3 we define

• trans3sim-setup: The transcript of the “setup and challenge” step.

• trans3pks: The transcript of step 1 (“discovering important public keys”).

• trans3∗: The transcript of step 2 (“decrypting the challenge”).
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• trans3 = (trans3pks, trans
3
sim-setup, trans

3
∗).

For a given transcript, we partition the set of public keys used (i.e., the set of pk’s for
which [g(·) = pk] ∈ trans) into the following sets:

• We let QS(trans) denote the public keys queried during execution of Setup:

QS(trans)
def
= {pk | the query [g(·) = pk] ∈ trans is asked by Setup}.

Intuitively, these are the pk’s whose corresponding sk’s are “useful” for decrypting ci-
phertexts.

• We let QK(trans) denote the public keys queried by the KeyGen algorithm when some
personal secret key is derived:

QK(trans)
def
= {pk | [g(·) = pk] ∈ trans is asked by KeyGenMSK(·)}

QK−S(trans)
def
= QK(trans) \ QS(trans).

• Finally, we will also look at the public keys “discovered” during encryption and decryp-
tion (cf. step 3 of the experiments):

QENC+DEC(trans, I, f)
def
= {pk | [g(·) = pk] asked by DecSKf

(EncMPK(I, ·; ·))}

4.4.3 Probabilistic Lemmas

Before analyzing the probability thatA succeeds, we prove three simple facts that will be
useful in our analysis. The first two of these are just simple probabilistic facts and the last one
shows an important property of a random permutation oracle g.

Lemma 4.4.2 Let X1, . . . , Xn+1 be independent 0, 1 random variables, where Pr[Xi = 1] = p. Let
E be the event that X1, . . . , Xn = 1, but Xn+1 = 0. Then Pr[E] ≤ 1

e·n

Proof By independence of the variables, we see that Pr[E] = pn(1 − p). This quantity is
maximized at p = n

n+1 , giving Pr[E] ≤ 1
e·n .

Lemma 4.4.3 For any probability space Ω and any function f with domain Ω let x, x′ be sampled
from Ω as follows. First x is sampled from Ω, then x′ is sampled from Ω conditioned on f(x′) = f(x).
Then for every y ∈ Ω, Pr[x = y] = Pr[x′ = y].

Proof For any y ∈ Ω, let Bally be the set of values y′ ∈ Ω such that f(y′) = f(y). Then,
Pr[x = y] = Pr[x ∈ Bally] · Pr[x = y | x ∈ Bally]. Also, Pr[x′ = y] = Pr[x′ ∈ Bally] · Pr[x′ = y |
x′ ∈ Bally]. However, since x′ is chosen conditioned on f(x′) = f(x), Pr[x′ ∈ Bally] = Pr[x ∈
Bally], so Pr[x = y] = Pr[x′ = y].

Lemma 4.4.4 For n ∈ N, let g : {0, 1}n → {0, 1}n be sampled uniformly from the space of permuta-
tions on {0, 1}n. Then, for any computationally unbounded machine B making poly(n) oracle queries
to g,

Pr[(x, y)← Bg(1n);x ∈ {0, 1}n ∧ y = g(x) ∧B did not query g(x)] ≤ negl(n)

where the probability is over the choice of g.
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Proof Let Y be the set of y values returned by B’s queries to g. If B has not queried g(x)
then this value is distributed uniformly in the set Z = {0, 1}n \ Y . Since |Y | ≤ poly(n), the
probability that g(x) = y is bounded by 1

2n−poly(n) ≤ negl(n).

4.4.4 Bounding Probabilities of Bad Events

To analyze the probability that A succeeds, we define four “bad” events that would pre-
vent A’s success, and then bound the probabilities of each of them.

EiNC is the event that either of the following is true (in Expti):

1. ∃fi ∈ {f1, . . . , fp} such that fi(I∗) = 1.

2. The following condition holds:

QENC+DEC(transi∗, I
∗, f∗)

⋂
QS(transisim-setup)

*

 ⋃
f∈{f1,...,fp}

QENC+DEC(transipks, If , f)

⋂QS(transisim-setup),

where If := A2(1n, f).

Intuitively, the second condition in the definition of ENC is the event that the set of public
keys that are “useful” for f1, . . . , fp does not contain the set of public keys that are “useful”
for f∗.

We bound the probability of event E3
NC using the assumed easily-covered property of

{(Fn,An)}; this represents the crux of our proof, and motivates our Definition 4.3.1.

Claim 4.4.5 For any O and any MSK ∈ {0, 1}n, Pr[E3
NC ] ≤ 1/5, where the probability is over the

randomness of A1 and A3.

Proof Fix O and MSK ∈ {0, 1}n, thus fixing trans3sim-setup. In addition, for each predicate

f ∈ Fn, fix a string rf that is sufficiently long to run DecSKf
(EncMPK(I, b; r)) (where I def

=
A2(f)), then this defines, for each f , the set

Sf
def
=
{
pk | [g(·) = pk] is asked by DecSKf

(EncMPK(I, b; r))
}
∩QS(trans3sim-setup).

Numbering the (at most q) public keys in QS(trans3sim-setup) in lexicographic order, we can
view these {Sf}f∈Fn as an Fn-set system over [q]. The fact that {(Fn,An)} can be q-covered
then implies that there exists a polynomial p such that

Pr

[
f∗ ← A1, I

∗ = A2(1n, f∗)
{f1, . . . , fp} ← A3(f∗)

:

(
Sf∗ ⊆

p⋃
i=1

Sfi

)∧(
∀i : fi(I

∗) = 0
)]
≥ 4

5
. (4.1)

The above is exactly a lower bound on the probability that E3
NC does not occur.

Let abort be the event that there is an abort in the “setup and challenge” step of any
of the experiments. (It is not hard to see that the probability of abort is the same in all the
experiments since it only depends on A1 and A3.) Note that Pr[abort] ≤ Pr[E3

NC ].
EiHQ is the event that a hidden query appears in transi∗. A query α is hidden if one of the

following holds:
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1. α ∈ trans0setup \ L.

2. α is of the form [e(pk, x)], and there exists sk, y such that [g(sk) = pk], [d(sk, y) = x] ∈
trans0setup \ L.

3. α is of the form [d(sk, x)], and there exists an x such that [g(sk) = pk], [e(pk, x) = y] ∈
trans0setup \ L.

Intuitively, EHQ is the event that a query used by Setup that is necessary to encrypt or decrypt
the challenge ciphertext is not found in the attack.

Claim 4.4.6 For any O, Pr[E0
HQ | ¬abort] ≤

3·(p+2)
p3

= O
(

1
p2(n)

)
, where the probability is over the

randomness of A and the security game.

Proof In step 3 of the attack, A chooses a random round k ≤ q · p3 in which to decrypt the
challenge ciphertext. In each of the k repetitions of step 3 the ciphertext is computed exactly
the same way as the challenge, using the real oracle O, a random bit b, and randomness r.
Note that |trans0setup| ≤ q · (p + 2), since Setup makes at most q queries, and at most q queries
are made for each of the p + 1 keys SKf∗ , SKf1 , . . . , SKfp . For each query in trans0setup, there
are at most 3 hidden queries; thus, there are at most 3q · (p+ 2) hidden queries. By definition
ofO′′, any hidden queries found in step 3 are queried to the real oracleO and stored in L; i.e.,
each hidden query is only found once. We conclude that there are at most 3q · (p+ 2) rounds
in which a hidden query is found. The probability that the kth round is such a round is at
most 3q·(p+2)

q·p3 = 3(p+2)
p3

.

EKG is the event that there exists a public key pk ∈ QK−S(trans0sim-setup) \ Lg such that
[e(pk, ·) = ·] ∈ trans0freq. Intuitively, EKG is the event that one of the executions of Enc uses
a public key that was generated by KeyGen for some predicate f but was not generated by
Setup.

Claim 4.4.7 Pr[E0
KG | ¬abort] is negligible in n, where the probability is over the choice of O, the

randomness of A and the security game.

Proof The proof shows that if Pr[E0
KG] is not negligible, then there is an adversary A′ that

makes polynomially-many queries to a random oracle g and outputs with non-negligible
probability a pair (sk, pk) where pk = g(sk) but g(sk) was never queried. By Lemma 4.4.4,
this can only happen with negligible probability.

We start by analyzing the probability of the following, related, event E′KG defined with
respect to transsetup instead of transsim-setup. Let Lfreq be the subset of the queries in Lg that is
found during step 2 of the attack (“discovering frequent queries”). Now, let E′KG be the event
that there exists pk ∈ QK−S(trans0setup) \ Lfreq such that [e(pk, ·) = ·] ∈ trans0freq. We bound
the probability of E′KG.

LetA′ be the following adversary. A′, given a random random oracle g : {0, 1}n → {0, 1}n
simulates the TDP oracle as follows. Whenever a query [g(sk)] is made he queries it to his
random oracle g. When a query [e(pk, ·)] or [d(sk, ·)] is made he just returns a random string
in {0, 1}n making sure that e(pk, ·) is a permutation for every pk. This simulated oracle is
distributed exactly like a random TDP oracle O.

Now, A′ simulates the setup and challenge as well as the discovering frequent queries
steps of A’s attack in Expt0 using this simulated oracle. In his simulation, A′ reverses the
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order of encryption and key generation, running all the encryptions for f∗ first and only then
generating the secret keys for f1, . . . , fp. At a random query α in the key generation process
A′ stops (without answering α). He selects at random a query β asked during the encryptions
for f∗.

Assume that E′KG occurred. Then, with probability at least
(

1
p·q

)(
1

q2·p3

)
≥ 1

poly(n) (for
some polynomial poly), α is a query [g(sk)] and β is a query [e(pk, ·)] such that g(sk) = pk,
as guaranteed to exist by E′KG. If this is the case, then A′ outputs the pair (sk, pk). Note
that g(sk) = pk for the random oracle g and A′ never queried g(sk). Therefore, Pr[E′KG] ≤
poly(n)

2n ≤ negl(n).
To bound Pr[EKG] we need to relate it to Pr[E′KG]. To do this, we consider the pairs of

transcripts t1 = (trans0setup, trans
0
freq) and t2 = (trans0sim-setup, trans

0
freq). The pair t2 is the ad-

versary’s guess at t1 after he sees some information about it. That is, he sees all of trans0freq, the
secret keys of f1, . . . , fp and the public parameters. Let r be the additional randomness that
determines A’s information about t1. More formally, A’s view is δ = F (t1, r) for some func-
tion F . A then chooses t2 and r′ conditioned on them resulting in the same view, F (t2, r

′) = δ.
Therefore, by Lemma 4.4.3, t2 = t1.

The above shows that the probability that there exists a pk such that [g(sk) = pk] ∈
QK−S(trans0setup) \ Lfreq is negligible in n. Since, Lfreq ⊆ Lg, the probability of there being
such a pk in QK−S(trans0setup) \ Lg is also bounded by the above, proving the claim.

Finally, EiFK is the event that there exists a public key pk such that [e(pk, ·) = ·] ∈ O′,
pk /∈ QS(transisim-setup) ∪ QK(transisim-setup), and there exists an sk such that [g(sk) = pk] ∈
transi∗. Intuitively, this means that after A invents the answers to some e(pk, ·) queries during
the attack, the transcript trans∗ ends up containing a query [g(sk) = pk]. This is a bad event
because this may result in invalid decryption using sk.

Claim 4.4.8 Pr[EiFK | ¬abort] is negligible in n for i ∈ {0, 1, 2}, where the probability is over the
choice of O, the randomness of A and the security game.

Proof The proof for i ∈ {0, 1} is similar to the proof of Claim 4.4.7. For i = 2, remember
that, in Expt2, whenever a query [g(sk)] is made to O′′ the answer is chosen uniformly from
{0, 1}n (O is never queried in step 3 of Expt2). There are at most 2q queries in trans2∗ and at
most q · (p+ 2) queries in L′ (the list of made up queries inO′). Therefore, the probability that
one of the 2q random pk returned in answer to a query in trans2∗ equals one of the pk in L′ is
negligible in n.

4.4.5 Analyzing the Experiments

Now we are ready to compare the transcripts of the experiments, always conditioned on
the event that abort did not occur.

Claim 4.4.9 SD(trans0, trans1) ≤ 3(p+2)
ep3

+ negl(n) = O
(

1
p2(n)

)
(even conditioned on ¬abort).

Proof Expt0 and Expt1 only differ in the way that C∗ is computed. In Expt0 it is computed
using the real oracle O, while in Expt1 it is computed using the hybrid oracle O′′. Thus it is
enough to prove the following claim.
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Claim 4.4.10 Choose MSK ← {0, 1}n and a random oracle O (from the distribution in Sec-
tion 4.2.2). Let MPK = SetupO(MSK) and let f∗ be the challenge predicate, I∗ = A2(f∗) be
the challenge attribute and O′′ be the oracle created by the adversary in the kth repetition of step 3.
Then

Pr[EncOMPK(I∗, b; r) 6= EncO
′′

MPK(I∗, b; r)] ≤ 3(p+ 2)

ep3
+ negl(n)

where the probability is over the choice ofMSK andO, the randomness ofA, and the choice of random
tape r ← {0, 1}n and b← {0, 1}.

Proof Consider a query α toO′′ that is asked by Enc. Let Eα be the event that α is not asked
during step 2 of the attack, but is asked by EncO

′′
MPK(I∗, b; r) (in the kth repetition of step 3).

For these q · p3 + 1 encryptions, let Xi be an indicator random variable such that Xi = 1 if
α is not asked in the ith encryption. Clearly, Eα is the event that Xi = 1 for i ≤ q · p3 and
Xq·p3+1 = 0. Using Lemma 4.4.2 we get that Pr[Eα] ≤ 1

eq·p3 .
Let O′ be the invented oracle in iteration k of step 3 and let L′ be the list of queries

in O′ \ L (the invented queries). Remember that |L′| ≤ q · (p + 2). The only way the two
encryptions in the statement of the claim can differ is if EncO

′′
MPK(I∗, b; r) asks a query α that

is dependent on the invented set of queries L′. We show that this happens with probability at
most 3(p+2)

e·p3 + negl(n). There are three ways the event in question can occur:

1. α ∈ L′. By definition of L′, α is not asked in step 2 of the attack, implying that Eα has
occurred. But Eα occurs with probability at most 1

eq·p3 for each query α ∈ L′. Since
there are at most q · (p + 2) queries in L′, the probability such an α is asked is at most
q·(p+2)
eq·p3 = p+2

e·p3 .

2. α is of the form [e(pk, ·)] such that [g(·) = pk] ∈ QK−S \ L. (Remember that O′′ answers
such queries randomly.) By Claim 4.4.7, such a query α is in Lfreq with at most negligi-
ble probability. However, if α /∈ Lfreq then Eα has occurred implying that such a query
is asked with probability at most p+2

e·p3 + negl(n).

3. α is of the form [d(sk, ·)] such that query β = [g(sk) = ·] ∈ L′. Note that this means
that the query β /∈ L. Also remember that whenever α is queried in the experiment, we
also query β to O′′. However, this would imply that event Eβ has occurred and thus
happens with probability at most p+2

e·p3 as above.

Summing these up completes the proof of Claim 4.4.10, and hence Claim 4.4.9 as well.

Next, we compare Expt2 and Expt3. We prove

Claim 4.4.11 (trans2pks, trans
2
sim-setup, trans

2
∗) = trans3.

Proof Since, in Expt2, O′′ never queries O, O′′ is just a random TDP oracle. Therefore, it is
easy to see that the marginal distributions (trans2setup, trans

2
pks) and (trans3sim-setup, trans

3
pks) are

identical. To see that the distribution (trans2sim-setup, trans
2
pks) is also identical to these, note

thatA gets some partial information δ = F (trans2setup, trans
2
pks, r) for some randomness r, and

then uniformly generates (trans2sim-setup, trans
2
pks) consistent with δ. This is the same argument

as in the proof of Claim 4.4.7.
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To see that trans2∗ = trans3∗, note that the oracleO′′ used in Expt2 is just a random extension
of the oracle O′ (in Expt2 all queries not in O′ are answered randomly). Since O′ contains all
the queries from (trans2sim-setup, trans

2
pks) these are all consistent with O′′. In Expt3, all the

queries are answered consistently with the random oracle O which contains all the queries in
(trans2sim-setup, trans

2
pks). Since O and O′′ are identically distributed random oracles, trans2∗ =

trans3∗, implying the claim.

To complete the comparisons of the experiments we need to compare the transcripts of
Expt1 and Expt2.

Claim 4.4.12 SD(trans1, trans2) ≤ 2
5 +O

(
1

p2(n)

)
(even conditioned on ¬abort).

Proof Expt1 and Expt2 only differ in the way O′′ works. It therefore follows immediately
that (trans1sim-setup, trans

1
pks) = (trans2sim-setup, trans

2
pks), and we only need to compare trans1∗

and trans2∗.
The transcripts trans1∗ and trans2∗ consist of the (at most 2q) queries asked during

EncMPK(I∗, b; r) and DecSKf∗ (C
∗). Let αji be the distribution on the ith query asked in transj∗

for 1 ≤ i ≤ 2q (we will use αji to indicate a value sampled from this distribution). Let βji
be the distribution of answers to αji . When there are less than i queries in transj∗ then we set
(αji , β

j
i ) = (⊥,⊥).

In order to compare Expt1 and Expt2 we introduce the following two intermediate exper-
iments. LetEk = EkFK ∨EkHQ∨EkNC for k ∈ {1, 2}. Expt1′ proceeds exactly like Expt1 up to the

first query αi for which E1 occurs. When E1 occurs Expt1′ stops and sets (α1′
j , β

1′

j ) = (⊥,⊥)

for all j ≥ i. Similarly, we define Expt2′ to run as Expt2 until E2 occurs. All random variables
defined in Expti are also defined in Expti′ and we use a prime superscript to differentiate the
variables.

The proof of the following is identical to the one given by [22], but we include it here for
completeness:

Claim 4.4.13 SD(trans1
′
, trans2

′
) = negl(n) (even conditioned on ¬abort).

Proof To compare trans1
′

and trans2
′

we only need to compare the distributions
(α1′

i , β
1′
i )i∈[2q] and (α2′

i , β
2′
i )i∈[2q]. Let 1 ≤ i ≤ 2q, and suppose that α1′

j = α2′
j and β1′

j = β2′
j

for all j < i. Note, that this implies that α1′
i = α2′

i since a query is determined by all the pre-
vious queries and answers. We show that the distributions on the answers given in the two
experiments, β1′

i and β2′
i , are statistically close. We define O′′i = O′ ∪ {αj → βj | 1 ≤ j < i}.

We prove the claim by bounding the statistical distance of β1′
i and β2′

i for every possible
query α1′

i . Note that O′′i and O′ are always equal in Expt1′ and Expt2′ since we assumed that
α1′
j = α2′

j and β1′
j = β2′

j for all j < i. We split up the possible queries into two sub-categories
as follows.

1. The answers β2′
i and β1′

i are determined by O′′i

(a) If α1′
i =⊥ then β1′

i = β
2′

i =⊥ so β1′
i = β2′

i .

(b) If there exists an answer β such that [α1′
i = β] ∈ O′′i then β1′

i = β
2′

i = β so β1′
i = β2′

i .
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(c) If α1′
i is a query [g(sk) = pk] ∈ O′′i \ O′. Since, α1′

i 6=⊥ we know that3 ¬E1′
FK ,

implying that there is no query of the form [e(pk, ·) = ·] ∈ O′. Also, since [g(sk) =
pk] /∈ O′ there is no query [d(sk, ·) = ·] ∈ O′. Note that since α1′

i ∈ O′′i there is

already an answer, β = β
1′

j , defined for this query inO′′ for some j < i. Remember

that we assumed β1′
j = β2′

j . By definition of Expt1′ and O′′, β1′

j must have come
from the real oracle O and α1′

i will thus be answered consistently. In Expt2′ , this
query α2′

i answered according to a randomO′′ consistent with all previous queries,
implying that β1′

i = β2′
i .

(d) Consider all pk ∈ QS(trans1
′
sim-setup)\Lg. Since α1′

i 6=⊥we know that ¬E1′
NC . There-

fore, no query α1′
i of the form [d(sk, y)] such that [g(sk) = pk] ∈ O′ is asked in

trans1
′
∗ .

(e) Consider all pk ∈ QK−S(trans1
′
sim-setup) \ Lg. In both Expt1′ and Expt2′ such queries

are answered randomly without ever using O. Therefore, the distributions β1′
i =

β2′
i .

(f) Consider all pk ∈ (QS(trans1
′
sim-setup) ∪ QK(trans1

′
sim-setup)) ∩ Lg. Now consider the

case that α1′
i is of the form [d(sk, y)] such that [g(sk) = pk] ∈ O′ and there exists a

query α′ = [e(pk, x) = y] ∈ O′′i . Note that the answer to α′, may be from the real
oracle O, or made up by the adversary in O′. In either case, since pk ∈ Lg, there
exists an sk′ such that [g(sk′) = pk] ∈ L. This means that before α1′

i is asked to O′′
it is first modified to [d(sk′, y)].
Now, we analyze the possible answers to α1′

i . If α′ was answered by O, then we

get that β1′

i = d(sk′, y) = x by the correctness of O. Also, β2′

i = x, because this
is the answer contained in O′′. If, on the other hand, the answer to α′ is made up
by A in O′, we know that the query [d(sk, y) = x] is also in O′. This is because
[g(sk′) = pk] ∈ L ⊆ O′ implying that [e(pk, x) = y] ∈ O′ ⇐⇒ [d(sk′, y) = x] ∈ O′.
Since β1′

i and β2′

i are both answered consistently withO′, we get that β1′

i = β
2′

i = x.
A symmetric argument works for the case when α1′

i is of the form [e(pk, x)] except
that the query is never modified.

2. The answers β2′
i and β1′

i are not determined in O′′i

(a) If α1′
i is of the form [g(sk)]. Since α1′

i 6=⊥, we know that ¬E1′
HQ implying that there

are no hidden queries in trans1
′
∗ so [g(sk) = ·] /∈ trans1

′
setup. This means that this

is the first time that [g(sk)] is queried to O. Therefore, the answer is distributed
uniformly in {0, 1}n in both Expt1′ , where it is queried to the random oracleO, and
in Expt2′ , where it is generated at random. So, the distributions β1′

i = β2′
i .

(b) If α1′
i is of the form [e(pk, x)]. Since α1′

i 6=⊥, we know that ¬E1′
HQ implying that

there are no hidden queries in trans1
′
∗ . Therefore, α1′

i /∈ trans1
′
setup and there do not

exist a secret key sk and a value y such that [g(sk) = pk], [d(sk, y) = x] ∈ trans1
′
setup.

Therefore, α1′
i is queried to the real oracle O, returning a uniformly random value

β
1′

i that has not been previously assigned to e(pk, ·) by O. Thus β1′
i is the uniform

distribution over the setBpk = {y ∈ {0, 1}n not assigned byO as the answer to any
query [e(pk, x′)]}.

3In this proof, when we say ¬E, we mean that event E has not occurred through query i
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Since we also know that ¬E2′
HQ (α2′

i = α1′
i 6=⊥), we know that the value β2′

i is
distributed uniformly in such a way as to keep e(pk, ·) a permutation relative to
O′′i . Thus, β2′

i is the uniform distribution over the set Apk = {y | @x′ s.t. [e(pk, x′) =
y] ∈ O′′i }.
Note that the setsApk andBpk consist of all possible strings in {0, 1}n except for the
ones that were queried to eitherO orO′′ during the attack. Therefore, |Apk∩Bpk| ≥
2n − poly(n). This gives us that |Apk4Bpk| ≤ poly(n) implying that SD(β1′

i , β
2′
i ) ≤

2poly(n)
2n .

(c) If α1′
i is of the form [d(sk, y)] then a symmetric argument shows SD(β1′

i , β
2′
i ) ≤

poly(n)
2n

We now know that for any i ∈ [2q] s.t α2′
j = α1′

j and β2′
j = β1′

j for all j < i, SD(β1′
i , β

2′
i ) ≤

2poly(n)
2n . Taking a union bound over all possible values of i we get that, SD(trans1

′
∗ , trans

2′
∗ ) ≤

2q·2poly(n)
2n implying the claim.

To finish the proof of Claim 4.4.12 we prove the following lemma bounding the statistical
distance between trans1 and trans1

′
as well as trans2 and trans2

′
.

Claim 4.4.14 SD(trans2, trans2
′
) ≤ 1

5 + O
(

1
p2(n)

)
and SD(trans1, trans1

′
) ≤ 1

5 + O
(

1
p2(n)

)
. (In

each case, this holds even conditioned on ¬abort.)
Proof We implicitly condition on ¬abort in everything that follows. Experiments Expt2
and Expt2′ proceed identically unless event E2 = E2

FK ∨ E2
HQ ∨ E2

NC occurs in Expt2, or
E2′ occurs in Expt2′ . Therefore, Pr[E2] = Pr[E2′ ]. In addition, we have that Pr[E2′

FK ] ≤
Pr[E2

FK ], Pr[E2′
HQ] ≤ Pr[E2

HQ] and Pr[E2′
NC ] ≤ Pr[E2

NC ]. To see this, note that E2′
FK ⇒ E2

FK

(this also holds for EHQ and ENC) since E2′
FK only when E2

FK occurs. Note, however, that the
reverse implication, E2

FK ⇒ E2′
FK , is not necessarily true as E2

FK may occur after another bad
event has already occurred, while E2′

FK can not occur in this case since Expt2′ aborts. Similar
arguments hold for Expt1 and Expt1′ . Now:

1. From Claim 4.4.8, we know Pr[E2′
FK ] ≤ Pr[E2

FK ] = negl(n) and Pr[E1′
FK ] ≤ Pr[E1

FK ] =
negl(n).

2. From Claim 4.4.6, we know Pr[E0
HQ] = O

(
1

p2(n)

)
.

3. Applying Claim 4.4.9, we know Pr[E1′
HQ] ≤ Pr[E1

HQ] ≤ Pr[E0
HQ] + O

(
1

p2(n)

)
=

O
(

1
p2(n)

)
.

4. Applying Claim 4.4.13, we get that Pr[E2′
HQ] ≤ Pr[E1′

HQ] + negl(n) = O
(

1
p2(n)

)
.

5. From Claim 4.4.5, we know that Pr[E2′
NC ] ≤ Pr[E2

NC ] = Pr[E3
NC ] ≤ 1/5.

6. Applying Claim 4.4.13, we get that Pr[E1′
NC ] ≤ Pr[E2′

NC ] + negl(n) ≤ 1/5 + negl(n).

Therefore,

SD(trans2, trans2
′
) = Pr[E2′ ] = Pr[E2′

FK ] + Pr[E2′
HQ] + Pr[E2′

NC ] ≤ 1

5
+O

(
1

p2(n)

)
SD(trans1, trans1

′
) = Pr[E1′ ] = Pr[E1′

FK ] + Pr[E1′
HQ] + Pr[E1′

NC ] ≤ 1

5
+O

(
1

p2(n)

)
,
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as desired.

Combining Claims 4.4.13 and 4.4.14, we get Claim 4.4.12.

4.4.6 Completing the Proof

Let abort be the event that there is an abort in the “setup and challenge” step of the
experiment, and let correcti be the event that b′ = b in Expti. Claims 4.4.9, 4.4.12, and 4.4.11
together imply that SD(trans0, trans3) ≤ 2/5 + O

(
1

p2(n)

)
even conditioned on ¬abort, and

Claim 4.4.5 shows that Pr[abort] ≤ 1/5. It follows that

Pr[A succeeds] =
1

2
· Pr[abort] + Pr[correcti | ¬abort] · Pr[¬abort]

≥ 1

2
· 1

5
+

(
1− 2

5
−O

(
1

p2(n)

))
· 4

5

=
29

50
−O

(
1

p2(n)

)
,

which is noticeably larger than 1/2 for n sufficiently large.

4.5 Impossibility for Specific Cases

We now show how we can use Theorem 4.3.2 to rule out black-box constructions of pred-
icate encryption schemes in several specific cases of interest. We begin with the following
lemma.

Lemma 4.5.1 Fix q = q(n), and assume {(Fn,An)}n∈N has the following property: For sufficiently
large n, there exist f1, . . . , f5q ∈ Fn and I1, . . . , I5q ∈ An such that:

For all i ∈ {1, . . . , 5q} it holds that fi(Ii) = 1 but fj(Ii) = 0 for j > i.

Then (Fn,An)n∈N can be q-covered.
If the above holds for every polynomial q, then {(Fn,An)}n∈N is easily covered.

Proof We show that, under the stated assumption, {(Fn,An)}n∈N satisfies Definition 4.3.1.
Fix q and n large enough so that the condition of the lemma holds, and let f1, . . . , f5q and
I1, . . . , I5q be as stated. Define algorithms A1, A2, A3 as follows:

1. A1(1n) chooses i← {0, . . . , 5q} and outputs f∗ = fi.

2. A2(1n, f∗) finds i for which f∗ = fi and outputs I∗ = Ii.

3. A3(1n, f∗) finds i for which f∗ = fi and outputs fi+1, . . . , f5q. (If i = 5q then output
nothing.)

Note that A2(1n, f∗) always outputs I∗ with f∗(I∗) = 1. We show that for any Fn-set system
{Sf}f∈Fn over [q], the conditions of Definition 4.3.1 hold. We begin with the following claim:

Claim 4.5.2 For any Fn-set system {Sf}f∈Fn over [q], there are at most q values i ∈ {1, . . . , 5q} for
which Sfi *

⋃
i<j≤5q Sfj . (By convention, the union is the empty set if j = 5q.)
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Proof Define Si
def
=
⋃
i<j≤5q Sfj , with S5q = ∅. Note that Si−1 = Si ∪ Sfi , and so Sfi *⋃

i<j≤5q Sfj = Si iff Si ( Si−1. Since

S5q ⊆ S5q−1 ⊆ · · · ⊆ S1 ⊆ [q],

there can be at most q indices i where this occurs.

Fixing an arbitrary Fn-set system {Sf}f∈Fn over [q], let I ⊂ {1, . . . , 5q} be the set of
indices for which Sfi ⊆

⋃
i<j≤q Sfj ; the claim above shows that |I| ≥ 4q. If A1 chooses i ∈ I

then:

1. Sf∗ = Sfi ⊆
⋃
i<j≤q Sfj .

2. fj(I∗) = fj(Ii) = 0 for all the predicates fi+1, . . . , fq output by A3.

Since A1 chooses i ∈ I with probability 4/5, this proves the lemma.

We now apply this lemma to several specific cases.

Identity-based encryption. It is easy to see that IBE for identities {In} can be viewed as an
instance of predicate encryption by setting An = In and Fn = {fID}ID∈In where

fID(ID′)
def
=

{
1 if ID′ = ID
0 otherwise

.

Let N = |In| denote the size of the identity space. Boneh et al. [22] already rule out black-box
constructions of IBE from trapdoor permutations forN = ω(poly(n)); the next theorem shows
that our Theorem 4.3.2 generalizes their result:

Theorem 4.5.3 There is no black-box construction (from trapdoor permutations or CCA-secure en-
cryption) of an IBE scheme for 5N identities where each algorithm makes fewer than N queries to its
oracle.

As a corollary, there is no black-box construction of an IBE scheme (from trapdoor permutations
or CCA-secure encryption) for a super-polynomial number of identities.

Proof Let In = {ID1, . . . , ID5N}. It is not hard to see that {(Fn,An)}n∈N can be N -covered:
take fID1 , . . . , fID5N

and set Ii = IDi for all i. Then apply Theorem 4.3.2.

Forward-secure encryption. In a forward-secure public-key encryption scheme [30] secret
keys are associated with time periods; the secret key at time period i enables decryption for
ciphertexts encrypted at any time j ≥ i. (We refer the reader to [30] for further discussion.)
A forward-secure encryption scheme supporting N = N(n) time periods can be cast as a
predicate encryption scheme by letting An = {1, . . . , N} and Fn = {fi}1≤i≤N where

fi(j)
def
=

{
1 if j ≥ i
0 otherwise

.

(A forward-secure encryption scheme imposes the additional requirement that SKfi+1
can be

derived from SKfi ; since we do not impose this requirement our impossibility result is even
stronger.) A black-box construction of a forward-secure encryption scheme from any CPA-
secure encryption scheme exists for any N = poly(n): the master public key contains public
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keys {pk1, . . . , pkN}, and the secret key at period i is SKfi = {ski, . . . , skN}; encryption at
period j uses pkj . While such a scheme is trivial as far as forward-secure encryption goes
(since the public/secret key lengths are linear in N ), it satisfies the definition. The next the-
orem indicates that, in some sense, this trivial construction is almost optimal as far as black-
box constructions are concerned; moreover, there is no black-box construction supporting a
super-polynomial number of time periods. (In contrast, existing schemes based on specific
assumptions [30, 20] support an unbounded number of time periods.)

Theorem 4.5.4 There is no black-box construction (from trapdoor permutations or CCA-secure en-
cryption) of a forward-secure encryption scheme for 5N periods where each algorithm in the scheme
makes fewer than N queries to its oracle.

Thus, there is no black-box construction of a forward-secure encryption scheme (from trapdoor
permutations or CCA-secure encryption) supporting a super-polynomial number of time periods.

Proof It is easy to see that {(Fn,An)}n∈N can beN -covered, as taking f1, . . . , f5N and setting
Ii = i for all i satisfies the conditions of Lemma 4.5.1. Then apply Theorem 4.3.2.

Broadcast encryption. Finally, we look at the case of (public-key) broadcast encryption [42].
Here, there is a fixed public key and a set of users U = {1, . . . , U} each with their own personal
secret key; it should be possible for a sender to encrypt a message in such a way that only some
subset U ′ ⊂ U of users can decrypt. Consider the case where at most k = k(n) < U users are
excluded; we refer to this as k-exclusion broadcast encryption. This can also be modeled by
predicate encryption, if we let An = {U ′ ⊆ U | |U ′| ≥ U − k} and define Fn = {fi}i∈U where

fi(U ′)
def
=

{
1 if i ∈ U ′
0 otherwise

.

Theorem 4.5.5 There is no black-box construction (from trapdoor permutations or CCA-secure en-
cryption) of a (5k)-exclusion broadcast encryption scheme where each algorithm in the scheme makes
k or fewer queries to its oracle.

Thus, there is no black-box construction of a k-exclusion broadcast encryption scheme (from trap-
door permutations or CCA-secure encryption) for super-polynomial k.

Proof We show that {(Fn,An)}n∈N can be k-covered. Take f1, . . . , f5k and define

Ii
def
= U \ {i, . . . , 5k}

for i ∈ {1, . . . , 5k}. (So I5k = U .) Note that |Ii| ≥ U − 5k always, and these satisfy the
conditions of Lemma 4.5.1. Applying Theorem 4.3.2 concludes the proof.
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Chapter 5

Black-Box Constructions of
Constant-Round Zero-Knowledge
Proofs

5.1 Introduction

In this chapter we present our second black-box separation result. Specifically, we study
the round complexity of black-box constructions of black-box zero-knowledge proofs from
one-way permutations.

A zero-knowledge proof is a protocol wherein one party, the prover, convinces another
party, the verifier, of the validity of an assertion while revealing no additional knowledge.
Introduced by Goldwasser, Micali and Rackoff in the 1980s [63], zero-knowledge proofs have
played a central role in the design and study of cryptographic protocols. In these applications,
the main measure of efficiency is the round complexity of the proof system, and it is important
to construct constant-round zero-knowledge proofs (with negligible soundness) for NP un-
der minimal assumptions. In many cases, a computational zero-knowledge argument system
(where both the zero-knowledge and soundness guarantees hold against computationally
bounded adversaries) suffices, and we know how to construct such protocols for NP under
the minimal assumption of one-way functions [41, 95]. However, in this chapter, we focus
on computational zero-knowledge proof systems, where the soundness guarantee must hold
against computationally unbounded adversaries.

A common intuition in constructing zero knowledge protocols (typically based on some
form of commitments) is that statistical (resp. computational) soundness corresponds to using
a statistically (resp. computationally) binding commitment, while statistical (resp. computa-
tional) zero knowledge corresponds to using statistically (computationally) hiding commit-
ments. One might also expect that the round complexity of the resulting zero knowledge
protocol is roughly the same as the round complexity of the underlying commitment scheme.

However, the best known construction of computational zero-knowledge proofs from
one-way permutations has ω(1) rounds [61, 17], and the minimal assumption from which
we know how to construct constant-round computational zero-knowledge proofs for NP
is constant-round statistically hiding commitments [57, 110], which seem to be a stronger
assumption than one-way permutations [120, 68]. There are no known constructions of
constant-round computational zero knowledge proofs from constant-round statistically bind-
ing commitments. We note that the latter may be constructed from one-way permutations
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[17] and one-way functions [91, 73]. This raises the following intriguing open problem:

Can we base constant-round zero-knowledge proofs for NP on the exis-
tence of one-way permutations?

We briefly survey what’s known in this regard for constant-round black-box zero-
knowledge protocols (that is, those using a black-box simulation strategy). We clarify that
while we do know of non-black-box zero-knowledge protocols [5, 67], these protocols are all
zero-knowledge arguments and not proofs.

Unconditional Constructions. The only languages currently known to have constant-
round zero-knowledge proofs from assumptions weaker than statistically hiding commit-
ment schemes are those that admit statistical zero-knowledge proofs, which do not require
any computational assumption at all. Even though this includes languages believed to be
outside of BPP such as graph isomorphism and graph non-isomorphism [61, 14], all lan-
guages with statistical zero knowledge proofs lie in AM ∩ coAM [1, 46] (and therefore do not
include all of NP unless the polynomial hierarchy collapses).

Lower Bounds. Lower bounds for constructions of zero-knowledge protocols were initi-
ated by the work of Goldreich and Oren [62] who showed that 2-round zero-knowledge
proofs only exists for languages in BPP. Extending their result, Goldreich and Krawczyk [58]
showed that 3-round zero-knowledge proofs and public-coin constant-round zero-knowledge
proofs with black-box simulators exist only for languages in BPP. Katz [78] showed that 4-
round black-box zero-knowledge proofs only exist for languages in MA ∩ coMA. Haitner et
al. [68] ruled out fully black-box constructions of constant-round statistically hiding commit-
ment schemes (in fact, any O(n/ log n)-round protocol) from one-way permutations, which
means that we are unlikely to obtain constant-round zero-knowledge proofs from one-way
permutations via the approach in [57]. More recently, Haitner et al. [72] established a partial
converse to [57], namely that any constant-round zero-knowledge proof for NP that remains
zero-knowledge under parallel composition implies the existence of constant-round statisti-
cally hiding commitments. Unlike the case for stand-alone zero-knowledge, we do not know
if there exists a ω(1)-round zero-knowledge proof system for NP that remains zero-knowledge
under parallel composition, assuming only the existence of one-way permutations. Indeed,
zero-knowledge under parallel composition appears to be a qualitively much stronger secu-
rity guarantee than stand-alone zero-knowledge.

5.1.1 Our Result.

In this chapter, we establish new barriers towards constructing zero-knowledge proof
systems from one-way permutations for all of NP:

Main Theorem (informal). Only languages in AM ∩ coAM admit a fully black-
box construction of zero-knowledge proofs starting from one-way permutations
where the construction relies on a black-box simulation strategy with constant
adaptivity.

As defined in Chapter 3, a fully black-box construction is one that uses the underlying prim-
itive as a black-box. Additionally, any adversary breaking the black-box zero-knowledge of
the construction can be used as a black-box to break the security of the underlying primitive.
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Adaptivity is a measure of how much the black-box simulator relies on responses from pre-
vious queries to the cheating verifier in order to generate new queries. We point out that all
known constructions of black-box simulators achieve adaptivity that is linear in the round
complexity of the protocol and therefore constant adaptivity is a fairly natural restriction for
constant-round protocols. Apart from the restriction on adaptivity, this is essentially the best
one could hope for in lieu of various positive results mentioned earlier:

• Our result only applies to constant-round protocols – running the O(log n)-fold parallel
repetition of Blum’s Hamiltonicity protocol [17] sequentially yields a ω(1)-round black-
box zero-knowledge proof system for NP.

• Our result applies only to proofs, but not arguments – there exists a fully black-box con-
struction of constant-round computational zero-knowledge arguments with constant
adaptivity from one-way functions for all of NP [41, 106].

• We have unconditional constructions of constant-round statistical black-box zero-
knowledge proofs for graph isomorphism and graph non-isomorphism, languages
which are in AM ∩ coAM but are commonly believed to lie outside BPP.

Limitations of Our Impossibility Result. Our impossibility result imposes three main re-
strictions on the construction: black-box simulation strategy, black-box access to the one-way
permutation, and bounded adaptivity of the black-box simulator, amongst which adaptiv-
ity appears to be the greatest limitation. Our current ability to prove general lower bounds
for zero-knowledge (without limitation to black-box simulation) is relatively limited [62, 8];
moreover, non-black-box simulation strategies so far only yield arguments and not proof sys-
tems. In the context of zero-knowledge protocols, there is no indication whether non-black-
box access to the underlying primitive has an advantage over black-box access to the primi-
tive.

Extensions to Higher Adaptivity. The formal statement of our result (Theorem 5.3.4) is
slightly more general than stated above and, in particular, allows us to obtain non-trivial
consequences even when the simulator’s adaptivity is polynomial.

Generalized Main Theorem (informal). If a language L admits a fully black-
box construction of zero-knowledge proofs starting from one-way permutations
where the construction relies on a black-box simulation strategy with adaptivity
t, then both L and L have O(t)-round public coin interactive proofs where the
honest prover strategy can be implemented in BPPNP.

For the case t = O(1) this is just our main theorem. If we now let L be an NP-complete
language, then for t = O(log n) this implies a collapse in the quasi-polynomial hierarchy [107],
which one can view as a weakened version of a collapse in the polynomial hierarchy. For
t = o(n) this would improve on the best known round complexity for an interactive proof
for a coNP-complete language (the best known is linear [89]), and even for t = poly(n) this
would improve on the best known honest prover complexity for an interactive proof for a
coNP-complete language (the best known is P#P [89]). We view these results as evidence that
such constructions will be hard to find.
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5.1.2 Proof Overview

Recall that we start out with a constant-round zero-knowledge proof system (P,V) with
constant adaptivity for a language L and we want to show that L lies in AM∩ coAM. The high
level strategy is to extend the Goldreich-Krawczyk lower bound for constant-round public-
coin proofs [58] to the private-coin setting. Following [58] (also [100, 78, 72]), we consider a
cheating verifier V∗GK that “resamples” new messages that are distributed identically to the
real verifier’s messages (conditioned upon the partial transcript) every time it is rewound
by the simulator. We will need to address the fact that we do not know how to simulate
such a V∗GK efficiently for general private-coin proofs. The computational complexity of V∗GK
comes up in two ways in [58]: first to deduce that the zero-knowledge property holds against
such a V∗GK, and second to derive an efficient AM proof for the underlying language L and its
complement L.

To address the first issue, we rely on a result of Haitner et al. [68], which, roughly speak-
ing, demonstrates the existence of a one-way permutation π secure in the presence of a V∗GK
oracle (as long as the zero-knowledge proof has bounded round complexity, which is the case
here). We will then instantiate the zero-knowledge proof (P,V) with the permutation π. This
will remain zero-knowledge against the cheating verifier V∗GK since π is one-way against V∗GK.
Following [58, 78, 72], we may then deduce a BPPπ,V

∗
GK algorithm for L. (Such a statement

was obtained independently by Pass and Venkitasubramaniam [105].) Along the way, we
will exploit (as with [78, 72]) the fact that (P,V) is a proof system as we need soundness to
hold against a cheating prover that is able to simulate V∗GK.

Next, we will essentially show that BPPπ,V
∗
GK ⊆ AM ∩ coAM from which our main result

follows. We do this by constructing a AM proof for L and L. The strategy is to have the
AM prover (Merlin) and verifier (Arthur) jointly simulate π and V∗GK. In more detail, Arthut
will pick the permutation π at random from a space of poly(Tm) permutations, where T is
an upper bound on the running time of the reduction in the zero-knowledge proof and m is
the round complexity of the proof; this turns out to suffice as a one-way permutation for the
result in [68].1 Next, we will have Arthur and Merlin jointly simulate each oracle computa-
tion of V∗GK using a (constant-round public-coin) random sampling protocol from [71]. Note
that naively having Merlin perform the computation of V∗GK fails for two reasons: a cheating
Merlin may resample messages from a distribution different from the uniform distribution,
and may not answer all of the V∗GK queries “independently”. Finally, we rely on the constant
adaptivity requirement of (P,V) to to guarantee that the final proof for L has constant round
complexity.

As mentioned previously, in a recent work, Pass et al. [105] independently obtained
results similar to ours. They also show that any language L for which there exists a fully
black-box construction of constant-round zero-knowledge proofs from one-way functions is
in BPPπ,V

∗
GK . Their techniques for doing this are different from ours. They use a generic trans-

formation from private-coin proofs into V∗GK-relativized public-coin proofs, upon which the
result then follows from the (relativized) lower bound for constant-round public-coin proofs
in [58]. They then argue that if such proofs exist for all of NP, this would imply unlikely
properties for the complexity class BPPπ,V

∗
GK . Our techniques, on the other hand, allow us to

relate the existence of such proofs to old questions in complexity such as whether NP ⊆ coAM
or whether coNP has interactive proofs with a BPPNP prover, whereas BPPπ,V

∗
GK is a new and

less well-understood notion.
1Having Arthur sample a random permutation “on the fly” does not work because the permutation π needs

to be defined everywhere for V∗GK to be well-defined.
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5.2 Preliminaries

5.2.1 Basic Definitions

We need the following definitions due to [49].

Definition 5.2.1 A permutation π : {0, 1}n → {0, 1}n is T -hard if for any circuit C of size at most
T , and for y chosen uniformly at random, Pr[C(y) = π−1(y)] ≤ 1

T , where the probability is taken
over the choice of y. If, given x, π(x) is also efficiently computable then we call such a permutation a
one way permutation (OWP).

Definition 5.2.2 Let Πn be the set of all permutations from {0, 1}n → {0, 1}n. Then, using the
notation of [49], we define Πk,n ⊆ Πn as {πk,n | πk,n(a, b) = (πk(a), b) for some πk ∈ Πk} In other
words, a uniform element of Πk,n is a random permutation on the first k bits, and fixes the last n − k
bits.

5.2.2 Complexity Classes.

We now review the definitions of several complexity classes that are used in this chapter.
We let BPP denote the class of languages that can be recognized by a ppt Turing machine.
Formally,

Definition 5.2.3 A language L is in BPP if there exists a ppt Turing machine M such that:

• For every x ∈ L it holds that Pr[M(x) = 1] ≥ 2
3 .

• For every x /∈ L it holds that Pr[M(x) = 1] < 1
3 .

For any oracle O, we let BPPO[k] denote the class of languages that are decidable by
efficient randomized algorithms using at most k rounds of adaptive queries to an oracle O.
One round of adaptivity is a set of queries x1, . . . , xk the algorithm asks to the oracle such that
the xi can only depend on oracle answers to queries asked in previous rounds.

Additionally, we recall the definition of Arthur-Merlin (public-coin) proofs [3]. We let
AM[k] denote the class of languages that have O(k)-round public-coin interactive proofs (re-
call that public-coins are equivalent to private coins by [64] in this setting). Namely:

Definition 5.2.4 L ∈ AM[k] if there is aO(k)-round public-coin interactive proof between an efficient
verifier V and an all-powerful prover P such that:

• (Perfect Completeness:) For all x ∈ L, V always accepts when interacting with P .

• (Negligible Soundness Error:) For all x /∈ L and all possibly cheating prover strategies P ∗, V
accepts when interacting with P ∗ with only negligible probability.

We note that, this definition is equivalent to one only requiring an inverse polynomial gap
between completeness and soundness error.

We let AM def
= AM[O(1)]. Additionally, we let MA denote the class defined similarly for

1-round proofs (sent from P to V ). We say that a protocol (P, V ) has an honest prover strategy
of complexity C if the prover algorithm can be implemented by a machine in the class C. We
recall that coNP is in AM[n] (where n is the length of the instance) with an honest prover
strategy complexity of P#P [89], and it is an open question whether the round complexity or
the honest prover strategy complexity can be improved. From here on, we will call the prover
in an AM proof Merlin and the verifier Arthur.
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5.2.3 Zero-Knowledge

We have previously given a definition of black-box computational zero-knowledge
proofs in Definition 2.3.8. Here we give a special case of this definition that we will use in
this chapter. Specifically, we define a fully black-box construction of weak computational zero
knowledge (wCZK) from one way permutations. As usual, we let negl(n) be a negligible
function.

Notation: we will use the following notation for interactive protocols. For any interactive
protocol between a prover P and a verifier V , we let 2m denote the total number of rounds of
communication, where a round consists of one message, either from P to V or from V to P .
We let αi denote the ith message sent from P to V , and βi the ith response from V to P . Note
that αi is sent in round 2i− 1 and βi is sent in round 2i. Also, having P always send the first
message is without loss of generality as we can set α1 =⊥ to model a proof where V goes first.
For i ∈ {1 . . . ,m}, we let α[i] = (α1, . . . , αi). Let V = (V1, . . . Vm) be the decomposition of V
into its next-message functions. Here Vi(x, α[i], ω) outputs βi, the ith message sent by V when
using input x, random coins ω, and receiving messages α[i] from P . Let 〈P, V 〉(x) denote the
verifier’s view of an execution of the interactive protocol on an input x. This view includes
all messages α[m] sent by the prover, the verifier’s random coins ω, and (if V is allowed access
to an oracle) the answers to any oracle queries V may have made. We say that 〈P, V 〉(x)
accepts if Vm(x, α[m], ω) = 1. We will use calligraphic P,V,S to denote the prover, verifier,
and simulator in a zero-knowledge protocol.

Definition 5.2.5 A fully black-box construction of a (weak) computational zero-knowledge proof sys-
tem from one-way permutations for a language L is a tuple of oracle procedures (P,V,S,M) such
that there exists a polynomial T (n) satisfying the following properties for every family of permutations
π = {πn}n≥1:

Efficiency. The running times of V,S,M are bounded by T = T (n).

Completeness. For all x ∈ L: Pr[〈Pπ,Vπ〉(x) accepts] ≥ 1− negl(n).

Soundness. For all x /∈ L and for all (possibly computationally unbounded) P∗,

Pr[〈P∗,Vπ〉(x) accepts] ≤ negl(n).

Black-Box Zero-Knowledge. For all (possibly unbounded) V∗, D and for all x ∈ L:
if ∣∣∣Pr[D(〈Pπ,V∗〉(x)) = 1]− Pr[D(Sπ,V∗(x)) = 1]

∣∣∣ > 1/n

then M can invert π, namely:

Pr
y←{0,1}n

[Mπ,V∗,D(y) = π−1(y)] > 1/T

We note that completeness and soundness hold even if the given permutations are not
one-way. Also, V∗, D are quantified after π is fixed and therefore may depend on π.

Comparison with standard definitions of zero-knowledge: The property that makes the
above definition weak zero knowledge is that we only require the distinguishing advantage to
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be smaller than 1/n, rather than negligible (the choice of 1/nwas arbitrary; any non-negligible
function will do). This enables us to consider simulators that run in strict polynomial time;
it is known that in the standard definition of zero knowledge where the distinguishing ad-
vantage is negligible, no strict polynomial-time black-box simulators exist for constant-round
protocols [7], although there are examples of non-black-box simulators [5]. It is useful for us
to consider strict polynomial-time simulators because defining adaptivity is more straight-
forward for such simulators than for expected polynomial-time simulators. This is discussed
in the next section.

Nevertheless, we note here that any zero knowledge proof satisfying the standard defini-
tion also satisfies the weak definition above: if a simulator S ′ satisfies the standard definition
and runs in expected time T ′, then a simulator S satisfies the weak definition by running S ′
for at most 2nT ′ steps, and halting with a failure symbol if S ′ does not produce an output
in that time. This is true since, by Markov’s inequality, the probability that S ′ runs for more
than 2nT ′ steps is bounded by 1

2n . Thus, by ruling out black-box constructions of weak zero
knowledge proofs from one-way permutations, we also rule out proofs satisfying the stan-
dard definition. We note that the same discussion applies to the runtime of the reduction
algorithm M .

Simplifying assumptions: we assume for simplicity that on inputs of length n, V and S
only query π on inputs of length n. We assume that in an honest interaction of the protocol,
the last message is from the verifier V to the prover P and contains the verifier’s random
coins. Clearly this does not affect either zero knowledge or soundness since it occurs after
all “meaningful” messages are sent. This assumption allows us to define a transcript to be
accepting if the honest verifier would accept that transcript using the coins output in the last
message, and this definition remains meaningful even for transcripts generated by cheating
verifiers. We assume without loss of generality that the simulator S never asks the same
query twice and that it only asks refinement queries. Namely, for i > 1 and for every query
α[i] = (α[i−1], αi) that the simulator queries to its cheating verifier black box V∗, it must have
previously queried α[i−1] as well. We direct the reader to [57] for a discussion of why this
holds without loss of generality.

5.2.4 Adaptivity

Here we define the adaptivity of the simulator, namely how much it uses responses from
previous queries to the verifier black-box in order to generate new queries. All of the black-
box simulators for constant-round zero knowledge in the literature intuitively work the fol-
lowing way: repeatedly query the cheating verifier with dummy queries enough times un-
til it leaks some secret, then rewind and use this secret to output a simulated transcript
[57, 13, 27, 41, 110]. The simulator may use the verifier’s answers to determine whether to
continue with dummy queries or to proceed to the next step of the simulation. If the simu-
lator runs in expected polynomial time (rather than strict polynomial time), this procedure lasts
indefinitely, making it hard to define the degree of the simulator’s adaptivity. This is why we
choose to work with weak zero knowledge, where the simulation is strict polynomial time; the
definition of adaptivity becomes much simpler and more intuitive in this setting. We stress
again that this only strengthens our result, as any zero-knowledge proof system satisfying the
standard definition also satisfies the weak definition.

Definition 5.2.6 A simulator S running in time T is said to be t-adaptive if it can be decomposed into
t + 1 oracle machines S = (S1, . . . ,St,St+1) with the following structure. Let x, ω (respectively) be
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the input and random coins for S. For all permutations π and all cheating verifiers V∗, Sπ,V∗ operates
as follows:

1. Sπ,V
∗

1 (x;ω) generates at most T queries q(1)
1 , . . . , q

(1)
T using x, ω. It sends these queries to V∗

and gets back answers ~a1 = (a
(1)
1 , . . . , a

(1)
T ).

2. For each phase j, 1 < j ≤ t, Sπ,V
∗

j (x;ω,~aj−1) generates at most T queries q(j)
1 , . . . , q

(j)
T using

x, ω and ~aj−1 which is the concatenation of all oracle answers from phases 1, . . . , j − 1. Sπ,V
∗

j

sets ~aj to be the oracle answers a(j)
1 , . . . , a

(j)
T for the j’th phase, concatenated with ~aj−1.

3. After obtaining ~at, Sπt+1(x;ω,~at) computes the final output (notice it does so without calling
V∗).

5.2.5 The Sam Oracle

In our separation, we make extensive use of the Sam oracle defined in [68]. Here we
provide a brief description of this oracle. A more formal description can be found in [68].

Description of Samd: Samd takes as input a query q = (i, Cnext, Cprev, z) and outputs (ω′, z′),
such that:

1. ω′ is chosen uniformly at random from:

• the domain of Cnext if i = 1.

• the set {ω | Cprev(ω) = z} if i > 1.

2. z′ = Cnext(ω
′).

The inputs to Samd are subject to the following restrictions:

1. The root query in every tree must include a security parameter 1n such that d = d(n) is
the maximum depth query.

2. Queries with i > d receive output ⊥.

3. If i > 1, then the input (i − 1, Cprev, ·, ·) was previously queried and resulted in output
(ω, z) for some ω. Note that this restriction imposes a forest structure on the queries.

4. Cnext is a refinement of Cprev. Formally: Cnext = (Cprev, C̃) for some circuit C̃.

For our purposes, it is easier to think of Samd as being stateful, in which case the above
restrictions can easily be implemented. Technically however Samd must be stateless, and so
the above restrictions are enforced in [68] by giving Samd access to a signature protocol, and
having him sign the output to every query, as well as the depth of the query, before returning
a response. New queries are required to include a signature on a prior query, demonstrating
that the first and third requirements have been met. (The refinement property can be verified
by Samd independently.) Any query not meeting these restrictions receives output ⊥. We
direct the reader to [68] for the complete details (see also [71] for a precise statement about
how to remove state), and we work with a stateful Samd for the remainder of this paper.

We will also consider Samd in a relativized world with a random permutation π =
{πn}n∈N, where πn : {0, 1}n → {0, 1}n is chosen at random from all permutations on {0, 1}n.
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We let Samπ
d denote Samd in this relativized world. Samπ

d is defined exactly as Samd, except it
accepts circuits Cπprev, Cπnext that can possibly contain π gates to represent queries to π.

We will abuse notation and write Sam to denote Samd for some d = O(1). Our results will
apply to all constant d so this slight abuse does not affect the correctness of our statements.
Next, we state a theorem that will be very useful to us showing that Sam can be simulated by
a public-coin proof.

Using Merlin to Simulate Sam:
Let BPPSam[t] denote the class of languages that can be decided efficiently by a machine mak-
ing at most t adaptive rounds of queries to the oracle Sam. We use the following theorem
from [71] which shows that one can simulate this Sam oracle by a constant-round public-coin
protocol.

Theorem 5.2.7 ([71]) For any L ∈ BPPSam[t], it holds that both L and L have AM[t] proofs with an
honest prover strategy complexity of BPPNP.

5.3 Proof of Main Theorem

5.3.1 Overview

As discussed in the Introduction, our proof involves using a particular cheating verifier,
V∗GK defined in Section 5.3.2, with the following properties:

• V∗GK cannot invert a random permutation π. By definition 5.2.5, this implies that the
view 〈Pπ,V∗GK〉(x) can be simulated by a simulator Sπ,V∗GK(x) whenever x ∈ L. (Section
5.3.3)

• The simulator Sπ,V∗GK(x) cannot produce an accepting transcript whenever x /∈ L. To-
gether with the previous property, this gives a way of deciding L. (Section 5.3.3)

• One can efficiently generate a transcript according to Sπ,V∗GK(x) in a constant number of
rounds with the help of an all-powerful (but possibly cheating) prover Merlin. Since,
using the output of Sπ,V∗GK(x), one can efficiently decide whether or not x ∈ L, this
implies L ∈ AM ∩ coAM. (Section 5.3.4)

5.3.2 Defining V∗GK
Our cheating verifier V∗GK is an extension of the one proposed by Goldreich and

Krawczyk [58]. Informally, upon receiving a message, this cheating verifier uniformly chooses
a new random tape consistent with the transcript seen so far, and uses this to compute his next
message. The formal definition follows, using notation defined in Section 5.2.1.

Fix any black-box construction of weak zero knowledge from one-way permutations
(P,V,S,M). Let ω ∈ {0, 1}T be a random tape for the honest verifier V which is divided
into next-message functions V1, . . . ,Vm. Define

R
α[i]
ω = {ω′ ∈ {0, 1}T | ∀j < i, Vj(x, α[j];ω) = Vj(x, α[j];ω

′)}

i.e. the set of random tapes that, given prover messages α[i], produce the same verifier mes-
sages as the random tape ω. For the special case where i = 1, set Rα1

ω = {0, 1}T for all α1 and
all ω.
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Define V[i] = (V1, . . . ,Vi) to be the circuit that outputs the concatenation of V1, . . . ,Vi.
Namely, for every α[i] and ω, it holds that

V[i](α[i], ω) = (V1(α1, ω),V2(α[2], ω), . . . ,Vi(α[i], ω))

For any α[i], let V[i](α[i], ·) denote the circuit V[i] with the input α[i] hard-wired (therefore it
takes only input ω.

Definition 5.3.1 The cheating verifier V∗GK = (V∗GK,1, . . . ,V
∗
GK,m) is defined using the Samπ

m oracle
and a look-up table that associates server queries α[i] with Samπ

m oracle responses (ω, z). We write
V∗GK with the understanding that the input x is hardwired into the verifier and the verifier is allowed
oracle access to the permutation π and Samπ

m. Additionally, we write Vi(α[i], ·) to indicate the circuit
Vi(x, α[i];ω) outputting the verifier’s messages β[i] on input ω with the values x and α[i] fixed.

• V∗GK,1(α1): invoke Samπ
m(1,V1(α1, ·),⊥,⊥) and let (ω1, β1) be the response. (Here, the ⊥

inputs are placeholders and can be replaced by anything.) Store (α1, ω1, β1) in the look-up table
and output β1.

• V∗GK,i(α[i]) for i > 1: let α[i] = (α[i−1], αi). Look up the value (α[i−1], ωi−1, β[i−1]) stored
during a previous query. Query

Samπ
m(i, V[i](α[i], ·), V[i−1](α[i−1], ·), β[i−1])

and let (ωi, β[i]) be the response. Store (α[i], ωi, β[i]) in the look-up table and output βi.

Observe that querying Samπ
m in the manner described above for the case i > 1 returns an

ωi that is distributed uniformly in R
α[i]
ωi−1 .

Recall that we assume the simulator never repeats queries and only makes refinement
queries. Therefore, V∗GK never tries to store inconsistent entries in the table, and V∗GK never
queries its table for entries that do not exist. Therefore, V∗GK’s queries to Samπ

m always satisfy
the restrictions laid out in Section 5.2.5. Observe that the output of 〈Pπ,V∗GK〉(x) is distributed
identically to the honest 〈Pπ,Vπ〉(x). We note that V∗GK is not efficient as there may be no way
to sample fromR

α[i]
ω efficiently. However, we show in Section 5.3.4 how to simulate V∗GK using

an Arthur-Merlin proof.
To complete the description of V∗GK we also need to construct a one-way permutation

that remains one-way in the presence of a V∗GK-oracle. To accomplish this, we refer to a re-
sult of Haitner et al. [68], which ruled out fully black-box constructions of o(n/ log n)-round
statistically hiding commitment schemes form one-way permutations (where n is the secu-
rity parameter). Building on and generalizing the works of [49, 117, 120], they demonstrated
that by choosing π from Πk,n for appropriate k, π remains one-way even in the presence of a
Samπ

m-oracle.
Formally, the following lemma follows directly from their results.

Lemma 5.3.2 (implicit in [68]) Suppose T, k satisfy T 3m+2 < 2k/8. Then, for any oracle machine
A running in time T , it holds that:

Pr
π←Πk,n, y←{0,1}n

[Aπ,V
∗
GK(y) = π−1(y)] ≤ 1/T

Proof This follows from [68, Theorem 5.1], which established the above statement where
V∗GK is replaced by Samπ

m. From our definition of V∗GK, it is clear that one call to V∗GK can
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be implemented using one call to Samπ
m Furthermore, as noted above, since we assume S

only makes unique refinement queries, all of the queries that V∗GK asks of Samπ
m satisfy the

restrictions in the definition of Samπ
m.

5.3.3 Deciding L Using V∗GK
We show that any language L admitting a fully black-box constructions of a weak com-

putational zero-knowledge proof from one-way permutations can be decided in BPPπ,V
∗
GK .

Specifically, the following lemma shows that Sπ,V∗GK(x) generates an accepting transcript with
high probability if and only if x ∈ L.

Lemma 5.3.3 Given any fully black-box construction from one-way permutations of a constant-round
weak zero knowledge proof (P,V,S,M) for a language L, and any n, k satisfying T 3m+2 < 2k/16,
where 2m = O(1) is the round complexity of the proof system and T = poly(n) is the strict polynomial
bound on the running times of V,S,M , the following hold:

1. If x ∈ L, then Prπ←Πk,n,S,V∗GK [Sπ,V∗GK generates accepting transcript] ≥ 2/3.

2. If x /∈ L, then Prπ←Πk,n,S,V∗GK [Sπ,V∗GK generates accepting transcript] < 1/3.

Proof
Yes instances: We use the zero-knowledge property of the proof system to prove that for all
x ∈ L:

Pr[Sπ,V∗GK(x) outputs an accepting transcript] ≥ 2/3 (3.1)

The proof proceeds by contradiction, showing that if S fails to output an accepting
transcript with sufficiently high probability then, by the weak zero-knowledge property of
(P,V,S,M), M can invert a random permutation π ∈ Πk,n.

As was noted before, the distributions 〈Pπ,V∗GK〉(x) = 〈Pπ,Vπ〉(x). Therefore, by the
completeness of the proof system, for x ∈ L, the transcript 〈Pπ,V∗GK〉(x) is accepted by the
honest verifier with probability 1 − negl(n). More formally, Pr[Vπm(x, 〈Pπ,V∗GK〉(x)) = 1] ≥
1− negl(n).

For the sake of contradiction, assume that Sπ,V∗GK(x) outputs an accepting transcript with
probability less than 2/3. That is, Pr[Vπm(x,Sπ,V∗GK(x)) = 1] < 2/3. Then we can use the honest
verifier V to distinguish between the prover and simulator output, since

|Pr[Vπm(x, 〈Pπ,V∗GK〉) = 1]− Pr[Vπm(x,Sπ,V∗GK(x)) = 1]| > 1/3− negl(n).

Therefore, by the weak black-box zero-knowledge property of (P,V,S,M), there exists an or-
acle machineMπ,V∗GK,V running in time T that can break the one-wayness of π with probability
at least 1/T . We can remove oracle access to V by having M simulate V internally, making at
most T oracle calls to π for each call to V . Thus, we get a machine Mπ,V∗GK running in time T 2

such that
Pr

π←Πk,n, y←Un

[Mπ,V∗GK(y) = π−1(y)] ≥ 1/T > 1/T 2.

This yields a contradiction to Lemma 5.3.2, and Equation (3.1) follows.

No instances: Here, we use statistical soundness (following [72, 78, 58]) to argue that for all
x /∈ L:

Pr[Sπ,V∗GK(x) outputs an accepting transcript] < 1/3 (3.2)

53



The proof proceeds by contradiction, showing that if S outputs an accepting transcript
with high probability, then there exists a (computationally unbounded) cheating prover P∗GK
that breaks the statistical soundness of the proof system. Let T , the running time of S, be the
bound on the total number of V∗GK queries made by S, and let m = O(1) be the round com-
plexity of the zero knowledge proof system. Starting from V∗GK, we define a new (inefficient)
prover strategy P∗GK which interacts with an external verifier V as follows:

1. Choose queries to forward to V : On input x, P∗GK picks a random subset of query indices
U = {j1, j2, . . . , jm} ⊂ [T ] of size m. The set U represents the queries that P∗GK will
forward to the verifier V .

2. Simulate Sπ,V∗GK(x): Internally simulate Sπ,V∗GK(x) step by step. We handle the j’th oracle
query, qj , that S makes to V∗GK as follows. Let qj = α[i] for some i ≤ m.

• If j /∈ U : Simulate V∗GK internally to answer qj . More formally, look up the value
(α[i−1], ω) stored during a previous V∗GK query. (Note that since S only makes re-
finement queries, S must have made such a query.) Choose ω′ ← R

α[i]
ω uniformly

at random (P∗GK can do this since he is computationally unbounded), store (α[i], ω
′)

and output Vi(x, α[i], ω
′).

• If j ∈ U : If qj = α[i] and i > 1, forward αi to the external V . Upon receiving βi
in response, look up the stored value (α[i−1], ω) and uniformly sample a random
string ω′′ ← {ω′ ∈ Rα[i]

ω ∧ Vi(x, α[i], ω
′) = βi}. Store (α[i], ω

′′) and output βi.

Note that as long as S outputs an accepting transcript with noticeable probability when in-
teracting with V∗GK on x /∈ L then this cheating prover P∗GK has a noticeable probability of
outputting an accepting transcript when interacting with the honest verifier V . This happens
if P∗GK chooses U to include exactly the messages that are used by S in his output transcript.
P∗GK succeeds in choosing the correct queries with probability at least 1/TO(m). Thus, if S
outputs an accepting transcript with probability ≥ 1/3, then P∗GK outputs an accepting tran-
script with probability at least 1/3 · 1/TO(m) which is non-negligible when m = O(1). This is
a contradiction of the fact that the proof has negligible soundness error, thus Equation (3.2)
follows.

5.3.4 Applying Theorem 5.2.7 To Remove V∗GK
We can now combine Lemma 5.3.3 and Theorem 5.2.7 to prove our main theorem.

Theorem 5.3.4 (Main Theorem) Suppose there is a black-box construction from a one-way permu-
tation of a constant-round weak zero knowledge proof (P,V,S,M) for a language L, where S is
t-adaptive. Then both L and L are in AM[t] with honest prover complexity BPPNP.

Proof From Lemma 5.3.3 we already know that Sπ,V∗GK decides L. We will construct an
oracle algorithm A based on S, such that ASam decides L and furthermore the adaptivity of A
is the same as the adaptivity of S.

Sampling π Efficiently: By Lemma 5.3.2, we know that for π to be one-way in the presence
of V∗GK, it is sufficient to choose π ← Πk,n with k = 9(3m + 2) log T = O(log n). Such a
permutation can be sampled in polynomial time by sampling a uniform permutation on k =
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O(log n) bits. Let AV
∗
GK

1 be identical to Sπ,V∗GK , except A1 first samples π by itself and then runs
Sπ,V∗GK .

From Definition 5.3.1, it holds that oracle access to V∗GK can be implemented using oracle
access to Sam and an additional look-up table to associate previous queries with previous
oracle responses. Therefore, we can construct a polynomial time oracle machine A such that
ASam behaves identically to AV

∗
GK

1 using the Sam oracle to simulate the V∗GK oracle for A1. Fur-
thermore, the adaptivity of A is identical to the adaptivity of A1, whose adaptivity in turn is
the same as that of S.

Since S has adaptivity t, this implies that L ∈ BPPSam[t]. We can therefore apply Theorem
5.2.7 to conclude the proof.
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Chapter 6

Augmented Black-Box Constructions

6.1 Introduction

In the previous two chapters we have studied the limitations of black-box constructions.
Such limitations are usually seen as evidence that any construction bypassing them will re-
quire new techniques. However, as mentioned in the introduction, there are several known
techniques that are not black-box and black-box separations say nothing about what is feasi-
ble using these techniques. Thus, the class of black-box techniques fails to capture all “known
techniques”. In this chapter we propose a novel framework to partially address this short-
coming.

Specifically, we extend the model of black-box constructions to capture the most common
non-black-box technique; that of using zero-knowledge proofs relative to a base primitive.
We propose a model of augmented black-box constructions to capture this powerful class of
constructions. This model consists of an oracle O guaranteeing the existence of some base
primitive and a pair of oracles (P,V) that allow zero-knowledge proofs relative to O. We
note that such proofs are not in general possible without such oracles as, even though the
existence of one-way functions implies zero-knowledge proofs for all of NP, it does not imply
the existence of zero-knowledge proofs for NPO. (See [76] for further discussion.) With these
oracles, a construction using zero-knowledge proofs relative to O can be cast as a black-box
construction using oracle access to O and (P,V). This model allows us to reason about the
existence of such augmented black-box constructions allowing us to come much closer to
truly describing what is possible using known techniques.

Our contributions. In addition to putting forth the notion of augmented black-box con-
structions we also show several technical results. To validate our framework, we show that
the Naor-Yung/Sahai [93, 114] (shielding) construction of CCA-secure public-key encryption
from CPA-secure public-key encryption falls within our framework. (Such a construction is
ruled out, in a black-box sense, by the result of Gertner et al. [53].) We note that several
other existing non-black-box constructions also fall within our framework, including those
of [38, 12, 44]. This demonstrates that our framework meaningfully encompasses construc-
tions that lie outside the standard black-box model.

On the negative side, we present the first impossibility result for augmented black-box
constructions. Generalizing the work of Impagliazzo and Rudich [76], we rule out aug-
mented (fully) black-box constructions of key agreement protocols with perfect completeness
from one-way functions. (We leave the case of protocols without perfect completeness as an
open problem.) Though it may seem “intuitively obvious” to the reader that zero-knowledge
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proofs cannot help in the setting of key-agreement, the challenge — as in all black-box impos-
sibility proofs — is to prove this intuition. (In fact, under our initial modeling of a random
zero knowledge proof system there was a construction of key agreement from one-way func-
tions. See Section 6.3.3 for details.)

Chapter outline. To motivate the need to extend the black-box model, we begin this chapter
with a brief overview of known non-black-box techniques in Section 6.2. Then, in Section 6.3
we formally define and instantiate the notion of augmented black-box constructions, and in
Section 6.4 we show that our framework encompasses the Naor-Yung/Sahai paradigm for
building CCA-secure public-key encryption from CPA-secure schemes. Our main technical
result is in the section that follows. Specifically, we initiate the study of augmented black-box
separations by ruling out augmented black-box constructions of (perfect completeness) key
agreement from one-way functions in Section 6.5.

6.2 Known Non-Black-Box Techniques

In this section, we briefly review the known non-black-box techniques that have ap-
peared in the literature. In this summary we provide only the high-level overview of the
different techniques used and refer the interested reader to the referenced works for details.

Using Zero-Knowledge Proofs: The oldest and still most commonly used non-black-box
technique is that of using zero-knowledge proofs to guarantee that a primitive is used cor-
rectly. In a little more detail, this technique works as follows: To construct primitive Q (e.g.
CCA-secure encryption) from a primitive P (e.g. trapdoor permutation) the construction may
use P as a black-box and additionally it may give zero-knowledge proofs relative to the prim-
itive P . More formally, the construction gives zero-knowledge proofs for some language in
NPP . Usually such proofs are used to ensure that the adversary has used the primitive P in
some prescribed way. For example, in the case of constructions of CCA-secure encryption,
zero-knowledge proofs are used to guarantee that any ciphertext generated by the adversary
is well-formed. What makes such constructions non-black-box is this use of zero-knowledge
proofs relative to primitive P . To generate such proofs, the construction must know the circuit
implementing primitive P in order to be able to reduce the statement “I used P correctly” to
the corresponding statement in some NP-complete language, after which standard construc-
tions of zero-knowledge proofs for NP [61] can be used.

This technique originated in the work of Goldreich et al. [60] who used it to enforce
honest behavior in protocols for secure computation. Since then this technique has seen a sig-
nificant amount of use. The most well known examples of this approach are the constructions
of CCA-secure encryption from general assumptions. Specifically, all known constructions
of CCA-secure encryption from trapdoor permutations [93, 37, 114, 88] are of this type. Also
in the realm of public-key encryption, Pass et al. [101] use this technique to construct non-
malleable encryption from CPA-secure encryption. Building on this work, Cramer et al. [33]
use it to construct bounded CCA-secure encryption from CPA-secure encryption. Additional
examples of constructions using this technique include Feige et al. [38] who use it to construct
secure identification schemes, Bellare and Goldwasser [12] who use it to construct digital sig-
nature schemes, Fischlin [44] who uses it to construct round-optimal blind signature schemes
and Boldyreva et al. [19] who use it to construct non-malleable hash-functions.

Using Secure Computation: Another non-black-box technique introduced by Beaver [11] is to
execute a protocol for secure computation on the circuit for the underlying primitive P . This

57



is done to securely evaluate the underlying primitive in such a way that both parties learn
the correct output but neither party learns anything other than this. For example, Beaver [11]
uses non-black-box access to a pseudorandom generatorG to do oblivious transfer extension.
In this construction the two parties jointly evaluate G(s) for a random seed s by running the
Yao garbled circuit protocol [122] on the circuit for G.

A closely related technique is that of computationally private randomized encodings intro-
duced by Applebaum et al. [2]. Roughly, a randomized encoding of a function f , is a ran-
domized function f̂(x, r) such that (1) given f̂(x, r), f(x) can be efficiently recovered and (2)
given f(x), it is possible to efficiently sample from f̂(x, r) for a random r. Such randomized
encodings preserve many of the security properties of the function f so f̂ can often be used in
place of f . Applebaum et al. show that low-depth randomized encodings can be constructed
for a primitive P by using the Yao garbled circuit technique [122] on the circuit for P . Thus,
a construction of a low-depth primitive Q from a standard (polynomial-depth) version of the
same primitive, P , can proceed as follows. First use the Yao garbled circuit to compute a
low-depth randomized encoding f̂ for the function f implementing P (given as a circuit).
Then we can instantiate Q by evaluating f̂(x, r) for a random r. Since f̂ has low depth this
results in a low-depth implementation of P . Since this construction needs the circuit of the
base primitive P (to construct the randomized encoding) it is not black-box.

Non-Black-Box Simulation: A closely related technique is that of non-black-box simulation
introduced in the context of zero-knowledge arguments by Barak [5]. The non-black-box
access here refers to the way that the simulator accesses the cheating verifier while generating
the simulated transcript. This means that the simulator is given the code of the cheating
verifier instead of just treating it as an oracle. In a breakthrough result Barak [5] showed that,
in the context of zero-knowledge arguments (zero-knowledge protocols where soundness is
only required to hold against a polynomial time cheating prover), non-black-box access to the
verifier can be used to get a construction achieving a number of properties that are known to
be impossible for protocols using only black-box simulation.

We wish to point out that the notion of non-black-box access used here is somewhat
orthogonal to the black-box constructions discussed in the remainder of this thesis. Here
the black-box refers to the simulator’s access to the cheating verifier, whereas everywhere
else in this dissertation black-box refers to the access to the underlying primitive and the
adversary breaking the security of the construction. In particular, it may be possible to give
a black-box construction of a zero-knowledge protocol with non-black-box simulation. (We
note that Barak’s construction is not black-box due to its use of witness indistinguishable
proofs relative to a collision resistant hash function.) However, we include this technique in
this list due to its historical significance as the first non-black-box technique shown to bypass
proven limitations of black-box techniques.

Since this original result a number of other works have used this technique to give
non-black-box constructions. We list some of these works here. In a series of works Lin-
dell, Pass and Rosen [87, 102, 99] showed constructions of bounded-concurrent two-party
and multi-party secure computation. In a somewhat different direction, Barak [6] gave a
protocol for coin-tossing in a constant number of rounds. This result was later used by
Katz et al. [80] to give round efficient protocols for multi-party computation. Additionally,
Pass and Rosen [103] used this technique to construct non-malleable commitments and zero-
knowledge.
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6.3 Augmented Black-Box Constructions

In this section we formally define our notion of augmented black-box constructions. Re-
call that our goal here is to model constructions that use an oracle O for some primitive as
a black box, while also (possibly) using zero-knowledge proofs of NP statements relative
to O. To enable such proofs we introduce an additional pair of oracles (P,V) implement-
ing a “prover” and a “verifier”, respectively. We find it easiest to model (P,V) as a witness-
indistinguishable (WI) proof system [39], and to prove our impossibility results relative to ora-
cles achieving this notion. In Section 6.3.2, however, we show that any WI proof system can
be used to construct non-interactive zero-knowledge (NIZK) proofs in the common random
string model, assuming the existence of one-way functions. Thus, our model also suffices to
rule out constructions using such zero-knowledge proofs.

Fix an oracle O : {0, 1}∗ → {0, 1}∗. For a language L, we say L ∈ NPO if there exists
a polynomial-time oracle machine M running in time polynomial in its first input such that
x ∈ L if and only if there exists a witness w for which MO(x,w) accepts. (We assume a valid
witness w satisfies |w| = |x| without loss of generality.) For any L ∈ NPO, we let RL denote

an NP-relation associated with L, and we let Ln
def
=L ∩ {0, 1}n and Rn

def
={(x,w) | (x,w) ∈

RL and x ∈ Ln}.
We now define what it means for a pair of oracles (P,V) to be a witness-indistinguishable

proof system relative to a base oracleO. It is convenient to view the (infinite) oracles (P,V) as
a sequence of oracles {(Pn,Vn)}n∈N, one for each input length. In the following all adversaries
are stateful by default.

Definition 6.3.1 Fix an oracle O, a language L ∈ NPO, and an NP relation RL for L. An oracle
WI = (P,V) is a proof system for RL if the following hold:

• Perfect completeness: For any n ∈ N, (x,w) ∈ Rn, and r ∈ {0, 1}n, it holds that
Vn(x,Pn(x,w, r)) = 1.

• Perfect soundness: For any n ∈ N, any x /∈ L and any π, it holds that Vn(x, π) = 0.

WI is witness indistinguishable (WI) if additionally:

• Witness indistinguishability: For every polynomial-time adversary A, it holds that
|Pr [ExptWIA(n) = 1]− 1/2| is negligible in n, where ExptWIA(n) is defined as follows:

(x,w0, w1)← AO,WI (1n); b← {0, 1};
r ← {0, 1}n;π ← Pn(x,wb, r)

b′ = AO,WI (1n, π)
:

if (x,w0), (x,w1) ∈ Rn
output 1 iff b′ = b

else, output a random bit

When the relation RL is irrelevant for the discussion at hand, or is clear from the context,
we may abuse terminology and call WI a WI proof system for L. We say that WI is a WI
proof system for NPO if it is a WI proof system for the NPO-complete language CIRCUIT-SATO

(the set of satisfiable circuits with O gates) under the natural relation RL.
We now define our notion of black-box constructions using a base oracle O and a WI

oracle WI for NPO. The definitions and terminology are adapted from the corresponding
definitions in Chapter 3.
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Definition 6.3.2 (Augmented fully black-box construction) There is an augmented fully
black-box construction of primitive Q from primitive P if there exist probabilistic polynomial-time
oracle machines G and S such that:

• For any oracles O,WI such that O implements P , and WI is a proof system for NPO, the
algorithm GO,WI implements Q.

• For anyO,WI such thatWI is a proof system for NPO and any (possibly inefficient) adversary
AO,WI that breaks theQ-security ofGO,WI , the adversary SA,O,WI breaks the P -security ofO
or the witness indistinguishability ofWI .

Additionally, we can define a notion of augmented semi black-box constructions as follows.

Definition 6.3.3 (Augmented semi black-box construction) There is an augmented semi
black-box construction of primitive Q from primitive P if there exists a probabilistic polynomial-
time oracle machine G such that:

• For any oracles O,WI such that O implements P , and WI is a proof system for NPO, the
algorithm GO,WI implements Q.

• For anyO,WI such thatWI is a proof system for NPO and any probabilistic polynomial-time
adversary AO,WI that breaks the Q-security of GO,WI , there is a probabilistic polynomial-time
S such that SO,WI breaks the P -security of O or the witness indistinguishability ofWI .

We remark that our notion of augmented black-box constructions is not transitive: i.e., if
there is an augmented black-box construction of Q from P , and an augmented black-box con-
struction of R from Q, this does not imply that there is an augmented black-box construction
of R from P . (On the other hand, if either of the given constructions is black-box, that does
imply an augmented black-box construction of R from P .) The reason is that WI enables
proofs for NPO but not NPO,WI . While it is true that Definition 6.3.1 can be meaningfully
changed to allow for proofs of NPO,WI , doing so introduces technical issues (due to circular-
ity) and we were unable to prove our separation results with respect to such a definition. We
leave this as an interesting open question.

6.3.1 Instantiating a WI Proof System

For arbitrary O, we now show how to instantiate a WI proof system for NPO. We be-
gin by describing a distribution over oracles such that an oracle sampled according to this
distribution is a proof system for NPO and is witness indistinguishable with overwhelming
probability (Lemma 6.3.7). We then show that this implies that measure 1 of the oracles un-
der this distribution constitute a WI proof system for NPO (Lemma 6.3.9). Throughout this
section, we take L to be CIRCUIT-SATO.

We again view the (infinite) oracleWI as a sequence of oracles {WI n = (Pn,Vn)}n∈N,
one for each input length. Consider the distribution overWI where, for each n, the distribu-
tion overWI n is defined as follows:

Prover oracle: Pn is a random function Pn : {0, 1}3n → {0, 1}7n whose inputs are parsed as
tuples of the form (x,w, r) ∈ {0, 1}n × {0, 1}n × {0, 1}n. Note that Pn is defined for all such
tuples (x,w, r) of the appropriate length, and not only for those satisfying (x,w) ∈ RL (i.e.,
Pn does not check whether (x,w) ∈ RL).
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Verifier oracle: The verifier oracle is a function Vn : {0, 1}8n → {0, 1}, whose inputs are parsed
as pairs of the form (x, π) ∈ {0, 1}n × {0, 1}7n. The function is defined as:

Vn(x, π) =

{
1 if ∃(w, r) s.t. π = Pn(x,w, r) ∧ (x,w) ∈ RL
0 otherwise

Note thatWI sampled as above is always a proof system. It remains to show that wit-
ness indistinguishability holds with overwhelming probability. We begin by proving that, for
oracles distributed as above, it is essentially impossible to “spoof” a proof. That is, for n large
enough, the only way to generate a proof π such that Vn(x, π) = 1 is by querying Pn on input
(x,w, ?) for some w such that (x,w) ∈ RL. This property of theWI oracle will also be useful
later.

More formally, for an oracle Turing machine MO,WI , let Spoofn be the event that M
makes a query Vn(x, π) that returns 1, yet π was not output by a previous query Pn(x,w, ?)
with (x,w) ∈ RL. We prove the following bound on the probability of Spoofn.

Lemma 6.3.4 For any oracleO, any oracle Turing machine MO,WI making at most q V-queries, and
any n,

Pr[Spoofn] ≤ q · 2−4n

where the probability is taken over the choice ofWI according to the distribution above.

Proof. We drop the subscript n for ease of presentation. SinceP is chosen independently ofO,
queries toO give no information about the range of P . We assume, without loss of generality,
that M never makes a query V(x, π) if π was the output of a previous query P(x,w, r) = π as
such queries can be answered without querying V .

Let Q0 = (x0, π0), . . . , Qq−1 = (xq−1, πq−1) be the queries that M makes to V . For i ∈
{0, . . . , q−1}, let WINi be the event thatQi is the first query asked byM such that V(xi, πi) = 1.
We now bound the probability of WINi using the following thought experiment.

For i ∈ {0, . . . , q − 1} define GAMEi as the following game with adversary M :
GAMEi: Run M(1n), asking any P queries made by M to the oracle. Answer M ’s V queries as
follows. For j < i answer M ’s query Qj with 0 without querying V . Ask Qi to the oracle V
and return the answer to M . Finally, answer all remaining V queries with 0.

Let WIN′i be the event that M makes a query V(x, π) = 1 to the oracle V in GAMEi. The
following two claims use the above experiments to prove the lemma. Both of these claims
hold for any oracle O and the probability is taken over the choice of P .

Claim 6.3.5 Pr[WIN ′i ≤ 2−4n]

Proof. Consider the situation right before M makes the V query Qi. Note that the image of P
has at most 23n points. By the definition of GAMEi, no queries have been made to V , so the 23n

points in the range of P are distributed uniformly in the space {0, 1}7n. Thus for any string
π ∈ {0, 1}7n, the probability that π is in the range of P is at most 23n

27n
= 2−4n. This clearly

bounds the probability that V(xi, πi) = 1, proving the claim.

Claim 6.3.6 For any i ∈ {0, . . . , q − 1}, Pr[WINi] = Pr[WIN ′i ]

Proof. By definition, WINi only occurs ifQi is the first query asked byM such that V(xi, πi) =
1. Thus, for WINi to happen, for all previous queriesQj , we have that V(xj , πj) = 0. However,
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this means that M ’s view in the real experiment is identical to its view in GAMEi up to this
point implying that Qi is the same in the real game and in GAMEi. Thus, the probability that
this query returns 1 is the same here and in GAMEi proving the claim.

By the above, we have that

Pr [Spoofn] ≤ Pr

 ∨
i∈{0,...,q−1}

WINi

 ≤ q−1∑
i=0

Pr[WIN′i] ≤ q · 2−4n.

This completes the proof of Lemma 6.3.4.

We now use Lemma 6.3.4 to bound the advantage of any specific polynomial-time ma-
chineA in distinguishing between proofs generated by two different witnesses, for a random
instance of the oracleWI . Then, using standard techniques [76] based on the Borel-Cantelli
lemma and discussed in Section 3.2.4, we show that it is possible to switch the order of quan-
tifiers and fix a specific oracle such that any polynomial-time A has only a negligible distin-
guishing advantage. In fact, this property will hold for measure 1 of the oraclesWI .

Lemma 6.3.7 For any oracle O, every probabilistic polynomial-time oracle machine A, and n large
enough: ∣∣∣∣Pr [ExptWIA(n) = 1]− 1

2

∣∣∣∣ ≤ 2−n/2,

where ExptWIA(n) is as in Definition 6.3.1, and the above probability is also taken over the choice
ofWI .

Proof. Consider some value of n and fix the values ofWI other thanWI n. Assume without
loss of generality that A(1n) outputs values (x,w0, w1) with (x,w0), (x,w1) ∈ Rn. Then A is
given a proof π and has to identify whether w0 or w1 was used to generate it. We observe that
for all k 6= n the output of any query to Pk and Vk is independent of the bit b. Therefore, from
this point on, we focus on queries to Pn and Vn. Let q be the total number of oracle queries
made by A.

We may assume that A does not query Vn since it can simulate this oracle by itself to
within statistical difference at most 2−n (for n large enough). Indeed, there are three types of
queries to Vn:

• The query Vn(x, π). In this case, the output is 1.

• Queries of the form Vn(x, π′), where π′ was output by a previous query Pn(x,w, ?) with
(x,w) ∈ Rn. Once again, in this case the output is 1. Note thatA can check in polynomial
time whether (x,w) ∈ Rn.

• All other queries to Vn. In this case, Lemma 6.3.4 shows that the output of all these
queries is 0 except with probability at most q · 2−4n, which is bounded by 2−n for n
sufficiently large.

We now show that for any Amaking at most q queries to Pn, A’s advantage is small. We
assume, without loss of generality, that A never repeats any query it makes to P . Formally,
we prove the following claim:

62



Claim 6.3.8 For any n ∈ N, for any adversary A making at most q oracle queries∣∣∣∣ Pr
Pn,r←{0,1}n

[APn(π) = 1 | b = 0]− Pr
Pn,r←{0,1}n

[APn(π) = 1 | b = 1]

∣∣∣∣ ≤ 1/2 + q · 2−n,

where π = Pn(x,wb, r).

Proof. Consider the following experiment. First choose b ← {0, 1}, r ← {0, 1}n, π ← {0, 1}7n
and give π toA. Now, every timeAmakes a query P(x′, w′, r′), if (x′, w′, r′) = (x,wb, r) return
π. Otherwise, return a random string π′ ← {0, 1}7n.

The success probability of A in this experiment is the same as in the original game with
the oracle P . Clearly, A succeeds if he queries P(x,wb, r). However, since π is completely
independent of r, the probability that A succeeds by making a query with r′ = r is at most
q ·2−n. However, if he does not make such a queryA’s view is completely independent of the
bit b and so he can not distinguish between the two distributions with probability better than
1/2.

Given the above claim and the fact that A simulates Vn to within statistical distance 2−n,
we get that A can not distinguish which witness was used with probability better than (q +
1) · 2−n which is bounded by 2−n/2 for n sufficiently large. The lemma follows.

Lemma 6.3.9 Fix an oracleO. For measure 1 of the oraclesWI under the distribution defined above,
WI is a witness-indistinguishable proof system for L.

Proof. Completeness and soundness always hold, and so we must only prove witness indis-
tinguishability. To do so we apply a standard argument using the Borel-Cantelli lemma for
reversing the order of quantifiers in Lemma 6.3.7.

Fix O. For any n ∈ N and any probabilistic polynomial-time A, denote by En,A the event
in whichWI is chosen such that∣∣∣∣Pr [ExptWIA(n) = 1]− 1

2

∣∣∣∣ > 2−n/3.

Lemma 6.3.7 and an averaging argument imply that for any A and sufficiently large n the
probability of En,A is at most 1/n2. Then

∑
n Pr[En,A] is finite, and so the Borel-Cantelli

lemma implies that the probability over choice of WI that event En,A occurs for infinitely
many values of n is zero. Thus, for large enough n and measure 1 of the oracles under the
distribution in question we have∣∣∣∣Pr [ExptWIA(n) = 1]− 1

2

∣∣∣∣ ≤ 2−n/3.

This holds for any specific A, and therefore by removing a set of measure 0 for each of the
(countably many) machines A we obtain that for measure 1 of the oracles WI it holds that
for all probabilistic polynomial-time A the quantity

∣∣Pr [ExptWIA(n) = 1]− 1
2

∣∣ is negligible.

Before concluding this section we prove a technical result regarding oraclesWI sampled
according to the distribution described earlier. We show that if f is one-way relative toO, then
for measure 1 of the oracles WI under the distribution defined above, f remains one-way
relative to (O,WI ). We note that this proof can be extended to any other security property
of the oracle O. For a discussion of security properties of an oracle see [74].
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Lemma 6.3.10 Let f be a polynomial-time oracle machine such that fO is one-way relative to O.
Then for measure 1 of the oracles WI under the distribution defined above, fO is one-way relative
to (O,WI ).

Proof. It suffices to show that for any PPT A the probability that AO,WI inverts fO is neg-
ligible, where the probability is also taken over choice of WI . We can then proceed as in
Lemma 6.3.9 to obtain the stated result.

Assume toward a contradiction that there exists an algorithmA and a polynomial p(n) ≥
n such that the running time of A is bounded by p(n) and, for infinitely many n, it holds
that AO,WI inverts fO with probability at least 1/p(n) when WI is chosen at random. We
show how to construct a PPT algorithm Â such that ÂO inverts fO with inverse-polynomial
probability for infinitely many values of n, a contradiction.
Â(1n, y) runs A(1n, y), simulating the WI oracle for A as follows. Let k∗ = log p(n).

Algorithm Â samplesWI k = (Pk,Vk) according to the prescribed distribution for all k ≤ k∗,
and these are used to (perfectly) simulate {WI k}k≤k∗ to A. Thus, we now only need to deal
with the queries ofA toWI k for k > k∗. WhenA queriesPk(x,w, r), then Â returns a random
π ∈ {0, 1}7k as the result. When A queries Vk(x, π) then Â first checks to see whether there
was any prior query Pk(x,w, ?) = π with (x,w) ∈ RL. If not, then Â returns 0 in response to
this Vk-query. Otherwise, Â returns 1.

Note that Â’s simulation of the V oracle is perfect unless Spoof occurs. Thus, since A
asks at most p(n) oracle queries, by Lemma 6.3.4, Â’s simulation of A degrades the latter’s
probability of inversion by at most p(n) · 2−4k∗ = p(n)

(p(n))4
≤ 1

2p(n) . This implies that ÂO inverts
fO with probability at least 1/2p(n) for infinitely many values of n, a contradiction.

6.3.2 Zero-Knowledge Proofs

We define a notion of zero knowledge, and then discuss appropriate conditions under
which zero-knowledge (ZK) proofs can be constructed from WI proofs. In our context, zero
knowledge is most easily expressed in terms of non-interactive zero knowledge in the com-
mon random string model. Note that we only require zero-knowledge to hold against uni-
form adversaries, whereas the standard definition requires it to hold even for non-uniform
adversaries.

Definition 6.3.11 Fix an oracle O and a language L ∈ NPO. An oracle ZK = (P,V) is a proof
system in the common random string model for L with relation RL if there is a polynomial ` such
that the following hold:

• Perfect completeness: For all n ∈ N, all (x,w) ∈ Rn, all crs ∈ {0, 1}`(n), and all r ∈ {0, 1}n,
we have V(crs, x,P(crs, x, w, r)) = 1.

• Statistical soundness: With all but negligible probability over choice of crs ∈ {0, 1}`(n), there
do not exist x 6∈ Ln and π such that V(crs, x, π) = 1.

ZK is a non-interactive zero-knowledge (NIZK) proof system if additionally:

• Black-box (adaptive) zero knowledge: There exists a PPT simulator Sdef
= (S1,S2) such that
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for all probabilistic polynomial-time A the following is negligible:∣∣∣∣∣∣∣∣Pr


crs← {0, 1}`(n);

(x,w)← AO,ZK(crs);
r ← {0, 1}n;

π ← P(crs, x, w, r)

: AO,ZK(π) = 1 ∧ (x,w) ∈ Rn


− Pr

 (crs, s)← SO,ZK1 (1n);
(x,w)← AO,ZK(crs);

π′ ← SA,O,ZK2 (s, x)

: AO,ZK(π′) = 1 ∧ (x,w) ∈ Rn

∣∣∣∣∣∣ .
Constructing NIZK proofs from WI proofs. Fix an oracle O, and let WI = (P,V) be a WI
proof system for L =CIRCUIT-SATO. We show that if a one-way function fO exists relative
to O,WI , then we can construct an NIZK proof system for NPO.

Assume fO is one-way relative to O,WI . Using f , we can construct, in a black-box
fashion, a pseudorandom generator GO : {0, 1}n → {0, 1}2n (see [73]). Define the following
language L′ ∈ NPO:

L′
def
=
{

(x, crs) s.t. ∃w ∈ {0, 1}n for which (x,w) ∈ RL or crs = GO(w)
}
.

A zero-knowledge proof that x ∈ L can then be constructed [40] by giving a witness-
indistinguishable proof that (x, crs) ∈ L′. In more detail, given a WI proof system (P,V)
for L, consider the following proof system (PZK,VZK) for L:

Prover PZK: Given crs, x, w with crs ∈ {0, 1}2n and (x,w) ∈ Rn, set x′ = (x, crs) and note that
(x′, w) ∈ L′. Use a Levin reduction [86] to the NPO-complete language L to obtain (x̂, ŵ) ∈ L.
Choose r ← {0, 1}|x̂| and return the proof π = P(x̂, ŵ, r).

Verifier VZK: Given crs, x, π, set x′ = (x, crs) and use a Levin reduction to the NPO-complete
language L to obtain x̂. Then output V(x̂, π).

Theorem 6.3.12 If (P,V) is a WI proof system forL andGO : {0, 1}n → {0, 1}2n is a pseudorandom
generator relative to O,WI , then (PZK,VZK) is an NIZK proof system for L.

Proof. Completeness is immediate, and statistical soundness of (PZK,VZK) follows from the
perfect soundness of (P,V) and the fact that a uniform crs ∈ {0, 1}2n is in the range of G with
only negligible probability.

A simulator S = (S1,S2) is given as follows. S1(1n) chooses w ← {0, 1}n computes
crs = GO(w), and then outputs (crs, w). Given x, simulator S2 sets x′ = (x, crs), applies a Levin
reduction to (x′, w) to obtain (x̂, ŵ) ∈ L, chooses r ← {0, 1}|x̂|, and outputs π = P(x̂, ŵ, r).

The fact that S provides a good simulation follows from pseudorandomness ofG relative
toO,WI , and witness indistinguishability ofWI . In a little more detail, in the real proof the
distinguisher D gets (crs, π) where crs ← {0, 1}2n and π = P(x̂, ŵ, r) for r ← {0, 1}|x̂|. In the
simulated proof, D gets (crs′, π′) where crs′ = G(w′) for w′ ← {0, 1}n and π′ = P(x̂, ŵ′, r)
for r ← {0, 1}n. We show that any polynomial time distinguisher D cannot distinguish be-
tween these two distributions by a hybrid argument. Let hybrid H0 be the real proof (crs, π).
In hybrid H1, we replace the crs in the real proof with a simulated crs′ = G(w′). If D can
distinguish between H0 and H1 then it breaks the pseudorandomness of G. In hybrid H2 we
replace the proof π = P(x̂, ŵ, r) with the simulated proof π′ = P(x̂, ŵ′, r). If D can distin-
guish between H1 and H2 then it breaks the witness indistinguishability ofWI . Since H2 is
distributed exactly as the simulated proof, this proves the theorem.
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6.3.3 On the Definition of theWI Oracle

We considered many possibilities for the definition of the WI oracle above. At first
glance, it may be tempting to define the prove oracle not to depend onw as this would guaran-
tee that a proof can not reveal any information about the witness. However, such a definition
is too powerful as it allows for the following key agreement protocol when the base oracle,
O, is a one-way permutation. A picks random strings x ← {0, 1}n, r ← {0, 1}n and B picks
x′ ← {0, 1}n. They privately query y = O(x) and y′ = O(x′) and send the values y, y′, r to
each other. Now, both A and B query P for a proof of the following statement s = (∃w such
that y = O(w) ∨ y′ = O(w)) and receive proofs πA and πB . Note, that this statement has
exactly two witnesses x, x′ and each of A and B knows one, but E can not learn either by the
one-wayness ofO. If P is independent of the witness then πA = πB andA andB have a secret
which E can not learn. Note that it is also necessary that P take additional randomness r as
an input as otherwise the proofs would not be witness indistinguishable.

6.4 An Augmented Black-Box Construction

Here we show that the Naor-Yung/Sahai construction of CCA-secure public-key encryp-
tion from CPA-secure public-key encryption can be cast as an augmented fully black-box
construction. This result is not surprising; the point is to demonstrate that our framework
does, indeed, capture constructions that go beyond the usual black-box ones. In particular,
the construction is shielding in the terminology of [53], something ruled out in that same work
in a black-box sense.

Let O = (G,E,D) be a public-key encryption scheme (with perfect correctness), and let
WI = (P,V) be a WI proof system for NPO. Assume O is CPA-secure relative to O,WI . As
noted in Section 6.3.2, we can useWI to construct an NIZK proof system (PZK,VZK) for NPO.
(Existence of CPA-secure encryption implies existence of a one-way function.) Moreover, we
can use the results of Sahai [114] to transform (PZK,VZK) into a simulation-sound NIZK proof
system ssZK = (PssZK,VssZK) for NPO. (We remark that for WI sampled according to the
distribution described in Section 6.3.1, the NIZK proof system (PZK,VZK) would already
satisfy simulation soundness with overwhelming probability. However, here we want a con-
struction starting from any WI proof system.) For notational convenience, we will treat ssZK
as an NIZK proof system for the specific language

L
def
={(c1, c2, pk1, pk2) | ∃m, r1, r2 : c1 = EOpk1(m; r1) ∧ c2 = EOpk2(m; r2)}.

We now describe the construction of a CCA-secure encryption scheme:

KeyGen GO,ssZK: Compute (pk1, sk1) ← G(1n) and (pk2, sk2) ← G(1n). Then choose crs ←
{0, 1}`(n) and set PK = (pk1, pk2, crs) and SK = (sk1, sk2).

Encryption EO,ssZK: To encrypt plaintext m, choose r1, r2, r ← {0, 1}n and then compute the
ciphertexts c1 = Epk1(m; r1) and c2 = Epk2(m; r2). Set x = (c1, c2, pk1, pk2) and w = (m, r1, r2)
and generate an NIZK proof π = PssZK(crs, x, w, r). Output (c1, c2, π).

Decryption DO,ssZK: To decrypt (c1, c2, π), set x = (c1, c2, pk1, pk2) and check that
VssZK(crs, x, π) = 1. If not, output ⊥. Otherwise, output m = Dsk1(c1).

The following theorem follows from [114, Theorem 4.1]. We note that even though [114]
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proves this theorem for non-uniform zero-knowledge proofs, uniform zero-knowledge suf-
fices since we consider a uniform notion of CCA-security.

Theorem 6.4.1 For anyO implementing an encryption scheme (with perfect correctness) that is CPA-
secure relative to O,WI , the above construction is CCA-secure relative to O,WI . Thus, the above
is an augmented fully black-box construction of a CCA-secure encryption scheme from CPA-secure
encryption.

6.5 An Impossibility Result for Key Agreement

In this section, we rule out augmented black-box constructions of key agreement with
perfect completeness from one-way functions. (We conjecture that the result extends to the
case of imperfect completeness, but we were unable to prove this.) For the remainder of this
section, we only consider 1-bit key-agreement protocols with perfect completeness.

Say (A,B) is a pair of polynomial-time oracle algorithms that is an augmented black-box
construction of key agreement from one-way functions. Then:

• For anyO,WI such thatWI is a proof system for NPO and all n, following an execution
between AO,WI (1n) and BO,WI (1n) both parties agree on a common bit k ∈ {0, 1}.

• Given (A,B) and E, define the advantage of E by the following experiment:

1. AO,WI (1n) and BO,WI (1n) interact, resulting in a shared key k and a transcript T .

2. E is given T , and outputs a bit k′.

The advantage of E is |Pr[k′ = k]− 1/2|.
For any O andWI such that O is one-way relative to (O,WI ) andWI is a WI proof
system for NPO, every unbounded algorithm E making at most polynomially many
queries to O andWI has negligible advantage.

To prove that no augmented (fully) black-box construction of key agreement from one-
way functions exists, we instantiate the oracle O with a random oracle and choose WI as
described in Section 6.3.1. That is,O = {On}n∈N where for each n ∈ N,On is chosen uniformly
at random from the space of all functions from {0, 1}n → {0, 1}n. A random oracle is one-
way [76], and Lemma 6.3.10 shows that it remains one-way in the presence of WI chosen
from the specified distribution. Moreover, by Lemma 6.3.9 we have that WI is a WI proof
system for NPO. We note that even though these lemmas are stated with respect to polynomial
time adversaries, since our proofs relativize, they also hold for computationally unbounded
adversaries making at most polynomially many oracle queries.

Now consider a construction (AO,WI , BO,WI ) of key-agreement relative to these oracles.
if (A,B) is an augmented black-box construction of key-agreement from one-way functions,
then for any unbounded algorithm E making at most polynomially many oracle queries that
has non-negligible advantage, there should exist a polynomial time machine SE,O,WI that
inverts O or breaks the witness indistinguishability ofWI . However, since S makes at most
polynomially many queries to O,WI , such an S does not exist. Therefore, every unbounded
algorithmE making at most polynomially many queries toO andWI should have negligible
advantage. However, we show an explicit E for which this is not the case, thus proving that
no augmented (fully) black-box construction of key agreement from one-way functions exists.
As described, E is not polynomial time. However, E can be made efficient if P = NP; thus
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any augmented semi-black-box construction of key agreement from one-way functions would
imply P 6= NP.

6.5.1 Breaking Key Agreement Relative to a Random Oracle

In this section we provide a warmup for our main proof by ruling out (standard) black-
box constructions of key agreement from one-way functions. This proof may also be of inde-
pendent interest for pedagogical purposes as a simplified version of the proofs in [76, 10].
Note, however, that we prove a weaker result: we only rule out constructions of key-
agreement protocols with perfect completeness based on one-way functions whereas [76, 10]
rule out constructions with arbitrary completeness even based on one-way permutations.

Let (A,B) be a construction of key agreement from one-way functions. Let qA (resp., qB)
be a polynomial upper bound on the number of queries made by A (resp., B). Consider an
attacker E defined as follows. E, given a transcript trans of an execution of (A,B) in the
presence of a random oracle O, maintains a set Q(E) of query/answer pairs for O, and a
multiset of candidate keys K, both initialized to ∅. Then E runs 2qB + 1 iterations of the
following attack:

• Simulation phase: E finds a view of A consistent with the given transcript and
with Q(E). This view contains the randomness rA used by A, as well as a set of or-
acle queries/answers Q̂(A) made by A. The set Q̂(A) is chosen to be consistent with
any queries/answers in Q(E), but it need not be consistent with the true oracle O.

Let k denote the key computed by A in the view. Then E adds k to K.

• Update phase: E makes all queries in Q̂(A) \ Q(E) to the true oracle O, and adds the
resulting query/answer pairs to Q(E).

Following the above, E has a multiset K of 2qB + 1 possible keys. E outputs the majority
value in K.

In each iteration, E makes at most qA queries to O. Thus, E makes O(qA · qB) queries
overall. We claim that E outputs the key computed by A and B with probability 1. Toward
this, we first prove the following:

Claim 6.5.1 Let k denote the actual key computed by A and B in an execution of the protocol. Then
in each iteration of the attack, either E adds k to K, or E adds to Q(E) one of the queries made by B
in the real execution.

Proof. LetQ(B) denote the queries made byB in the real execution of the protocol. In a given
iteration, there are two possibilities. If Q̂(A)∩Q(B) 6⊆ Q(E), then we are done since E makes
all queries in Q̂(A) \ Q(E) to the true oracle O. If, on the other hand, Q̂(A) ∩ Q(B) ⊆ Q(E)
then there is an oracle Õ that is consistent with the sampled view of A and the view of the
real B. That is, there is an execution of the protocol with an oracle Õ that yields the observed
transcript trans, a view for B identical to the view of the real B, and a view for A identical to
the view generated by E in the current iteration. Perfect completeness implies that the key k
computed by A in this case must match the (actual) key computed by B.

Since B makes at most qB queries, it follows that there are at most qB iterations in which
E adds an incorrect key to K, and so at least qB + 1 iterations in which E adds the correct key
to K. Since E outputs the key that occurs most often, E always outputs the correct key.

68



6.5.2 Breaking Key Agreement Relative to O,WI

Here we prove our main result:

Theorem 6.5.2 There is no augmented fully black-box construction of key agreement with perfect
completeness from one-way functions.

The overall structure of the attack is the same as in the previous section, but there are
some key differences. Our attack again proceeds by having E repeatedly find a view of A
consistent with a transcript trans and the oracle queries Q(E) that E has made thus far. Let
Q(A) and Q(B) denote the queries of A and B, respectively, in the actual execution of the
protocol, and let Q̂(A) denote the queries of A in the view found by E in some iteration. In
the previous section we argued that as long as Q̂(A) ∩ Q(B) ⊆ Q(E), the key found by E in
the given iteration matches the key computed by the real B. This was because, under that
condition, there must exist an oracle Õ that is consistent with an execution of the protocol in
which party A makes queries Q̂(A), party B makes queries Q(B), and the resulting transcript
is trans. Here, however, this need not be the case. For example, consider a real execution
of the protocol in which B makes a query V(x, π) that returns 1, yet B does not make any
corresponding query P(x,w, ?) = π with (x,w) ∈ RL. If E samples a view of A in which
x 6∈ L, then there are no oracles Õ, W̃I consistent with the sampled view of A and the real
view of B, but neither does E necessarily learn any new queries in Q(B).

We deal with the above by modifying the attack and changing the proof. First, we modify
the attack by having E sample extended views of A, which include a view of A along with
additional oracle queries used for “book-keeping”. Second, rather than showing that, in every
iteration, E either learns the correct key or a query in Q(B), we show that, in every iteration,

E either learns the correct key or a query in Q(AB)
def
=Q(A) ∪Q(B).

An additional subtlety arises due to the possibility that Spoofi occurs (cf. Lemma 6.3.4)
for some i. In our attack we handle this by guaranteeing that Spoof = ∪iSpoofi occurs with
sufficiently small probability, and showing that the attack is successful whenever Spoof does
not occur. (Our proof can be significantly simplified if we make the assumption that A(1n)
and B(1n) only query their oracles on inputs of length n, however we wish to avoid this
assumption.)

Preliminaries: We view Q(A), Q(B), and Q(E) interchangeably as sets of queries and sets of
query/answer pairs. We write, e.g., [P(x,w, r) = π] ∈ Q(A) to denote that A made the query
P(x,w, r) and received the answer π. As usual, we let L denote the set of satisfiable circuits
with O-gates.

We assume any key-agreement construction (A,B) has the following normal form: Be-
fore a party queries P(x,w, r), that party also asks all O-queries necessary to check whether
(x,w) ∈ RL; after receiving the result π = P(x,w, r), that party also asks V(x, π). Any key-
agreement protocol can be modified to satisfy this condition with only a polynomial blow-up
in the number of queries. We let q = q(n) ≥ n denote a polynomial upper bound on the
combined running time of A and B (and so in particular a bound on the number of queries
they make).

Without loss of generality, assume that for any (circuit) x ∈ {0, 1}n and w ∈ {0, 1}n,
computation of x on input w queries O at most n times, each time on input of length at
most n. In other words, deciding whether (x,w) ∈ CIRCUIT-SATO depends only on the values
of O on inputs of length at most n.
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Extended views of A: In our attack, E will repeatedly sample extended views of A which
include A’s view along with some additional oracle queries/answers. We denote an ex-
tended view by (rA,O′,WI ′), where rA are the random coins of A and O′,WI ′ is a set of
query/answer pairs that includes all those made by A (using coins rA and the given tran-
script). E samples only consistent extended views, which we define now.

Definition 6.5.3 Let Q =
(
O′,WI ′ = (P ′,V ′)

)
be a set of queries/answers. We say it is consistent

if

1. For every query [P ′(x,w, r) = π] ∈ WI ′, oracle O′ contains queries/answers sufficient to
determine whether (x,w) ∈ RL. Moreover, if (x,w) ∈ RL then [V ′(x, π) = 1] ∈ WI ′, while if
(x,w) 6∈ RL then [V ′(x, π) = 0] ∈ WI ′.

2. For every query [V ′(x, π) = 1] ∈ WI ′, there exist w, r such that O′ contains queries/answers
for which (x,w) ∈ RL and [P ′(x,w, r) = π] ∈ WI ′.

Let trans be a transcript of an execution between A(1n) and B(1n), and let Q(E) be a set of
queries/answers. We say the extended view (rA,O′,WI ′) is consistent with trans and Q(E) if
O′,WI ′ is consistent, and also:

1. Every query in Q(E) is in O′,WI ′, and is answered the same way.

2. AO′,WI ′(1n; rA), when fed with incoming messages as in trans, would generate outgoing mes-
sages consistent with trans. Furthermore, all oracle queries/answers made/received by A in such
an execution are in O′,WI ′.

The attack. Let t = 4 log q. First, in a pre-processing step, E queriesO(x) for all xwith |x| ≤ t;
queries P(x,w, r) for all x,w, r with |x| = |w| = |r| ≤ t; and queries V (x, π) for all x, π with
|x| = |π|/7 ≤ t. Denote these queries/answers by Q∗(E). The rest of the attack is similar to
that of the previous section. E, given a transcript trans of an execution of (A,B), initializes
Q(E) = Q∗(E) and K = ∅, and then runs 2q + 1 iterations of the following:

• Simulation phase: E finds an extended view (rA,O′,WI ′) consistent with trans
and Q(E), with O′,WI ′ of size at most |Q(E)|+ q. (If no such extended view exists, E
aborts.) Let k be the key computed by A in this view. E adds k to K.

• Update phase: E makes all queries in (O′ ∪WI ′) \ Q(E) to the true oracles O,WI . For
any queries [P ′(x,w, r) = π] just made,E also makes anyO queries needed to determine
whether (x,w) ∈ RL, as well as the query V(x, π). All the resulting query/answer pairs
are added to Q(E).

Following the above, E has a multiset K of 2q+ 1 possible keys. E outputs the majority value
in K.

Analysis. In pre-processing, E makes polynomially many queries. In each iteration of the
attack, E makes at most q+ q(q+ 1) ≤ 3q2 queries: there are at most q queries in (O′ ∪WI ′) \
Q(E), and for each such query of the form [P ′(x,w, r) = π] we have |x| ≤ q and so at most q
queries are needed to check whether (x,w) ∈ RL and one additional query for V(x, π). Thus,
E makes at most 3q2 · (2q + 1) queries after the pre-processing, which is bounded by 7q3 for
q > 3.
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For any i, define Spoofi (cf. Lemma 6.3.4) to be the event that there is a query [Vi(x, π) =
1] ∈ Q(A) ∪Q(B), yet there is no query

[Pi(x,w, ?) = π] ∈ Q(A) ∪Q(B) ∪Q∗(E)

with (x,w) ∈ RL. Let Spoof =
∨
i Spoofi. We claim that Spoof occurs with probability at

most 1/8. Indeed, by construction Spoofi cannot occur for i ≤ t, and for i > t, by Lemma 6.3.4
Pr[Spoofi] ≤ q · 2−4i. Thus, by a union bound, Pr[

∨
i>t Spoofi] ≤ q−15 ·

∑∞
i=1(2−4)i ≤ 1/8 for

q ≥ 2.
Define Spoof ′ to be the event that, at some point during the attack, E queries V(x, π) = 1

to the real oracle, but there was no previous query [Pi(x,w, ?) = π] made by A, B, or E with
(x,w) ∈ RL. By construction, this can only possibly occur if |x| > 4 log q. Since E makes at
most 7q3 queries after the pre-processing stage, however, Spoof ′ occurs with probability at
most 1/8.

In the rest of the analysis, we show that as long as neither Spoof nor Spoof ′ occur, E
outputs the key computed by A and B. This suffices, since then E finds the shared key with
probability at least 3/4 overall. Then, as in the previous section, the following lemma will
prove Theorem 6.5.2:

Lemma 6.5.4 Let k denote the actual key computed by A and B in an execution of the protocol, and
assume neither Spoof nor Spoof ′ occur. Then E does not abort, and in each iteration of the attack
either E adds k to K, or E adds to Q(E) one of the queries made by A or B in the real execution.

Proof. Let Q(AB)
def
=Q(A) ∪ Q(B) denote the queries/answers made/received by A or B in

the real execution. We first show that E never aborts. Say Q(E) is consistent at the beginning
of some iteration; this is true by construction in the first iteration. Since Spoof did not occur, a
consistent, extended view is given by letting (O′,WI ′) = Q(E) ∪ Q(AB), which is of size at
most |Q(E)|+ q. Moreover, regardless of what consistent, extended view is actually sampled
by E, the new set Q(E) defined at the end of the iteration is consistent unless Spoof ′ occurs.

In the remainder of the proof we assume that neither Spoof nor Spoof ′ occur. We now
prove the rest of the lemma. Let (rA,O′,WI ′) be the consistent, extended view chosen by E
in some iteration. We define three events, and show:

• If one of the events occurs, then, in the update phase of that iteration, E adds to Q(E)
some query in Q(AB).

• If none of the events occur then there are oracles Õ, W̃I that match (i.e., are not incon-
sistent with) the extended view of A and the real view of B. (Thus, by perfect complete-
ness, E adds the correct key to K in that iteration.)

Before defining the events, we introduce some terminology. Given some set of queries Q,
we say Q fixes x ∈ L if either (1) there exists a w and O-queries in Q such that (x,w) ∈ RL,
or (2) there is a query [V(x, ?) = 1] ∈ Q. We say Q fixes x 6∈ L if for all w there are O-queries
in Q such that, regardless of how any of the O-queries not in Q are answered, it holds that
(x,w) 6∈ RL. We define Q fixes (x,w) ∈ RL and Q fixes (x,w) 6∈ RL in the obvious way.

We now define the events of interest:

E1: O′,WI ′ disagrees with Q(AB) on the answer to some O-, P-, or V-query.

E2: There exists an x such that Q(AB) fixes x ∈ L but O′,WI ′ fixes x 6∈ L, or vice versa.
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E3: A V ′-query returning 0 inWI ′ is “inconsistent” with the O,P queries in Q(AB), or vice
versa. Formally, one of the following occurs:

• There is a query [V ′(x, π) = 0] ∈ WI ′, but [P(x,w, ?) = π] ∈ Q(AB) and Q(AB)
fixes (x,w) ∈ RL.

• There is a query [P ′(x,w, ?) = π] ∈ WI ′ and O′ fixes (x,w) ∈ RL, but [V(x, π) =
0] ∈ Q(AB).

Claim 6.5.5 If any of E1, E2, or E3 occur in the simulation phase of some iteration, then E learns a
new query in Q(AB) in the update phase of that iteration.

Proof. If E1 occurs, the claim is immediate. (Q(E) contains the answers of the true oracles,
and so can never disagree with Q(AB). So any disagreement between O′,WI ′ and Q(AB)
must be due to some query in O′,WI ′ outside of Q(E).) If E2 occurs there are several sub-
cases to consider:

1. Say Q(AB) fixes x ∈ L, but O′,WI ′ fixes x 6∈ L. The second event implies that for all w
oracle O′ fixes (x,w) 6∈ RL. There are two ways the first event can occur:

• There exists a w such that Q(AB) fixes (x,w) ∈ RL. In this case there must be
an O-query in Q(AB) that is answered inconsistently with some query in O′, and
event E1 has occurred.

• There is a query [V(x, π) = 1] ∈ Q(AB) (for some π). Since Spoof has not occurred,
this means that for some w, r there is a query [P(x,w, r) = π] in Q(AB) or Q∗(E).
Say [P(x,w, r) = π] ∈ Q(AB). Then by our normal-form assumption, Q(AB)
fixes (x,w) ∈ RL; this, in turn, implies an O-query in Q(AB) inconsistent with O′
(which, recall, fixed x 6∈ L), and so E1 has occurred.
On the other hand, say [P(x,w, r) = π] ∈ Q∗(E). Then, by construction of Q∗(E),
the query [V(x, π) = 1] is also in Q∗(E), and Q∗(E) fixes (x,w) ∈ RL. But since any
queries in O′ must agree with the corresponding O-queries in Q∗(E), this cannot
happen.

2. Say O′,WI ′ fixes x ∈ L, but Q(AB) fixes x 6∈ L. The second event implies that for all w
we have that Q(AB) fixes (x,w) 6∈ RL. There are two ways the first event can occur:

• There exists a w for which O′ fixes (x,w) ∈ RL. In this case there is an O-query
in Q(AB) that is answered inconsistently with some query in O′, and event E1 has
occurred.

• There is a query [V(x, π) = 1] ∈ WI ′ for some π. By definition of consistency, there
exists w such that O′ fixes (x,w) ∈ RL. Then there must be an O-query in Q(AB)
that is answered inconsistently with O′, and so E1 has occurred.

Finally, we turn to E3. Here there are two sub-cases:

1. Say [V ′(x, π) = 0] ∈ WI ′, but [P(x,w, ?) = π] ∈ Q(AB) and furthermore Q(AB) fixes
(x,w) ∈ RL. Because of our normal-form assumption, [V(x, π) = 1] ∈ Q(AB). Thus
there is a V-query in Q(AB) that is answered inconsistently with WI ′ and so E1 has
occurred.
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2. Say [P ′(x,w, ?) = π] ∈ WI ′ and O′ fixes (x,w) ∈ RL, but we have [V(x, π) = 0] ∈
Q(AB). By definition of consistency, [V(x, π) = 1] ∈ WI ′. Thus there is a V-query in
Q(AB) that is answered inconsistently withWI ′, and so E1 has occurred.

This concludes the proof of Claim 6.5.5.

To complete the proof of the lemma, we show that if none of E1, E2, or E3 occur, there
exist oracles Õ, W̃I (in the support of the distribution from Section 6.3.1) that match (i.e., do
not disagree with)O′,WI ′, andQ(AB). This means there is an execution of the protocol with
oracles Õ, W̃I that yields a view for B identical to the view of the real B, and a view for A
identical to the view of A in the extended view sampled by E. Perfect completeness implies
that the key k computed by A in that case must match the (actual) key computed by B, as we
needed to show.

We construct Õ, W̃I as follows. First, answer all queries in O′,WI ′, and Q(AB) as
answered by those oracles; if E1 does not occur, this is well-defined as there is no conflict.
Answer all other queries in Õ arbitrarily. Note that if O′,WI ′, Q(AB) fixes x ∈ L then so
does Õ, and similarly if O′,WI ′, Q(AB) fixes x 6∈ L. Note also that with Õ fixed, so are L̃
and R̃L.

For P̃ , proceed as follows. Recall that all P̃i queries for i ≤ t = 4 log q were made by E
during pre-processing and so are already fixed. Any other unassigned query P̃(x,w, r) with
|x| > t is defined as follows:

• If (x,w) 6∈ R̃L, the query is answered arbitrarily.

• If (x,w) ∈ R̃L, let π∗ ∈ {0, 1}7|x| be such that V(x, π∗) is not in WI ′ or Q(AB).
(There must exist such a π∗, by the bound on the number of queries in these sets.) Set
P̃(x,w, r) = π∗.

With the Õ and P̃ queries fixed, oracle Ṽ is set as in Section 6.3.1.
We show that Õ, W̃I match (i.e., do not disagree with) O′,WI ′, and Q(AB). By con-

struction, the only possible conflict can be between Ṽ and some V-query in WI ′ or Q(AB).
No such conflict is possible:

1. Say [V(x, π) = 1] ∈ WI ′ for some x, π. Then by definition of consistency, there exist w, r
such that O′ fixes (x,w) ∈ RL, and [P(x,w, r) = π] ∈ WI ′. But then (x,w) ∈ R̃L and
P̃(x,w, r) = π, and so Ṽ(x, π) = 1.

2. Say [V(x, π) = 1] ∈ Q(AB) for some x, π. Since Spoof does not occur, there exist w, r
such that O′ ∪Q(AB) fixes (x,w) ∈ RL, and [P(x,w, r) = π] ∈ WI ′ ∪Q(AB). But then
(x,w) ∈ R̃L and P̃(x,w, r) = π, and so Ṽ(x, π) = 1.

3. Say [V(x, π) = 0] ∈ WI ′ ∪ Q(AB) for some x, π. If x 6∈ L̃ then Ṽ(x, π) = 0 also. If
x ∈ L̃, there is an inconsistency only if there is some w such that P̃(x,w, ?) = π and
(x,w) ∈ R̃L. Note that P̃(x,w, ?) = π can only occur if [P(x,w, ?) = π] ∈ WI ′ ∪Q(AB),
but in that case (since [V(x, π) = 0] ∈ WI ′ ∪ Q(AB) and E3 did not occur) either O′ or
Q(AB) fix (x,w) 6∈ RL, and hence (x,w) 6∈ R̃L either.

This completes the proof of Lemma 6.5.4.
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Chapter 7

Conclusions

In this dissertation we have studied the limitations of cryptographic constructions. We
began, in Chapters 4 and 5, with the restricted class of black-box constructions demonstrating
new black-box separations between several widely used cryptographic primitives. Then, in
Chapter 6, we proposed the model of augmented black-box constructions to capture a richer
class of techniques. Using this new model we were able to demonstrate limitations on the
power of a commonly used class of non-black-box constructions, those using zero-knowledge
proofs. We view this as a significant step towards understanding the relationships between
cryptographic primitives and, more importantly, for truly capturing what is possible using
“known techniques”.

We believe that the study of relationships among cryptographic primitives is an impor-
tant one. Separation results can make clear fundamental differences between primitives. They
can also save a lot of wasted effort by guiding researchers away from hopeless approaches.
Additionally, such results may aid in finding new constructions by pinpointing exact proper-
ties that a construction can have in order to bypass them. For these reasons, we believe that
our augmented black-box model will find further applications in the study of cryptographic
primitives and the search for new cryptographic constructions.

Many open questions remain following our work, both in the traditional setting of black-
box separations and in the setting of augmented black-box separations. Some such questions
include:

Black-Box Separations. Perhaps the most interesting open question in the study of black-
box constructions is the black-box complexity of CCA-secure encryption. Specifically, it is not
known if there exists a black-box construction of CCA-secure encryption from CPA-secure
encryption or even from trapdoor permutations. Interestingly, for the case of trapdoor per-
mutations there exist non-black-box constructions [93, 37, 114, 88]. Whereas, for the case of
constructions from CPA-secure encryption, there exists a partial black-box separation [53].
However, these results fail to resolve the question regarding the existence of a black-box con-
struction. Since CCA-secure encryption has been accepted as the standard security notion
for public-key encryption, it is an interesting and important open question to understand the
black-box complexity of this primitive.

Another interesting problem in the area of black-box separations is to investigate the
power of fully-homomorphic encryption. Fully-homomorphic encryption (FHE) is a very
powerful new primitive that has only recently been realized [51] and has already proven very
useful in many constructions and applications. We believe that an interesting question is to
explore the limits of what can, and what cannot, be accomplished using this powerful new
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primitive. As a starting point, we propose looking at limitations on the power of black-box
constructions using fully-homomorphic encryption.

Non-Black-Box Separations. Even more open problems remain in the study of non-black-box
constructions and separations. The augmented black-box suggested in Chapter 6 gives a way
to study such constructions and we suggest several directions for improving our results and
model. The first such open question is to close the gap between our result and the correspond-
ing black-box separations [76, 10]. Specifically, it would be interesting to prove that our aug-
mented black-box separation holds also for the case of constructions of key agreement with
imperfect completeness and for constructions starting from one-way permutations. Going be-
yond key agreement, it would be interesting to study what other primitives can be separated
under augmented black-box separations. Such separations will help us better understand
the power of zero-knowledge proofs in cryptographic constructions. For some preliminary
results in this direction see [26].

The augmented black-box model comes short of capturing all known techniques. Thus,
an important line of work is to extend this model to capture additional constructions. Some
potential problems in this direction are as follows. Currently, augmented black-box construc-
tions do not allow one to give proofs of proofs. More formally, the Prover oracle can not
prove membership in a language defined relative to itself. It would be interesting to find
an alternative model in which such proofs are allowed but our separation result still holds.
Additionally, the augmented black-box model fails to capture many known non-black-box
techniques (e.g. [11, 2, 5]). It would be very interesting to devise a model capturing some
of these constructions. Specifically, we believe that capturing the non-black-box simulation
technique of [5] would be of particular interest.
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