ABSTRACT

Title of Document: A SURVEY OF THE ATTACK ON MD5.
Prathap Sridharan, MS Applied Mathematics,
2006

Directed By: Professor Lawrence Washington, Mathesa

In Eurocrypt 2005, Wang et al. presented an exgipizper that showcased her
method of breaking MD5 by attacking its collisi@sistance propery. However,
Wang's paper does not give a thorough expositigh®fttack and much of their
techniques are shrouded in mystery. This papemnatteto explain Wang’s attack on

MDS5 in greater detail by consolidating the vari@expository works on the subject.

A SURVEY OF THE ATTACK ON MDS5.

By

Prathap Sridharan

Thesis submitted to the Faculty of the Graduateo8lobif the
University of Maryland, College Park, in partialffiment
of the requirements for the degree of
MS Applied Mathematics
2006

Advisory Committee:

Professor Lawrence Washington
Professor Jonathan Katz
Professor Jeffrey Adams

© Copyright by
Prathap Sridharan
2006

Acknowledgements

| would like to thank my advisor, Professor LawreM#ashington, for his
encouragement, constructive comments and helpdighits during the writing of this
thesis. | would also like to thank Professor JoaatKatz for giving me the idea to
write this thesis, and providing me with the resagrto conduct my research. Finally,
| would like to thank Yiqun Lisa Yin and Phillip Mé&es for referring me to good

sources of research on the topic.

Table of Contents

ACKNOWIEAGEMENTS ...ttt e e e e e e e e e e e e eeeeneeeeeeenee v
TabIE Of CONTENTSuiiiiiiiiiiiiiie e %
(@ gF=T o] (= g I [o1 o To [1 [£ o] o PP UPPP PP 1
1.1 Applications of Hash FUNCHONS..........ccoiiiiiiiiieicicieeeeeee e 2..
1.2 The Merkle-Damgard Construction for Hash Fuomi................c............. 4
1.3 Structure of the ThESIScoiiiii e 6
Chapter 2: The MD5 AIGOtMooviiiiii e 7
Chapter 3: A Toolbox for Cryptanalysis of MD5..............oovvviiiiiiiciiiieeee e 12
3.1 Modular Differences and XOR Differencescccccocoeeveeieieiiiiiiiiiiiiiinnnnes 12
3.2 Modular Addition and Bit ROtAtIONeeeeiiiiiiiiiiiiiiiiieeeceeccce e 17
3.3 Difference Propagationoooiiiieeeeemiini s 20
Chapter 4: Wang's Attack ON MD4 ..o eeeas 28
4.1 Computing Necessary Conditions for the DifféisrCharacteristics....... 34
4.2 The Message Block Differentials and DiffereinBattern......................... 37
4.3 Message MOIfICAtION..........iiiiii e 43

Chapter 1: Introduction

A cryptographic hash function is a hash functiothvaertain additional security
properties to make it suitable for use as a prumiin various information security
applications, such as authentication and messaggrity. A hash function takes a
long string (or message) of any length as input@oduces a fixed length string as
output, sometimes termed a message digest ortaldiggerprint. In various
standards and applications, the two most-commoseyl lnash functions are MD5 and
SHA-1; however, as of 2005, security flaws havenhdentified in both algorithms.
Definition 1.1 (Cryptographic Hash Function) A cryptographic hash function is a
mapping

h:{0,1¥ —{0,1}"
where {0,1} denotes the set of bit strings of arbitrary lengthe image h(X) of

some messageX{0,1} is called the hash value of X.

Broadly speaking, a cryptographic hash functiorutthhbehave as much as
possible like a random function while still beingterministic and efficiently
computable. There is no formal definition which taps all of the properties
considered desirable for a cryptographic hash fanche properties below are
generally considered prerequisites and a violatfcemy of these properties implies a
weak hash function:

Preimage resistangivenh it should be computationally infeasible to find/an

such thah = hashin).

Second preimage resistagiven an inputn, it should be computationally infeasible
to find another inputy, (not equal tan) such that hasht) = hashiy,).
Collision-resistarntit should be computationally infeasible to fiveotdifferent
messagesy andny, such that hashg) = hashi,).

It should be noted that the meaning of “computatilyrinfeasible” is very
much a subjective phrase. One can define a protddra “computationally
infeasible” if solving it would require more tharpee-specified upper bound in space
or computing speed. However, considering the ctinse with which computing
machines are being improved, what might be deercechputationally infeasible”

today might be perfectly feasible tomorrow.

1.1 Applications of Hash Functions

A patrticularly important application of hash furmts occurs in the context of digital
signature schemes. Digital signature is a type ethiod for authenticating digital
information analogous to ordinary physical signesuon paper, but implemented
using techniques from the field of public-key croygtaphy.

Digital signature schemes rely on public-key crgpéphy. In public-key
cryptography, each user has a pair of keys: onégaihd one private. The public key
is distributed freely, but the private key is keptret and confidential; another
requirement is that it should be infeasible toethe private key from the public
key. A general digital signature scheme consisthrafe algorithms:

« A key generation algorithm

« A signing algorithm

« A verification algorithm

For example, consider the situation in which Baldsea message to Alice and wants
to be able to prove it came from him. Bob sendsitessage to Alice and attaches a
digital signature. The digital signature is genedaiising Bob's private key, and takes
the form of a simple numerical value (normally eg@ented as a string of binary
digits). On receipt, Alice can then check whetlmer tnessage really came from Bob
by running the verification algorithm on the mess&mgether with the signature and
Bob's public key. If the verification algorithm agpts the message, then Alice can be
confident that the message really was from Bobabge the signing algorithm is
designed so that it is very difficult to forge grsature to match a given message
(unless one has knowledge of the private key, wBigh has kept secret).

The problem with such a scheme is that the sigaasunsually about as big as
the message itself. Thus, for efficiency reasormd) st applies a cryptographic hash
function to the message before signing. This mékesignature much shorter and
thus saves time since hashing is generally mudbrfggan signing in
implementations. However, if the message digestralgn is insecure (for example,
if it is possible to generate hash collisions)ntitanight be feasible to forge digital
signatures.

To elaborate, suppose Alice and Eve agree to saptament detailing some
financial transactions between them. Also, supplogeEve is dishonest and is able
to produce two documents which are mapped to thke $wsh value and whose
contents differ significantly. That is, suppose Euvaes able to find another document

with another set of conditions benefiting Eve thas the same hash value as the

original financial document. Now, Alice might beagreement with the conditions of
the original document. So Eve asks Alice for heitdl signature on the original
document and what Eve receives is not only a \&jdature for the original
document but also for the forged document as ek signature is valid for both
messages because the verification process onligrieféheir common hash value.
Eve can now replace one message by the other ama ttiat Alice signed the second
message, the document that unfairly benefits hench, it is important to require

hash functions to be collision resistant.

1.2 The Merkle-Damgard Construction for Hash Functions

The Merkle-Damgard method or MD-design principle igeneric method of

constructing a cryptographic hash function. A cogpaphic hash function must be

able to process an arbitrary-length message ifiked-length output. This can be

achieved by breaking the input up into a seriesqofal-sized blocks, and operating

on them in sequence using@mpression functiothat processes a fixed-length input

into a shorter, fixed-length output, each time conmyg a block of the input with the

output of the previous round.

Definition 1.2.1 (Compression Function) A compression function is a mapping
g:{0,1"x {0,1y—{0,1}"

with 1< m < | which can be evaluated efficiently. Here g }" part of the domain

is some fixed parameter IV (initial value) and tdmenpression function g is denoted

by gv (and maps {0,1}-{0,1}M.

Typically an input message is padded such thaetigth of the padded input
message is a multiple bfAn algorithm for the Merkle-Damgard construction
proceeds as follows:
Given: Compression functiog : {0,1}™ x {0,1}—{0,1}™
I-bit constant 1V;

Input : Message M,

1. Break M into m-bit blocks Ml..., M1, padding if necessary;

2. Lethy=1V;

3. Fori=1tokleth;= g(h_, M_);

4. Outputhy;
Since compression functions can be seen as snslfbactions in themselves, it
seems natural that the collision resistance ofnapression function implies the
collision resistance of the hash function. We midke more precise with the
following definitions and theorem:
Definition 1.2.2 (Collision of the Compression Function) A collision of the
compression function g consists of an initial vaMend different inputs X anX’
such that

av(X) = gv(X)

Theorem 1.2.4 ([5]) Let g be a collision resistant compression functaod h be a

hash function, constructed from g by using the MiSigh principle. Then h is

collision resistant.

1.3 Structure of the Thesis

It seems intuitively clear that the property oflisdbn resistance is the most important
for hash functions and not surprisingly it is theget of most attacks on hash
functions. The attack on the MD5 hash function igaoyun Wang proved that MD5
is not collision resistant. In this thesis, we wiftempt to explain Wang'’s attack on
MD5. In order to understand the attack on MD5 wk méed some background
knowledge. In chapter 2 we explain the MD5 alganithnd some of its important
characteristics. In chapter 3 we provide a toolfamxthe cryptanalysis of MD5.
Firstly, theorems pertaining to additions of integeodulo 2, bit rotations, and
bitwise Boolean functions are presented. Thesa¢nepare taken from Magnus
Daum’s PhD thesis [2]. Most of the theorems willdb&ted without proof (for proofs
see [2]). Secondly, we analyze difference propagah hash functions. It seems
intuitive that in order to understand the attacktmncollision resistance of hash
functions we would need to study the effect of ingifferences on the output
differences. Particularly, we are interested imging the conditions under which
non-zero input differences produce a zero outpfteréince. Finally, in chapter 4 we
attempt to explain Wang's attack on MD5 using thekdground knowledge from the

previous chapters.

Chapter 2: The MD5 Algorithm

The MD5 hash function belongs to a class of hasbtions called the MD4-Family.
The hash functions of this class use the iteraaheme as dictated by the Merkle-
Damgard construction. In Crypto '89, Merkle and Rgml submitted a seminal
article on the construction of hash functions ushmegiteration scheme. Inspired by
this article, Rivest proposed the MD4 hash functeopredecessor of MD5, one year
later. After cryptanalysis of MD4 revealed certaimexpected properties that raised
concerns about its security, Rivest proposed thé M&sh function in 1992. It
incorporated many of the ideas used to design MiD4mMith more emphasis on
security rather than efficiency. Thus, Wang’s d&tao MD5 is applicable to MD4 as
well. In fact, Wang’'s method produces collisiond®4 much more quickly than in
MDS5.

MD5 processes a variable length message into d-fexagth output of 128
bits. The input message is broken up into chunksl@fbit blocks. The message is
padded so that its length in bits is divisible B25The padding works as follows:
first a single bit, 1, is appended to the end efrtiessage. This is followed by as
many zeros as are required to bring the lengthehtessage up to 64 bits less than a
multiple of 512. The remaining bits are filled uttwa 64-bit integer representing the
length of the original message. Obviously, restricthe length of the message to 64
bits precludes the possibility of processing “agbity long” messages but in practice
a message length greater tH2th—1 is highly unlikely. Hence, for all practical
purposes, we can consider the hash function ag ladie to process messages of

arbitrary length. Details about the padding of gput message do not play any role in

our explanation of Wang'’s attack. Thus we will assuthat the input message length
is a multiple of 512.

The main MD5 algorithm operates on a 128-bit st@itaded into four 32-bit
words (or registers), denotagb, c andd. As usual, 32-bit words are integers mod
2%2. These are initialized to certain fixed constantectively called 1V (or initial
value). The main algorithm then operates on ea@hbtlmessage block in turn, each
block modifying the state. The processing of a rageslock consists of four similar
stages, termemunds each round is composed of 16 similar operationstep
operations) based on a non-linear funcfipmodular addition, and left rotation. Here
0<i <64 denotes thi" step operation.

Recall that MD5 is only one hash function in thassl of hash functions called
MD4-Family. The non linear boolean functions usedthe MD4-Family are:

XOR(X,Y,Z2)=X0YDO Z
MAJ(X,Y,Z)= (X OY)O(XO20(YO 2
ITE(X,Y,Z)=(XOY)O(XDO2
ONX(X, Y, Z)= (X OY)O Z
Sometimes the functions ITE and ONX are appliedhswapped parameters. Thus,
for example, we will denote ITE(Z, X, Y) by ITg.

Since MD5 is a member of the MD4-Family, a sub$¢he functions from
the above list is used. A different boolean functipis used in each round of MD5.
Note that MAJ is not used for MD5:

fi(X, Y, Z2) = ITE =(XUY)U(=XUZ), 0<i<i5

fi(X,Y,2)=1TE,y =(XUZ)0(YU-2), 16<i<31

fi(X, Y, Z) = XOR =XO0OVYdZ 3Xi<47
fi(X,Y,Z) =ONXyy, =Y O (X U -2), 481 <63
O, U, U, = denote the XOR, AND, OR and NOT operations.

Lett ands denote step dependent constants, the + operatotedaddition
modulo 2? and « denote the rotational left shift operatbM lis a 512 bit message
block, then M = <m, my,..., mis> where mis a 32 bit word. In each round of sixteen
step operations, these sixteen 32 bit words are esactly once anav; denotes the
round dependent permutations of these sixteent32dsds that make up the message
block. The round dependent permutation is givefolk®ws:

Letk € {0,1,2,3} indicate the rounds. Then
Wiek+i = M mod 16 ifk=0
Wiek+i = Mei+1 mod 16, IfK=1
Wiek+i = Mgi+5 mod 16, If K=2

Wigk+i = Myi mod 16, IfK=3
Let [abcd i] denote the following operation:
a=b+(a+ f(hgd+ w+)

Then the algorithm for the MD5 hash function canbigten as follows:

M D5(x)

external MD5-PAD
g'Obal fo,...,ts3
global s,...,Ss3

y « MD5-PAD(X)
denotey= M| M]...] M, whereeachM is- bitblo

a = 0x67452301
b = Oxefcdab89

¢ = 0x98badcfe
d = 0x10325476

for each M, O{M,,...,M }

begin

end

aa=a
bb=b
cc=c
dd=d

/*Do the following 16 operations for round 0*/
[abcd O] [dabc 1] [cdab 2] [bcda 3]
[abcd 4] [dabc 5] [cdab 6] [bcda 7]
[abcd 8] [dabc 9] [cdab 10] [bcda 11]
[abcd 12] [dabc 13] [cdab 14] [bcda 15]

/*Do the following 16 operations for round 1*/
[abcd 16] [dabc 17] [cdab 18] [bcda 19]
[abcd 20] [dabc 21] [cdab 22] [bcda 23]
[abcd 24] [dabc 25] [cdab 26] [bcda 27]
[abcd 28] [dabc 29] [cdab 30] [bcda 31]

/*Do the following 16 operations for round 2*/
[abcd 32] [dabc 33] [cdab 34] [bcda 35]
[abcd 36] [dabc 37] [cdab 38] [bcda 39]
[abcd 40] [dabc 41] [cdab 42] [bcda 43]
[abcd 44] [dabc 45] [cdab 46] [bcda 47]

/*Do the following 16 operations for round 3*/
[abcd 48] [dabc 49] [cdab 50] [bcda 51]
[abcd 52] [dabc 53] [cdab 54] [bcda 55]
[abcd 56] [dabc 57] [cdab 58] [bcda 59]
[abcd 60] [dabc 61] [cdab 62] [bcda 63]

a=a+aa
b=b+bb
c=c+cc

d=d+dd

return (a, b, c, d)

10

An important part of the step operations in MD5 tdwe non linear Boolean
functions, which are applied bitwise to the registdhese functions have been

chosen because:

They support a strong avalanche effect, which méatssmall differences in

the registers are mapped to large differencesIynafew step operations.

« The functions are balanced, which means that(p) | = |f (2)].

* The correlation between a boolean function andrhaitrary linear mapping
{0,1}® - {0,1} is quite small so the boolean function ismear.

» The Boolean functions produce their output fromhhe of X, Y, and Z, in

such a manner that if the input bits of X, Y, andrg independent and

unbiased, then the output bit of the corresponélingtion will be

independent and unbiased.

11

Chapter 3: A Toolbox for Cryptanalysis of MD5

In this chapter we provide the background theoessary for the cryptanalysis of
MD5. In fact, much of the theory presented hemnisndispensable tool for
understanding other hash functions and block cghfter introducing some
notation, we will present some theorems on thdioglship between modular
differences (mo@>?) and xor differences in section 3.1. In 3.2 wd ttién focus our
attention on the relationship between bit rotatiand modular addition (md2f?) and
explicitly analyze what happens when we interchahgeapplication of the two
operations. To conclude the background theory, vilerwestigate difference

propagation in section 3.3.

3.1 Modular Differences and XOR Differences

Modular addition and xor addition are two of thesnimportant operations used in

the design of hash functions. To denote the diffeeebetween two 32 bit registers

and x we have to consider:

XOR difference:A"x = x[0 x' and Modular differenceA*x = x - x' mod 2%

We state that all bit positions are indexed fronsidice a 32 bit number will include
many zeroes in its bit representation, and to awsiting out such lengthy

representations, we use the following notation:

[ij,- i] = Knea,eoo6) Wherex, =...= % =1, and

r

12

x = 0 for all j Oi,....i }.
This means:
X=(X gy %)= 2+ 24 4 D

On occasion, we will not only need to know the maddifference of two
bits but also their exact values. To that end weduce the concept of signed bitwise

differences denoted by:
DX = (Xg = Xygs o %~ %) Where(x— 9 0{-1,0,1}"
To abbreviate values from-1,0,1}", we introduce the notatiaﬁ to denote

%, = —1. For example,

[i1,i; s ia] = A*x wherex, = x, =1, X, =%, =0, x =X, =0,
x, =% =1and
x, =% =O0forallj O{iy,...,i}.
It should be noted that the signed bitwise diffeee(A*) has no direct relation to the

modular differencéA™).

Another piece of notation that will prove to be fuséater pertains to how we
can express step operations concisely and cldarigost descriptions of MD5, the
registers are labeles b, ¢, dand the step operations are defined as in Chapidrat

is, the algorithm is usually defined in the fornrst do F&,b,c,d, then F{,a,b,9,

13

then F€,d,a,h, then Fb,c,d,g...” and so on. In the new notation we use the taat
in every step operation only one register is medifiwWe denote the content of the
register changed in stepy R. If we initialize R1=b, R,=c, R3=d,

Rs=a, we denote the step operation in stey
R=R,+(R,+ (R, R, R)+ W TS (3.1.1)
Notice that with the above notation we can solveRq andW respectively:
R.e=(R-RY)’S ~ fi(R1,R2Ra)-W -T (3.1.2)
W =(R- R, - fi(R1,R2Rs) —T—Ru (3.1.3)

We state the following very important theorem aisccorollaries governing the
relationship between modular differences, xor ddfees and signed bitwise

differences mostly without proof.

Theorem 3.1.1 ([2]) Let x, x'[0{0,1}" with some fixed signed bitwise difference

A*x. Then the -differenceA” x and the modular differenc&*x are uniquely
determined.

Proof.

This is obvious because knowing the signed bitwifference directly gives you the
values ofxandx in the bit positions that have non zero differen&sscomputing the
xor difference and modular difference for thesepbsitions is trivial For bit

positions with a signed bitwise difference of zéh® xor difference and modular

difference is zero becauseand x have the same values in these bit positions.

14

Theorem 3.1.2 ([2]) Let x, x'(0{0,1}", 0< k < n-1and define

Iék) =max{0< j <n-k |)§ =0fork<sisk+ j—-1},
19 =max{0< j<n-k |x =1fork<i<k+ j- 1,

Then it holds

DX =[k+ 100, K+ 109 =1, ... K],if k+ 109 < n,}

A'x=2" = -
orA*x=[n-1,...,k], else

Ary= gk o JATX=[kH 18, k+ 109 =1,... k],if k+1® <n,
orA*x=[n-1,...,k], else

The theorem shows that when transforming a modliteerence into an
O -difference a modular difference ofZan affect more than just th® kit of the
O -differenceor signed bitwise difference depending on the inpist That is, for a

given modular difference, there can be many XORedéhces. For example, when

the modular differences— x' = 2°for some value, then we have the following
possibilities for the XOR difference:

« One bit difference in bit 6, i.eA” x = 0x0000004(. This means that bit 6 i

isa 1 and bit 6 inx is 0.

* Two bit difference where a carry is transferredrfrbit 6 to bit 7, i.e.,
A" x=0x00000Q (. This means thax, =0,x, =1and x, =1,x, = 0.

» Three bit difference where a carry is transferrednf bit 6 to bit 7 and then to
bit 8, i.e., A”x =0x00000Z (. This means thax, =0,x, = 0,%, = 1 and
X =1,% =1,%=0.

* In general, there can be more carries propagatifigrther bits and the bit

pattern isx = 1000... andx = 0111...

15

In case the modular difference i$,-the XOR difference remains unchanged but
the values ok and x are exchanged.
Corollary 3.1.3([2]) A*x=2"0or A*x=-2 = 012 0A"x=[k+1,....k].
The next corollary corrects the incorrect probgiesi stated in [2].
Corollary 3.1.4 ([2]) For fixed A*x=2%,0< 1 <n-k-1and xI{0,1}" chosen
uniformly at random

Pria*x = [k+ I,k +1-1,...k])= 2"
Pr(A*x=[n-1,...k])= 2"¥.

For fixed A*x = —2“the following probabilities hold:

Pra*x=[k+,k+1-1,..k])= 20
PriA*x=[n-1,...k])= Z2("% .

Thus in both cases we have

PrA"x=[k+1,...k])= 20",
PrA"x=[n-1,...k])= 2%

Proof.

For A*x =2,

Pr(a*x=[k+1,k+1-1,..k])= Pr§, = 1%,,= .= x= 0F 2"V and
Prd*x=[n-1,..k])= Pr(y, = .= x = OF 2"

For A*x=-2%,

Prd*x=[k+1,k+1-1,...k])= Prx,, = 0%,,= .= x= 1¥ 2" and
PrA*x=[n-1,...k])= Pr(x, = .= x = 1 2"

16

We can also consider more complicated modular reiffees like

A"™x=2™-2" 'm, > m.Here the signed bitwise difference is of the form

A*x=[my+ b, my+ =1, my, m+ L m+ - 1..,m

as long agm, > m+ |, wherel, =1 i =0,1,are defined as in Theorem 3.1.2. As a

concrete example, consider the modular differehte= —1— 2° + 2°— 2*’with a

corresponding signed bitwise difference of the form

A*x=[0,1,2,3,4,5,6,7,8,9,10,11, 23, 24, 25, 25,28, 29, 30, 31.

3.2 Modular Addition and Bit Rotation

We start by defining the following notation

A=[Al Al

which means that foA=(q,_,,....8) we haveA =(g,,,....)and A =(8_,....&).

We also define an indicator function bywhere

1,if xistrue,
1(x) =
0,if xis false

We assume that Ok< n and A and B are two integers such that®,B < 2" and

A=[Al,. AlandB=[B|,_, BI.

17

Using this notation we can now state some impot&anmas and theorems:

Lemma 3.2.1 ([2])
A“=[A | Al
A+B=[A+B+ |, A+ B]
A-B=[A-B-¢l.« A- Bl
where

¢ =LA+, B=22"")
¢ =YA<B)

are the carry bits coming from the right half oétbomputation.

With the knowledge of Lemma 3.2.1 we can deducddhawing theorems
which describe the error that occurs when we moglifyations by reversing the order
of addition and bit rotation:

Theorem 3.2.2 ([2])
(A+B)“~ (A*B“) = [-¢"|, ¢'],
where

¢ =1(A+, B=2"),
¢’ =1A+,B=22")

are the carry bits from the full and right side #itths respectively.
Theorem 3.2.3 ([2])
(A_ B)«k_ (A\«k_ B«) — C—2k _ Cr_

where

18

¢ =1(A< B),
¢ =1A<B)

are the carry bits coming from the full and rigides subtractions respectively.

Theorem 3.2.4 ([2]) Let P, 4 (with a, 80{0,1}) be the probability that
(A+B)*— (A“4B“) = [-a|, A].

1. If we suppose A to be fixed and B to be choe#armly at random, then
Ro=2"(27 - A)2- A)

2. 1f we suppose A and B to be chosen independerdlyaiformly at random, then
Po=@+2"W+2%+2")/4

Theorem 3.2.5 ([2]) Let P, 4 (with a, 80{0,1}) be the probability that
(A-B)¥— (A%~ BY = g2¢ - .

1. If we suppose A to be fixed and B to be choe#armly at random, then
Ro=2"(A+D(A+])

2. If we suppose A to be chosen uniformly at randodB to be fixed, then
Ro=2"(2-B)2"-B)

3. If we suppose A and B to be chosen independamtlyiniformly at random, then
Po=@+2"W+2%+2")/4

The most important lesson to extract from thetlasttheorems is that if A and B are

chosen uniformly at random then the most probatflerdnce is zero. For example,

we will often find it simpler to replace (&B““) with (A-B)“. Why? Because if A

and B are chosen uniformly at random then the gntibathat the difference

between the quantities (AB““) and (A-Bf¥is zero is given by case 3 of Theorem

19

3.2.5. This also turns to be the most likely digfece. This is important in our

cryptanalysis because it enables us to simplifyagqos.

3.3 Difference Propagation

Before we directly dive into the subject of difface propagation in hash functions, it
is worthwhile to mention a few sentences on thesuesanment of avalanche effect in
hash functions. Because the ideal of a cryptogcapash function is to behave like a
random function, a hash function is designed sbittas a strong avalanche effect.
This means that an average of one half of the ¢uipgishould change whenever a
single input bit is complemented. The avalanchefdcies to mathematically
abstract the desirable property of high nonlingdrétween input and output bits, and
specifies that the hashes of messages from aésgbborhood in the domain are
dispersed over the whole range. Another propertaiefiom functions and thus
desired of good hash functionscmmpletenesCompleteness is defined as the fact
that every output bit depends on all the input, laitel not a proper subset of them.
The concept of completeness and the avalanche etiadoe combined to define
what is called thstrict avalanche criterionA cryptographic hash function satisfies

the strict avalanche criterion when each outputtméinges with a probability of
1 . : Y
= whenever a single input bit is complemented. Tlaeeeways to measure the

strength of the avalanche factor of hash functidheugh MD5 demonstrates good
avalanche effect, it can be empirically shown thbehaves far from a random

function ([2]).

20

Recall that in section 3.1 we introduced a notatoaxpress step operations.
That is we denoted the content of the register gbdmafter step operatiomy R, and
the formula for a step operation was given by eaqna.1.1. Wealso showed that the
step operations can be reversed (cf. equation,81.B), i.e. we can go backwards
through all the steps by computii®y, fromR_;, R_,, R, andR. Typically, the
focus of the attacks on the collision resistanagerty of hash functions is on the

difference between register values generated bygiffegent messages rather than on

the actual register values themselves. In othedsyaronsider two different messages

resulting in input word¥V; andW in thei™ step operation. Denote the computed
register values bR and R respectively. Then we are generally interested in

A"R and how this difference propagates in the compmraif successive step

operations. It turns out that in Wang’s collisiamding scheme this difference has a
structural pattern which can be exploited to brighiks.

It can be shown that MD5 has a much stronger achiaeffect in the forward
direction than in the reverse direction ([2]). Altlgh we are merely speculating, it
seems intuitive that this effect can be exploitekden looking for a differential
pattern, because it is much easier to control sdifééirences when computing
backwards than forwards. The notion of a differ@rattern will be properly
explained in the next chapter. However, for nowiit suffice to know that a
differential pattern provides some sort of struettar the output differential of each
step operation by explicitly stating what that miadand xor differential must be
after each step operation. The attack will thertead with a high probability if we

can find two different messages whose output diffeal (modular and xor) after

21

each step operation matches the differential pattdo one really knows how Wang
computed the differential pattern but we can malmesintelligent guesses as to how
she arrived at the pattern. Thus what follows iefyuspeculation. In chapter 4 we
will give another speculative method by which Wanight have computed the
differential pattern.

Note that in order for a collision to occur we 1nus
haveA"R,, =A" R, =A" R,=A" R,=0. Then using equation 3.1.2, we can
approximately compute:

ARy =(A"Ry=A" R ™% — (A" Ry, A" Ry, A" Ry) — A" W,

Roughly speaking, we can continue in this fashiweh lauild a differential pattern
bottom up that needs to be satisfied in order foolasion to occur. Because of the
weak avalanche effect of MD5 in the reverse digetgtive may approximately
compute the differential pattern in the reversedion as well.

To be more concrete, we start by fixing some madiifferences

A'R_,,...,.A" Rfor register values and*W for input word value after stapStrictly

speaking, using equation 3.1.2 to complit® as above isn’'t mathematically correct.
However, Corollary 3.1.4 and Theorem 3.2.5 will ted with what probability using
such a reformulation is correct. It turns out tiig probability is sufficiently high.

For example, if we have a fixed differenAéR = 2' for registerR and R, and lets
denote the number of bits to rotate by, then byntbtation used in section 3.2 we

have,

22

[0],., 2]ift<n-s,

257" . OLift=n-s
and using Theorem 3.2.5, we obtain the followingptiary.
Corollary 3.3.1([2]) Let 0 < s < n and\"R=2"with 0<t <n,and denote

A*(R*°) = R**— R Then for R chosen uniformly at random

PrA* (R*°)=2"°)=1- 2**"jft<n-s
PrA" (R*°)= 2"")=1- 2 "jft>n-s

Thus as long agn—t) or (n—9) -t is not too small, rotating the difference is a@oo
approximation to the difference of the rotated ealurhis is the reason that we can
replaceA" (R - R.,) »S) with (A'R-A"R,) »Sin the reformulation to
computeA'R .

Analyzing the differential resulting from the beah functions is a little more

complicated. When a modular differen&éR # Ois used in the boolean function, we

need to make assumptions about the signed bitwfieeethce A*R . By Corollary
3.1.4, for a modular difference &for-2%, the most likely (with probability%)

signed bitwise difference k] or [E] respectively. We will use this fact and
information from Table 3.1 in the following exampéeillustrate how the differential
pattern is computed.
Example 3.3.1

Suppose we want to have a collision appearinggeim 85 of the compression

function of MD5. This means that we must have

23

A'R,=..=A'R,=0.
We proceed by computing the differential patterokiaards as follows:
Step 25:
ARy = (A" Rs=A" R ™ —F,5(A" Ry A" R A" Ry = A" W
Given thal'R,, =...=A"R,,= 0, we haveA'R,, = -A"W,,,
Here we can introduce an input difference, gay\,. = 2° and thus we have

established\"'R,, = -2° as part of the differential pattern.

Step 24:

A'R,=(A"R,-A"R) » - f (AR, A"R,ATR,)-A" W,

Becaus&'R,, = A" R, =0, we only need to concern ourselves withR,, = -2°in
the boolean function. First of all, we need to makeassumption on the signed

bitwise differenceA®R,,. As stated earlier, by Corollary 3.1.5%R,, =[9] = -2°with

probabilityl. Since f,, = ITE,, , from Table 3.1, we see that tH& I8t of f,, :
2

zxy !

fu(A Ry A" Ry A" R) = ITE, (A"R,, A" R, A" R) = ITE, (0,0~ 1)= x 1

Because this depends on the actual value thie 9 bit of f,, is zero with probability

1 , . , . . .
3 Now, choosing not to introduce an input differenca'W,,, we see that with

probability% we havé\'R,, =0.

Why do we choose not to introduce an input diffeeeimA™W,, ? Because

minimal input differences causes minimal outputesténces. Since our goal is

maximize our chance of finding different inputstth@ap to the same output, we only

24

introduce an input difference when necessary. Mhpiiation for this idea comes

from Hans Dobbertin’s attack on the compressioretion of MD5 [8].
Step 23:
A+R19 = (A+ st_ A Rzz) 20— f23(A+R22’A+ RzrA+ Rzo) -4 V\é

Again, A'R,, =-2° appears in the boolean function. Sirige= ITE,, from Table

zxy !
3.1, we see that thd"®it of f,,:
f23(A+R22’A+ RzrA+ Rzo) = I-I_szy(A+ Rzz’A+ %11A+ I%0) = ITExy(Q_ 1,0)=- x

Because this depends on the actual value thie 9 bit of f,3 is zero with probability

1 , . , . . .
3 Now, choosing not to introduce an input differenca'W,,, we see that with

probability% we havéd'R, =0.

Step 22:

A'Ry=(A"R,—A"R)™ —1,,(A'R,,A"R,A R —A" W,

Since A'R,, =-2° appears in the rotation part of the equation, see@orollary 3.3.1
with t = 9,s = 14,n = 32, to deduce that

(A'R, -A" R = (0-(-2°)y* = (2°y**= 2*'with probabilityl— 27°.
As in step 23, we see that tHe it of f,, is zero with probabilit% . We again

do not introduce an input difference fafW,,and we havA'R, = 2*" as part of the

differential pattern.

25

We can continue in this fashion and determine diffgal characteristics for all 64
steps. This concludes our treatment of differerropggation and consequently our

presentation of the background knowledge neced¢samderstand Wang’s attack.

AEx ATy AT7 ATXOR | ATITE | ATMAJ AT ONX

26

N N T e N e S e e e = Il = Bl = Ml = I = I = Il = B = W

0
1—2(x Oy)
2xO0y)—1
1—-2(x O 2)

0

0
2x02)—1

0

0
1-2y 0O 2)

1—Xx
Xx—1

2X—1

xdy
—(xdy)

0
—1—2x— 1)y
1+2(x— 1)y
Q—x(2z—1)

—X

X
Q—x01— 22

—X

X

y(1— 22)
y—1
1-y

27

Table 3.1: Propagatiorof signedbitwise differences.

Chapter 4: Wang’s Attack on MD4

In this chapter we will discuss Wang's attack on $4D detail. First we present a
high level view of the attack by giving the genaafgorithm and further dissect the
algorithm in the following sections.

The objective of the attack is to find two colhdi 1024-bit messages. Let

M =(M,, M,) be 1024-bit message such fidt, |=|M, F 51Z Also define

4, =(0,0,0,0,%" ,0,0,0,0,0,0;2 ,0,0"2 ,0

9, =(0,0,0,0,2",0,0,0,0,0,8, 2 ,0,G}2 ,

and letM = (M, M,) be another 1024-bit message such tgt= M, + J,and
M, =M, +7,. If M and M are colliding messages then MDBI() = MD5 (M).
Note that the message block differential indextstar 0 and ® word differential
starts at the left. For example, fgythe fourth word differential i2** and the
eleventh word differential &°.

LetA'R = R- R. From the previous chapter, we know tAd4R and
A"R represent the modular difference and xor differespectively of the output

after thei™ step operation. In Wang’s attack these differemeest attain certain pre-
specified values after each step operation caldifferential characteristi¢cf. Table

4.1 below). For example, in the case of moduldedéhces,
AR, =0wheread\"R, = 2°. Recall from section 3.1 that as a consequence of

Theorem 3.1.3, a particular modular differentiaslmot determine a unique xor

differential. In addition, given a nonzero xor @iféntial alone for thi" step

28

operation, we cannot determine the exact bit valoe® andr . In Wang’s method,
xor differences after each step operation are uitlyligiven by specifying values of
certain bits ofR and R . To show this, we need another notation. All lbisiions are
indexed from O:

X' = X[, =iy, =i5,i ,i ;] denotes that

X, =X,=X =0andX; =X =1 whereas,

X, =X, =X =land X, =X =0 and,

X, =X forall i Oi,i,igi,is)
For example, in the”llstep operationR, = R[6,...,21- 22, which means that for
R,bit 6 (R 4) to bit 21 (R ,,) are set to 0, and bit 2R(,,) is set to 1, whereas for
R, bit 6 to bit 21 are set to 1, and bit 22 is sef.téll other bits are the same for
R,andR, . Thus we know both the xor difference and modditference ofR, and

R, . The collection of these differential charactécists collectively called the

differential pattern Since we are processing 1024-bit messages easlsting of

two 512-bit blocks, the differential pattern is qoosed of 128 differential
characteristics; 64 for the first block and 64ttoe second block. Table 4.1 gives the
differential characteristics for the first blockhdse tables were copied from [1] with
modifications to reflect our notation. The firsiwmn denotes the step operation
number, the second column denotes the output dlte step operation, the third

column denotes the message wordNbyin each step, the fourth column denotes the

shift rotation, the fifth column denotes the moduwldference in the message word,

29

the sixth column denotes the modular differencénéstep operation output, and the
seventh column denotes the step operation outpi foThe empty items and the

unlisted steps have zero differences in the fifttd sixth columns.

The idea of the attack is to find two messageh $hat their step operation
differentials match the differential pattern laigt dy Wang, which consequently
results in a collision. Furthermore, Wang computbat are called necessary
conditions for the differential characteristicsmd with improved probability. These
necessary conditions dictate the actual valuesiitain bit positions of the output of a
step operation. For example, to ensure that therdiitial characteristics in stepre
satisfied with high probability, the necessary dtads will require that certain bit

values ofR_,,...,Rare set to 1 and certain other bits are set teOekample, the

necessary conditions for the differential charastes to hold in step 16

areRg ;= R 5 Rgi17= Risis R0, Ry 57 0. As a matter of fact, the seventh

column of Table 4.1 also gives some of the necgs=arditions because they
explicitly provide the bit values of the step opgma output. Obviously given a
randomly chosen 1024-bit messadgeand a second messalye computed as above,
it is more likely that the all the differential afaateristics are not satisfied and thus
yields no collision. However, Wang uses messageifination techniques to ensure
that the necessary conditions are met, which im émsures that the differential
characteristics are satisfied with high probahilwen this the algorithm for finding
a collision in MD5 proceeds as follows:

1. Repeat the following steps until all first blockfdrential characteristics are

satisfied:

30

(i)
(ii)

(iii)

Select a random 512-bit blobk, .
Use message modification techniquesMpto ensure that most of

the necessary conditions for the first block défaral pattern are

met.
Let M, =M,+3, and apply the compression function to check

that the step operation differentials satisfy ttigecential

characteristics for the first block as laid ouffiable 4.1.

2. Repeat the following steps until a collision isiou

(i)
(ii)

(i)

Select a random 512-bit blobk, .
Use message modification techniqueshdto ensure that most of

the necessary conditions for the second block reiffial pattern

are met.
Let M, =M, +J, and apply the compression function (with the

state variables determined from the output of it Iblock) to

check if there is a collision.

Notice that we insist that the message modificatezhniques result in

satisfying onlymostof the necessary conditions. It is natural to &agky not require
that the message modification techniques resdaiisfyingall the necessary
conditions? The answer is that it is computatigniakfficient to satisfy all
conditions because there aren’t fast message roatiifh algorithms to do so.
Instead, it is computationally more efficient tanrihe algorithm probabilistically by

using clever message modification techniques tefgas many conditions as

31

possible. There are also many other questions embeered here. Given the

differential pattern, how are the necessary cooétidetermined? How are the initial

message block differentialy and J,chosen? How is the differential pattern chosen?

What are message modification techniques? All thjeestions will be answered in

the following sections with concrete examples.

Step| Theoutput | W | S | A'W | A'R The output in the™
in thei" step Step forM,
of Mg
3 R, m, |22
4 R, m, |7 | =2 |25 R,[6,...,21- 22
5 | R m |12 26— 2% % R[-6,23,31]]
6 | R m |17 1+ -2+ 2 | R[6,7,8,9,10 1k 23; 24, 2|
26,27,28,29,30,31,0,1,2,3:4,
7 R m, |22 —1+ 25+ 27+ 22| R[0,15,-16,17,18,19; 28, 2
8 IR m, |7 —1+2 - R,[-0,1,6,7- 8- 31
9 | R m |12 Ty R[-12,13,31
10 | R, m, | 17 —0% _ % R,[30,31]
11 | R, m, |22] 215 | 274+ 28- % R,[7,-8,13,...,18- 19,3:
12 | R, m, |7 —0% _ % R,[-24,25,31
13 R13 m 12 -2 R13[31]
14 | R, m, | 17| 2%t | —2°+ 215 % R,[3,-15,31]
15 | Rs m | 22 22— 2% RJ[-29,31]
16 | Ry m |9 -2% R[31]
17 'R, m |9 -2% R,[31]
18 | Ry m, | 14| -2 | 27 -2% R,[17,3]]
19 | Ry m, |20 -2% R[31]
20 Rzo m S -2% R20[31]
21 Rzl my 9 -2% R21[31]

32

22 | R, m, | 14 R,
23 R, m, | 20| —2* R,

24 | R, m |5 R,

25 | R, m, |9 | -2 R,

26 | Ry m, |14 R

33 R, m, |11 R,

34 | Ry m, | 16| -2 | 2% R,[31]

35 | R m, | 23| 2% | 2% R.[31]

36 | R, m |4 % R.[31]

37 R, m, |11 -2 | —p% R, [31]

38 | Ry m, |16 N R,[31]

4 | R, m, |4 0% R,.[31]

45 I:245 m, 11 _231 R45[31]

46 | R, mg | 16 2% R,[31]

47 | Ry m, |23 N R,,[31]

48 | Ry m, |6 N R,[31]

49 | Ry m, |10 N R,[-31]
S0 | Ry m, | 15] -2 | 2% Reo[31]

1 | Ry m |21 N R [-31]

57 R57 Mg 10 -2 &7[_31]
58 | R m, |15 N R,[31]

59 ng m 21 -2 &9[31]

60 | Ry=R,*+*R,[m, |6 | -2 | 2% Ryo[31]

61 | R;=Ry* Ry | m, |10 2 | % R,[25,31]
62 | R,=R,*R,|m, |15 2% R.,[25,26,31
63 | Ry=R;+R,|m |21 -2% R..[25,-31]

Table 4.1. The differential characteristics for finst block

33

4.1 Computing Necessary Conditions for the Differenfibhracteristics

The best way to explain this is to do an exampihe fbllowing example is from [3].
Let us determine the necessary conditions for itfierential characteristic in step 4
for the first message block (cf. Table 4.1). Typicthe step operation of tH& step

is given by equation 3.1.1. We can rewrite the siggration as follows:
Q=1(Ry R, R+ R+ W
R=R,+(Q%)
We can reformulate the modular differenti®lR = A" R_, +((Q)% = (Q)**)
by using Corollary 3.2.5 to produce:
A'R =A"R, +((A" Q)*%), where
A'Q =A"f (R, Ry Ro)+AT R, +A™ W (4.1.1)
Though it is not indicated in Tables 4AL f is an important intermediate step in
computingA”R . However Hawkes et al. [3], provide this infornaatiand we will use
it to compute the necessary conditions. It isnidha arrive at the values fAf f,
given that we have equation 4.1.1. In our examplerder to have
AR, =2° - 2% - 2* given that we also hava'R, =2° ands, =12, it is easy to see
that A*Q, = —2'° - 2*,which implies thatA" f, = -2 - 2'* becaus@'R =A*W, =0.
We are gived'R, =0,A"R =0,A" R =2, and we waniA* f, = -2'° - 2",
« Obtaining the correcA"R, :
Becausé&'R, =A" R =0, the only way to obtaia® f, = -2'° - 2" is to have

A"R, propagate into higher order bits via carries. Ehisuld be clear because

34

A'R, = 2°is the only non zero differential we have to worikhwn f,. This

means that we havg,, =0for 6<k<19and R, ,,=1(cf. Theorem 3.1.2).

Wang's attack dictates th&,, =0for 6<k < 21andR, ,, =1, although

R, =0for 6<k<19andR,,,=1 is more probable. However, we shall be

satisfied with Wang’s conditions. Thus so far weéhthe conditions:
Rs=R,=..= R,=0andR,,,=1.

 Obtaining the correcA" f,:

We want to figure out the fewest conditions necgstaobtaim* f, = 2" — 2'.

To do this we make use of what we obtained preWo@pecifically, we have

A*R,,;=A*R, ,=-1 (Note the use of signed bitwise difference). Tsasnehow

we need to arrive ah* f;,, = A*f = -1.

We have two cases to consider:

(i) Zero value bits oA"R,; :
For this case we consid&’R,, =0for 0sk<5 and23<k< 31. The

Boolean function is,(R,, R, R)=(RO RU(= RO B. Observe that this
function evaluates according to the following rule:
If (R, =1) then “outputR, " else “output R, ”.

That is why this function is called the “If thensgér' function and

consequently abbreviated as ITE. Thus we have,
-Select f,, =R, and f;, =R; whenR,, = R, =1, or

-Select f,, =R, and f;, =R, whenR,, = R, =0.

35

Since A'R, =A"R =0 and consequently'R, =A" R =0, we see that
A" f, =A” f, =0 for these bits and no conditions are required.
(i) Nonzero value bits A"R,;:
For 6<k< 21,
We haveR,, =0andR,, =1, which implies that
fo, = R,andfy, = R,,.
For k=21k=20,1X% k< 18,& k< 1(we require thaf;, = f;,,
which implies thaR,, = R, = R,.
For k =19andk =11, we wantA* f;, =-1which implies
thatR,, - R, = R, — R, =1. Here the minus sign represents signed
bitwise subtraction. This results R,, =1andR,, =0.
For k =22,
We haveR,, =1andR,, =0, which implies that
fs, =Ry andfy, =R,,.
Thus the conditions obtained for th& gtep operation are:

R, =0 for 6sk<21,

R, =1 for k=22,

R, =1for k=11landk =19,
R, =0for k =11landk =19,

R, = R, for 6<sk<10,12< k< 18k= 20k= 2.

36

4.2 The Message Block Differentials and DifferentiattPm

The calculation of the differential pattern and ss&ge block differentials are the
heart of Wang'’s attack on MD5, and not coinciddptidie differential pattern and
message block differentials are shrouded in mystéoyever, we can make
intelligent conjectures as to how the differenpiattern was computed, and how the
message block differentials were chosen. Recdllithsection 3.3, we speculated on
how to compute the differential pattern by takinlyantage of the weak avalanche
factor of MD5 in the reverse direction. In this s@a we present yet another idea on
how to compute the differential pattern. We alsespnt an idea that could potentially
explain how the message block differentials aresehoBoth the ideas and the
illustrated example are due to [4]. Before we déhte the illustration, a remark is in
order. Wang states that the message block diffieterare picked so that the
differential pattern in round 3 and round 4 of Mid% each message block are
satisfied with high probability. Given what we knavww about difference
propagation, this claim should not seem unreasendible differential pattern in
Wang’s attack is there to ensure that a collisidhtake place. So by the time the
step output differentials have arrived at rountuBher propagation of these step
output and message block differentials had bedtsfy the differential
characteristics in round 3 and round 4 if we arkawe a good chance at arriving at a
collision. Roughly speaking then we would expecwvtok backwards to arrive at a
differential pattern for round 1 and round 2 simtlaexample 3.3.1.

Because Wang states that the message block difif@seare picked so that

the third and fourth round differential charactecis are satisfied with high

37

probability, we will start by analyzing the differgal pattern in these rounds. We
begin by making the following important observasamhich apply to both the first
and second blocks:
* For the step operations in round 3 and round 4hthe¢ nonzero modular
difference, these modular differences are exae#yf = 2°'(cf. Table 4.1).
* The modular difference in the last few steps ohib@ and the first few steps
of round 3 is zero (cf. Table 4.1).

» The Boolean function used in round 3fis= XORfor32<i < 47. This is
important becausé, is a linear function, i.e.
f(xOuyDvzZd w= f(xy 20 { uyy. Observe that any change in a

particular bit position of angneof the three input words necessarily results in
a change of the output in that same bit position.

Let us just consider the differential pattern toe first block. So how is the

modular difference o*" propagated through round 3 and round 4? To anihiger
we make use of the facts that the differentiaki®©zn the last few steps of round 2
and the first few steps of round 3, and the Boofeaugtion is linear. The first bit

difference in round 3 is introduced in step 34 thuthe message block difference.
Step 34:

We haveR, = Ry +(Ro+ L Ry R, RI+ Wi T

Because the differential in the last few stepsooihd 2 and round 3 is zero, and

W, = m,= m,+2", we can write:

R.=Re+(Ro*t f(Ry Ry R)* myr2°+ T,

38

From Theorem 3.2.4, we can infer tHa, = R, +(2"°)“*° = R,+ 2*'as stated in
Table 4.1.

Step 35:

Herew,, = m,= m,+2%.

Sowe hav&® = R, +(Ry+ t{ R, Ry R+ my 2"+ T
SubstitutingR,, + 2** for R,,we obtain,

R = R +27+(Ry+ t(R#+2% Ry R)+ myr 2%+ Tf°™%

Using the linearity property of,. we get,
R1;>5 = R34+231+(%1+ f35(RM’ F\:3 %)+ ?1+ nl]A:'- 231+ ;<23

=274 Ry, + (Ry+ f(Ry Ry R+ myr ™= R 2%

Step 36:

Here no difference is introduced by the message widius making substitutions and

using the linearity property of the Boolean funatiae get:
R = Rst(R,+ t{ Ry Ry R}* Wi T™
=R+ 27+ (R, + fi(Rs+ 27, Ryt 2%, R+ W T
=R+ 2"+ (Ry+ f(Rs Ry R)+ (Z1+ 2%+ Wit TJ°
=R+ 2"+ (R, + f(Rs Ry R+ Wt ™= R# 2%

Step 37:

Here a message word difference is introduced. Bh®Y,, = m, = m+2*.

39

Ry = Ret(Re+ £ Re Ry R+ mp 2+ Ty
=Ry + 27+ (Rt (Rt 27, Rgt 2%, Rt 2% mp 2% TV
=R +2"+(Ry+ f(Rp Ry R)*+(Z7+ 2%+ 2y mr 2% Ty "

=R+ 27+ (Ry* f(Rs Re R)+ M D)™ =Ry +2%
Since no message block differentials are usechfordst of the steps in round 3, it is
easy to see how this differential 2 propagates down to these steps. How this
differential propagates through round 4 is not Walbwn. However, we can make an
educated guess about how this phenomenon might.dastus look at Table 4.2
which is due to [4]. This table tells how changeshe input of the Boolean function
used in the fourth round affect the output of tinection. Here we can see cases
where changes in the input do not change the owdué and this phenomenon is

not uncommon. For example, f@NX(X Vy 2 wherex=0,y=1,z= 0, we can see

that flipping xdoes not change the output. Thus it seems poghai¢his absorbing

quality of ONX contributes to the propagation of the differential.

X|Yy|z| AXXx=AF | Ay=AF | Az= AF
0/0|0 X X
0/]0|1|X X X
0|10 X X
0/1)1|X X X
1/0/0 X

1/0[1|X X

1/1/0 X

1/1]1|X X

Table 4.2. Output differences for Fi48<i <64

40

From our analysis above, it seems that the folgvalgorithm might be used
to determine the message block differential andstap operation output differential
pattern:

1. Assume that message block differentials can bedntred such that the step
operation output differential for the first few ggeof round 3 is zero.

2. Leti denote the first step operation in round 3 forahiht is decided that the
step operation output differential should be noazér Wang’'s method, this

was step 34. Since this differential mustB& and must also propagate down

to the successive steps as illustrated in our elaaive, setV =W +2°5
W, =W, +2% W, =W,,+2%. Then, without introducing any further

message block differences, the step operation bdtffarential of 2**should
propagate to the rest of the step operations ind@®u Similar to Example
3.3.1, we introduce as few input differences asibs to minimize
complications.

3. Using the message differential chosen in the prtesvgiep, find a differential
pattern in the first and second rounds such tleastép operation output
differential for the last four steps of the secoodnd is zero. To understand
how this might be possible, let us look at TabRahd Table 4.4 which are
due to [4]. These tables tell us about the coimidietween changes in the
input and output of the Boolean functions usednftrst and second rounds
respectively. Again for these functions, it is coomthat changes in the input

do not translate into changes in the output. Thesams plausible that the

41

absorbing quality of these Boolean functions caittlin searching for such a

differential pattern in the first and second round.

X|Y|z|l AXx=AF | Ay=AF | Az= AF
0/0|0 X
0/|0|1|X X
0[1|0|X X
0|11 X
1/0]/0 X

1/0]1]|X X

1/1/0|X X

1/1|1 X

Table 4.3. Output differences for Fi9<i <16

X|Yy| z| Ax=AF | Ay=AF | Az= AF
0/0|0 X

0/[|0|1|X

010 X X
0[1]1|X X
1/0]0 X X
1/0[1]|X X
1/1]0 X

111/1[|X

Table 4.4. Output differences for FA6<i <32

In conclusion we stress, yet again, that the arsagsen in this section is pure
speculation and Wang has yet to publish a thorexglosition of her method of
computing the message block differentials and tfierdntial characteristics of the

step operation outputs.

42

4.3 Message Modification

In section 4.1 we illustrated how to compute theassary conditions for the
differential pattern to hold. It turns out that mosthe conditions are for the step
operations in the first round and this proves t@bery important characteristic of
the structure of the differential pattern. For epémwhen processing the first block,
there are a total of 290 conditions and most aitpertain to the first round of the
compression function. When we pick a random mesg&agee first block, as
dictated by the algorithm in the beginning of tti&pter, it is more likely that we
will have to modify it to satisfy the conditionsrfthe first block. By having most of
the conditions in the first round, modifying the seage block does not affect
previous computations because there are no preemugutations. For instance,

modifying the 32-bit wordm of the message block to meet the conditions in step
1(round 1) is easier than having to modifyto meet the conditions in step 16 (round

2). This is because a modification in round 2 d@ff¢be step operation differentials
computed in round 1. Thus we will have to go backound 1 and make adjustments.
There are two types of message modification tephes. The message

modification technique used to modify messagestisfy the necessary conditions
of the first round is calledingle message modificatioim order to improve the
probability of satisfying the differential patteimthe second round, messages will
need to be modified to satisfy the conditions is thund. The message modification
technique used for the second round is catietti message modificatiokVe will

now explain both message modification techniquébk iNustrations that are due to

[4].

43

The idea behind single message modification isecgimple. We simply
execute the following steps until the differenttalracteristics of the first round have

been satisfied:

a. Pick random values foR,,..., R, and flip their bits until all the

conditions of round 1 are met.

b. Compute the message words using equation 3.1.3.g levaluate

m=W=(R-R)™ - (R, R, R)-; F,R.
We iterate the fact that these conditions are “seag/” and not “sufficient” as
incorrectly stated by Wang. Thus satisfying thedtbons doesn’t guarantee that the
differential pattern in round 1 will automaticalypld. We might need to run the
single message modification technique until th&t fiound differential pattern holds.
The time complexity required to satisfy the diffatial pattern in the first round is
much less than the overall collision finding algmm. Thus we are guaranteed to
satisfy the differential characteristics of thesfiround.

The best way to explain the multi message modiboaechnique is through
examples. We will illustrate a simple example fast then illustrate a slightly more
complex example to communicate the gist of therieple.

Example 4.3.1
Suppose that in the $&tep operation (first step of round 2), we

haveR ,, =1. Then as dictated by the necessary conditionsyiweeed to correct
this bit to R, ,, =0by modifying the message woll, used in the step operation.

SinceW,, = m, andmis used in the *Lstep operation (second step operation in round

44

1), modifying m could chang® , which consequently could propagate through out

the steps in round 1. Then the differential chanastics of round 1 would no longer

be satisfied.

new

We first begin by modifyingn by adding2®to it. That is,m®" = m + 2%°.

This correctsR ,,by flipping the 1 to 0. How? Observe that the saiftount in the
16" step is 5. Thus adding°to the message word is tantamount to adding
(2?°)=° = 2* to the step operation outd®f, which results in flipping its most
significant bit. In order to correct the chang®tpwe recomputed, with the new
m as follows:

R*=R+(R,+ {(R R, R+ fi"+ J™.

To ensure none of the other successive step opesdti round 1 are modified, we

recomputedm,, m,, m,and m, to absorb the change to mad&toAfter the %' step

operationR™"has been completely absorbed. Thus we have,
m™=(R-R*)"" - R~ {(R B R~ ;
m*=(R-R)"™-R- (B K" B- T
m™=(R-R)”-R- {(R B R)- T

m™=(R-R)™-R"- (R B B- T
We have now correcteR,; ,,and ensured that the first round differential

characteristics are satisfied as well. This methfotbmputing new message words

for successive steps to absorb the effed®Sfis due to [7].

45

Example 4.3.2
In this example we show how to satisfy the condgian steps 16, 17, 18 and 19. This

technique is originally due to [9]. There is a tatf10 conditions:
Step 16:

Ros= Rss Rieas™ Risis Riea7 00 Rig 7 0.

Step 17:

R717 =1 Ri7 20= Rig 29 Ryg o O

Step 18:

Rg17=0,Rg4=0.

Step 19:

Ry3:=0.

The algorithm to satisfy these 10 conditions astemiin [4] is:

1. ChooseR,,...,R;such that they satisfy the conditions in the ficstnd.
2. For 6<i<15,computem:
m=(R-R)™ - f(Ry, Ry R)- R~ 1

3. Pick a random value foR (with its conditions satisfied, and compute

R;=Rs+(Rs+ 1{Rs Rs RI+ Wi T

Rs=R,+(R,+ §{ R, Ry R+ Wi T

until conditions forR; and R gare satisfied. Since there is only a total of 9
conditions forR, R,,and R, it can be done quickly. However it may be the

case that no value d® satisfies the conditions fdR , and R ;because

46

R,and Rgare functions ofR ;, R,,and R as well, which might prove to be
too inflexible. In this case, we will have to pickw values forR,, ..., R;and
start the algorithm all over again. If the condisdor R, ..., R are satisfied

then proceed to step 4 otherwise go to step 1.

4. Pick a random value foR, with its only condition fulfilled, and

computdV,=m=(R,~ B)™ - R~ (Ry B R- 1}
5. ComputeR, from the new value ofn,computed in the previous step.
6. ComputeW,, = m by rearranging the formula for the™ 6tep operation.
7. ComputeR from the new value ofn computed in the previous step.
8. To absorb the new value &, computem,,...,m:

for2<i<5,
m=(R-R)™ - R,~ (R, R, R)—

After computing step 8, 33 conditions in the remarstep operation remain
unsatisfied. Thus we should expect to pgEtkmessages for the first block before all
the differential characteristics for the first btoare met. This means that the time
complexity of the overall collision finding algdnitn can be improved by clever
algorithms to perform multi message modificatiocht@ques and to satisfy more
second round conditions. Since there isn't a gémeethod to satisfy second round
differentials, the algorithms are quite specialiaed invented from having clever
insights into how the differentials propagate. AdyiWang does not perform the
complex multi message modification as detailedxaneple 4.3.2 which improves the

complexity of the collision finding algorithm. Iresid she opts for the multi message

47

modification similar to the one in example 4.3.hus she is left with 37 unsatisfied
conditions for the first block and consequently theie complexity to find the first
block is 2** MD5 operations. Similarly, 30 conditions are lefisatisfied for the
second block and her time complexity to find theosel block is2** MD5 operations.
In conclusion, the goal of the message modificateémmniques is to satisfy as many
of the conditions as possible in the first and sdamund. This will then drastically
increase the probability of satisfying the diffarahcharacteristics which
consequently increases the collision probabilitg §ive a collision found by Wang,

where H is the hash value:

Mo | 2dd31d1 cdeeebcE 69a3d69 5cf9af98 87Tbbcalf abTed612 32680440 897LfbbE
634adEE 2bL3£409 B8388e483 5ad1T12E 8266108 9fcOcdfT £2bd1d4d9 Eb3<3TED
M1 |d11d0b96 9cThdlde £497d8=4d dEEEEEEa c79aT33E cfdebfd 66£12030 8fb109d1
TATL2TTE ebbedb30 baade822 5cl1bceT9 ddebT4ed 6dd3cE6f d80a%bbl e3aTccldb
Mp'| 2dd31d1 cdeeefch G9a3d69 EcfOaf98 Thbcalf abTed612 32580440 B80T7ffbhE
634adEE 2b3£400 B3B8e483 £ad1f125 «B2EE108 9f cOcdfT T2bd1dd9 Eb3=3TED
M;"|d11d0b26 9cThdlde £497d8=4d AGEEEERa 4709a7335 cfdebf0 66£12030 8£b109d1
TATL2TTE ebbcdb30 baade822 5c154cT9 ddebT4ed 6dd3cE61f 580a%9bbl &3aTccldb
H [9603161f a30f9dbf 9f66ffbe f41fcTef

48

Bibliography
[1] WANG, X., AND YU, H. How to break MD5 and othéiash functions, Eurocrypt
2005, LNCS 3494, pp. 19-35, 2005.

[2] DAUM, M., Cryptanalysis of hash function of tiD4-family, PhD thesis, Ruhr-

University of Bochum, May 200%ittp://www.cits.ruhr-uni-

bochum.de/imperia/md/content/magnus/dissmd4.pdf

[3] HAWKES, P., PADDON, M., AND ROSE, G.G. Musings the Wang et al.

MD?5 collisions, October 2004http://iacr.eprint.org/2004/264

[4] BLACK, J., COCHRAN, M., HIGHLAND, T., A study fothe MD5 attacks:
insights and improvements, FSE 2006.

http://www.cs.colorado.edu/~jrblack/papers/md5éihdf.

[5] STINSON, D., Cryptography: Theory and Practi8econd Edition, pp. 129-130.
[6] RIVEST, R., The MD5 Message Digest Algorithnedqiest for Comments (RFC
1320), Internet Activities Board, Internet Privacgsk Force, 1992.

[7] CHAUBAUD, F., JOUX, A., Differential Collisiongn SHA-0, Crypto 1998,
LNCS 1462, pp. 56-71, 1998.

[8] DOBBERTIN, H., Cryptanalysis of MD5 CompresseBented at rump session of
Eurocrypt 1996.

[9] KLIMA, V., Finding MD5 collisions on a noteboaksing multi-message
modification technique. In International Scienti@onference Security and

Protection of Information (May 2005).

49

50

51

52

