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Abstract

Broadcast and verifiable secret sharing (VSS) are central building blocks for secure multi-party
computation. These protocols are required to be resilient against a Byzantine adversary who
controls at most t out of the n parties running the protocol. In this dissertation, we consider the
design of fault-tolerant protocols for broadcast and verifiable secret sharing with stronger security
guarantees and improved round complexity.

Broadcast allows a party to send the same message to all parties, and all parties are assured they
have received identical messages. Given a public-key infrastructure (PKI) and digital signatures, it
is possible to construct broadcast protocols tolerating any number of corrupted parties. We address
two important issues related to broadcast: (1) Almost all existing protocols do not distinguish
between corrupted parties (who do not follow the protocol) and honest parties whose secret (signing)
keys have been compromised (but who continue to behave honestly); (2) all existing protocols for
broadcast are insecure against an adaptive adversary who can choose which parties to corrupt as
the protocol progresses. We propose new security models that capture these issues, and present
tight feasibility and impossibility results.

In the problem of verifiable secret sharing, there is a designated player who shares a secret
during an initial sharing phase such that the secret is hidden from an adversary that corrupts at
most t parties. In a subsequent reconstruction phase of the protocol, a unique secret, well-defined
by the view of honest players in the sharing phase, is reconstructed. The round complexity of VSS
protocols is a very important metric of their efficiency. We show two improvements regarding the
round complexity of information-theoretic VSS. First, we construct an efficient perfectly secure VSS
protocol tolerating t < n/3 corrupted parties that is simultaneously optimal in both the number of
rounds and the number of invocations of broadcast. Second, we construct a statistically secure VSS
protocol tolerating t < n/2 corrupted parties that has optimal round complexity, and an efficient
statistical VSS protocol tolerating t < n/2 corrupted parties that requires one additional round.



Chapter 1

Introduction and Summary of Results

1.1 Motivation

One of the major achievements of modern cryptography is the design of protocols for general secure
multi-party computation [46, 88, 5, 18]. Loosely speaking, protocols for secure multi-party com-
putation (MPC) enable participating parties to correctly compute any functionality while learning
their prescribed output and nothing more. An important property of such protocols is that they
are robust to the malicious behavior of corrupted parties. In this dissertation, we are primarily con-
cerned with two basic primitives which are central to the design of protocols for secure multi-party
computation.

The first primitive is fault-tolerant broadcast which, informally, allows a party to distribute a
value among a set of mutually mistrusting parties that are connected by pairwise point-to-point
channels in a network. A formal requirement of broadcast protocols is that all parties need to
agree on the distributed value at the end of the protocol; agreement needs to be guaranteed even
when the party who is distributing the value is corrupt. MPC protocols are typically designed
assuming the existence of broadcast channels. However, in real networks, links are typically only
point-to-point, and broadcast channels have to be emulated by a secure protocol for broadcast.

The second primitive is verifiable secret sharing (VSS) in which a designated party (dealer)
shares a secret among other parties such that the secret is hidden from faulty subsets of parties
(which hold their shares of the secret) while simultaneously being reconstructible at a later time
when all parties disclose their respective shares of the secret. A scheme for secret sharing is said to
be verifiable if the reconstructed secret is well-defined at the end of sharing even when the dealer
is malicious.

In this dissertation, we investigate the problem of broadcast in stronger threat models, and
demonstrate tight feasibility results. We also study round complexity of VSS protocols, and present
round-optimal constructions in some settings.

Early versions of the work in this disseration appeared in [49, 40, 64, 65, 50, 69].

1.2 Broadcast

Formally, broadcast protocols allow a designated player (the dealer) to distribute an input value
to a set of parties such that (1) if the dealer is honest, all honest parties output the dealer’s value
(validity), and (2) even if the dealer is dishonest, the outputs of all honest parties agree (agree-
ment). Broadcast forms a critical component of multi-party cryptographic protocols. Indeed such
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protocols conveniently abstract away various details of the underlying communication network and
allow protocol designers to simply assume the existence of a broadcast channel. Later, when the
protocol is deployed over a real network, participating parties emulate a broadcast channel by run-
ning a secure protocol for broadcast. Known composition results imply that this approach is sound :
namely, given a protocol Π proven secure under the assumption that a broadcast channel exists,
and then instantiating the broadcast channel using a secure broadcast protocol BC, the composed
protocol ΠBC is guaranteed to be secure when run over a point-to-point network.

Early work in the design of broadcast protocols was done in the context of Byzantine agreement
(BA) [79, 71]. In the problem of Byzantine agreement (also known as the consensus problem), each
party has an initial input, and at the end of the protocol all parties have to output a common value.
Further, when all honest parties have the same input value, the parties are required to output
that value. In the case of honest majority among participating parties, a protocol for Byzantine
agreement implies a protocol for broadcast using one additional round. Indeed, a protocol in
which the dealer sends its message to all parties in the first round, and then the parties run a
Byzantine agreement protocol on the values they received gives a protocol for broadcast. In the
reverse direction, a protocol for broadcast yields a protocol for Byzantine agreement when there
is a honest majority among participating parties. Indeed, a protocol in which each party runs
a broadcast protocol on its input value, and then the parties take a majority among the values
received gives a protocol for Byzantine agreement. We remark that the problem of Byzantine
agreement is not defined if there is no honest majority.

Classical results of Pease, Shostak, and Lamport [79, 71] show that Byzantine agreement (and,
equivalently, broadcast) is achievable in a synchronous network of n parties if and only if the number
of corrupted parties t satisfies t < n/3. Their protocol, however, required the processors to send
exponentially long messages and perform exponentially many steps of computation. Soon after,
polynomial-time BA protocols for t < n/3 were shown [28, 87], and following a long sequence of
works, Garay and Moses [41] showed a polynomial-time BA protocol with optimal resilience and
optimal number of rounds.

To go beyond the bound t < n/3, some form of set-up is required even if randomization is
used [61, 51]. The most commonly studied set-up assumption is the existence of a public-key
infrastructure (PKI) such that each party Pi has a public signing key pki that is known to all
other parties (in addition to the cryptographic assumption that secure digital signatures [48] exist).
Protocols designed in this setting are termed authenticated. Authenticated broadcast is possible
for any t < n [79, 71, 29]. We remark that secure digital signatures can be constructed from
the minimal cryptographic assumption that one-way functions exist [75, 85], and the resulting
broadcast protocol will be secure against a computationally bounded adversary. Alternatively, if
information-theoretic “pseudo-signatures” [81] are used, then the resulting broadcast protocol will
be secure even against a computationally unbounded adversary.

In this dissertation, we address two important issues related to broadcast: (1) Almost all existing
protocols do not distinguish between corrupted parties (who do not follow the protocol), and honest
parties whose secret (signing) keys have been compromised (but who continue to behave honestly).
(2) All existing protocols for broadcast are insecure against an adaptive adversary who can choose
which parties to corrupt as the protocol progresses. We describe our results next.

1.2.1 Broadcast with a Partially Compromised Public-Key Infrastructure

With few exceptions [37, 52], prior work in the PKI model treats each party as either totally honest,
or as completely corrupted and under the control of a single adversary; the assumption is that the
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adversary cannot forge signatures of any honest parties. However, in many situations it makes
sense to consider a middle ground: parties who honestly follow the protocol but whose signatures
might be forged (e.g., because their signing keys have been compromised). Most existing work
treats any such party P as corrupt, and provides no guarantees for P in this case: the output of
P may disagree with the output of other honest parties, and validity is not guaranteed when P is
the dealer. Clearly, it would be preferable to ensure agreement and validity for honest parties who
have simply had the misfortune of having their signatures forged.

Our Contributions. We consider broadcast protocols providing exactly these guarantees. Specif-
ically, say ta parties in the network are actively corrupted; as usual, such parties may behave
arbitrarily and we assume their actions are coordinated by a single adversary A. We also allow for
tc parties who follow the protocol honestly, but whose signatures can be forged by A; this is modeled
by simply giving A their secret keys. We refer to such honest-behaving parties as compromised,
and require agreement and validity to hold even for compromised parties.

Say ta, tc satisfy the threshold condition with respect to some total number of parties n if
2ta + min(ta, tc) < n. In Chapter 3, we show:

1. For any n and any ta, tc satisfying the threshold condition with respect to n, there is an
efficient (i.e., polynomial in n) protocol achieving the notion of broadcast outlined above.

2. When the threshold condition is not satisfied, broadcast protocols meeting our notion of
security are impossible, with the exception of the “classical” case (tc = 0) where standard
results like [29] imply feasibility.

3. Except for a few “exceptional” values of n, there is no fixed n-party protocol that tolerates
all ta, tc satisfying the threshold condition with respect to n. (The positive result mentioned
above relies on two different protocols, depending on whether ta ≤ tc.) For the exceptional
values of n, we show protocols that do tolerate any ta, tc satisfying the threshold condition.

Taken together, our results provide a complete characterization of the problem.
Early versions of this work appeared in [49, 50].

Related and Subsequent Work. Gupta et al. [52] also consider broadcast protocols providing
agreement and validity for honest-behaving parties whose secret keys have been compromised. Our
results improve upon theirs in several respects. First, we construct efficient protocols whenever
2ta + min(ta, tc) < n, whereas the protocols presented in the work of Gupta et al. have message
complexity exponential in n. Although Gupta et al. [52] also claim impossibility when 2ta +
min(ta, tc) ≥ n, our impossibility result is simpler and stronger in that it holds relative to a weaker
adversary.1 Finally, Gupta et al. treat ta, tc as known and do not consider the question of designing
a fixed protocol achieving broadcast for any ta, tc satisfying the threshold condition (as we do in
the third result mentioned above).

Fitzi et al. [37] consider broadcast in a model where the adversary can either corrupt a few
parties and forge signatures of all parties, or corrupt more parties but forge no signatures. In our
notation, their work handles the two extremes ta < n/3, tc = n and ta < n/2, tc = 0. We stress
that, in contrast to [37], our work addresses the intermediate cases, where an adversary might be
able to forge signatures of some honest parties but not others.

Subsequent to our work, Hirt and Zikas [58] also considered the problem of Byzantine agreement
when honest parties’ signatures may be forged. In their model, the adversary is no longer restricted

1In [52], the adversary is assumed to have access to the random coins used by the compromised parties when
running the protocol, whereas we do not make this assumption.
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by an upper bound on the number of parties to corrupt. Instead, they use the notion of adversary
structures [60, 56] to model a non-threshold adversary, and obtain a generalized version of our
results.

1.2.2 Adaptively Secure Broadcast

While designing cryptographic protocols, it is often assumed that the set of parties that are cor-
rupted by the adversary remains unchanged throughout the execution of the protocol. Such ad-
versaries are said to be static. (Indeed this model is standard, and we consider static adversaries
in Chapter 3.) Adversaries without this restriction, i.e., adversaries that can choose which parties
to corrupt as the protocol is being executed, are known as adaptive adversaries. It is easy to see
that adaptive security (i.e., security against adaptive adversaries) is strictly stronger than static
security (i.e., security against static adversaries) for Byzantine adversaries.

Surprisingly, Hirt and Zikas [57] recently observed that all existing protocols for broadcast
(which have been known for over 30 years) are insecure against an adaptive adversary who can
choose which parties to corrupt as the protocol progresses. Furthermore, they proved that there is
no broadcast protocol secure against an adaptive adversary that can corrupt t > n/2 parties.

Our Contributions. In Chapter 4, we revisit the problem of adaptively secure broadcast. First,
we observe that the Hirt-Zikas attack and impossibility result for adaptively secure broadcast (when
t > n/2) holds in a communication model that is unrealistically pessimistic and allows the adversary
to corrupt a party and then retroactively change messages that party had already sent. We revisit
the problem of adaptively secure broadcast in the standard communication model (with rushing2).
We observe that attacks demonstrated by Hirt and Zikas [57] on existing broadcast protocols,
succeed even in this model. This immediately raises the question of whether their impossibility
result holds in the communication model we consider.

As our main result, we show that the Hirt-Zikas impossibility result does not apply in the
standard synchronous model, and demonstrate an adaptively secure broadcast protocol tolerating
an arbitrary number of corruptions in this setting under the assumption that a PKI and digital
signatures exist. We stress that our protocols do not assume erasure. We also prove that our
protocol remains secure even when it is concurrently executed with arbitrarily many other protocols.

We also study the impact of adaptive attacks on secure multi-party computation protocols
(where broadcast is commonly used as a subcomponent), and establish the variants of broadcast
that are needed in this setting. Interestingly, we show that the full functionality of broadcast is not
needed in order to obtain secure MPC for t ≥ n/2; instead, a weaker form of broadcast — which
can be realized even in the Hirt-Zikas communication model — suffices.

A preliminary version of this work appeared in [40].

1.3 Verifiable Secret Sharing (VSS)

In secret sharing [7, 86], there is a dealer who shares a secret among a group of n parties during a
sharing phase. The requirements are that, for some parameter t < n, any set of t colluding parties
gets no information about the dealer’s secret at the end of the sharing phase, yet any set of t + 1
parties can recover the dealer’s secret in a later reconstruction phase. Secret sharing assumes the
dealer is honest; verifiable secret sharing (VSS) [19] requires in addition that, no matter what a

2In the rushing model, the adversary is allowed to choose messages of the corrupted parties in some round after
seeing messages sent by the honest parties in that round.
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cheating dealer does (in conjunction with t−1 other colluding parties), there is some unique secret
to which the dealer is “committed” by the end of the sharing phase.

VSS serves as a fundamental building block in the design of protocols for general secure multi-
party computation [5, 84, 46]. VSS can also be viewed as a special case of broadcast, with an
additional privacy requirement (at the end of the sharing phase). In particular, VSS implies broad-
cast. VSS was formally introduced by Chor et al. [19]. One of the main applications of VSS
described in their paper was to solve the problem of simultaenous broadcast, which is a variant of
broadcast where parties simultaneously broadcast their input messages while preserving indepen-
dence of their inputs. (See also [20, 42, 55, 54].) Variants of VSS, such as moderated VSS [62]
or graded VSS [31, 39] are important tools in the design of expected constant-round protocols for
broadcast. (See [68] for a detailed discussion.) In the other direction, protocols for VSS, as with
general protocols for secure computation, are typically designed assuming the existence of broadcast
channels. Indeed, constant-round protocols (over point-to-point networks) for VSS do not exist in
a model without broadcast channels. We stress that all our VSS protocols are designed assuming
the existence of a broadcast channel.

Protocols for VSS are typically classified by the level of security that they guarantee. Perfect
VSS, where the security guarantees are unconditional (i.e., they hold even against an unbounded ad-
versary) and hold with probability 1, is known to be possible if and only if t < n/3 [5, 27]. Statistical
VSS, a natural relaxation where privacy and/or correctness may fail to hold with negligible probabil-
ity (still for unbounded adversary), is known to be possible if and only if t < n/2 [83, 84, 23]. Lastly,
computational VSS, where security guarantees hold with respect to a computationally bounded ad-
versary, is achievable if and only if t < n/2 [80, 32, 1]. Protocols for computational VSS typically
enjoy better efficiency than protocols for statistical VSS.

The round complexity of VSS protocols, typically defined as the number of rounds in the sharing
phase, is an important metric of their efficiency, and has been the subject of intense study. An
important line of research, initiated by Gennaro et al. [43], has focused on identifying the exact round
complexity of VSS protocols and their variants. The focus on round complexity is by no means
exclusive to the study of VSS protocols. Indeed, much work has been done on establishing bounds
on the round complexity of various cryptographic primitives, including Byzantine agreement [33,
71, 79, 29, 8, 31, 62], zero-knowledge [9, 30, 45, 4, 53, 16, 82], and secure computation [26, 59, 88,
44, 3, 66, 67, 63].

In this dissertation, we investigate two important problems related to the round complexity of
VSS: (1) Existing protocols for perfect VSS treat the broadcast channel as being available “for free”
and do not attempt to minimize its usage. This approach leads to relatively poor round complexity
when such protocols are compiled to run over a point-to-point network. (2) There is a large gap
between the lower bound and upper bound on the number of rounds required for statistical VSS
when t < n/2. We describe our results next.

1.3.1 Round Complexity of Perfect VSS in Point-to-Point Networks

As mentioned earlier, perfect VSS is possible iff t < n/3. Work of Gennaro et al. [43] and Fitzi
et al. [36] shows that, assuming a broadcast channel, three rounds are necessary and sufficient
for efficient VSS. Previous research investigating the round complexity of VSS, has focused on
optimizing the round complexity assuming a broadcast channel is available “for free”. As argued
previously [63, 68], however, if the ultimate goal is to optimize the round complexity of protocols for
point-to-point networks (where protocols are likely to be run), then it is preferable to minimize the
number of rounds in which broadcast is used rather than to minimize the total number of rounds.
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This is due to the high overhead of emulating a broadcast channel over a point-to-point network:
deterministic broadcast protocols require Ω(t) rounds [33]; known randomized protocols [31, 35, 62]
require only O(1) rounds in expectation, but the constant is rather high. (The most round-efficient
protocol known [62, 68] requires 18 rounds in expectation for t < n/3.)

Moreover, when using randomized broadcast protocols, if more than one invocation of broadcast
is used then special care must be taken to deal with sequential composition of protocols without
simultaneous termination (see [72, 62, 63]), leading to a substantial increase in the round complexity.
As a consequence, a constant-round protocol that only uses a single round of broadcast is likely
to yield a more round-efficient protocol in a point-to-point setting than any protocol that uses two
rounds of broadcast (even if that protocol uses no additional rounds). Prior work [73, 36, 63, 68]
shows that optimal round complexity as well as optimal use of the broadcast channel could each be
obtained individually for VSS, but it was unknown whether they could be obtained simultaneously.

Our Contributions. In Chapter 5, show a 3-round VSS protocol which uses one round of broad-
cast that is, therefore, optimal in both measures. As a consequence, we obtain a VSS protocol with
the best known round complexity in point-to-point networks. Our work also leads to an improve-
ment in the round complexity of the most round-efficient broadcast protocols known [62]. Our
protocol is efficient, in that the computation and communication are polynomial in n.

Early versions of this work appeared in [64, 65].

1.3.2 Round Complexity of Statistical VSS with Honest Majority

As mentioned earlier, the round complexity of perfect VSS was settled by Gennaro et al. [43] and
Fitzi et al. [36]. Gennaro et al. also showed that three rounds are necessary for perfect VSS. The
3-round lower bound of Gennaro et al. was generally believed to apply also to the case of statistical
VSS. It was therefore relatively surprising when Patra et al. [76] showed that statistical VSS could
be realized in two rounds for t < n/3. They also proved that 2-round statistical VSS is impossible
for t ≥ n/3.

The protocol of Patra et al. does not have optimal resilience, and does not apply when n/3 ≤
t < n/2. Statistical VSS protocols with optimal resilience were first shown by Rabin and Ben-
Or [84, 83]. A more efficient protocol for statistical VSS was shown later by Cramer et al. [23].
Their statistical VSS protocol required 11 rounds, and enjoyed the best known round complexity
for the same.

Our Contributions. In Chapter 6, we close the gap between the upper bound and the lower
bound for the exact round complexity of statistical VSS protocols with optimal resilience. The
work of Patra et al. [76] showed that 2-round statistical VSS is impossible for t ≥ n/3. We show
that 3-round statistical VSS is possible iff t < n/2. We also give an efficient 4-round protocol for
t < n/2. Our protocols require a 2-round reconstruction phase.

A preliminary version of this work appeared in [69].

Related and Subsequent Work. Statistical VSS protocols have also been designed assuming
some form of a setup (e.g., a PKI). In such a setting, statistical VSS protocols are often simpler to
design, and enjoy better round complexity [35, 63, 68]. For instance, given a setup, the 11-round
protocol of [23] can be immediately collapsed to a 6-round protocol (also shown in [23]), and it is
known how to collapse this further into a 4-round protocol [68, 63]. We stress that our protocols
do not assume any setup.

As argued previously, the number of broadcast rounds in VSS protocols contributes significantly
to their round complexity in point-to-point networks. Given a setup, it is known how to design a
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5-round statistical VSS protocol tolerating t < n/2 corrupted parties that uses broadcast in only
a single round [63, 68]. In the plain model (i.e., without any setup), prior work such as our own,
has mainly focused only on the round complexity of statistical VSS protocols when a broadcast
channel exists. Recent work by Garay et al. [38], subsequent to our own, addresses this issue and
shows a 9-round statistical VSS protocol with optimal resilience that uses broadcast only in three
rounds. In contrast, our protocols use broadcast in at least four rounds.

Subsequent to our work, Backes et al. [1] investigated the round complexity of computational
VSS (with no additional setup) when t < n/2. They obtain an optimal 2-round protocol for the
same. Furthermore, they show that their construction can be based on the minimal cryptographic
assumption that one-way functions exist.
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Chapter 2

Preliminaries

In this chapter, we describe the network model, setup assumptions, and security models. The basic
network model and the security model vary slightly across the different problems that we discuss.
We take sufficient care to emphasize these differences as we introduce the models. Following this,
we present definitions of basic primitives. Finally, we include the description of the Dolev-Strong
protocol [29] that we employ as a subroutine in some of our constructions.

2.1 Network Model

We consider the standard setting in which a set of n parties, denoted by P = {P1, . . . , Pn}, com-
municate in synchronous rounds via private and authenticated channels in a fully connected, point-
to-point network. If a channel connecting two parties is private, then the adversary cannot learn
anything about the messages exchanged between these two parties. If a channel connecting two
parties is authenticated, then the adversary cannot modify the messages or introduce a new mes-
sage such that the party who receives the message believes it to originate from the other party.
We remark that authenticated and private channels can be realized using cryptographic primitives
such as signatures and encryption.1 However, for the sake of simplicity, we assume that all chan-
nels in our network are unconditionally private and authenticated, with the understanding that
these guarantees (and the guarantees for our protocols) hold only computationally if cryptographic
means are employed to realize them. In Chapters 5 and 6, we further assume the existence of
an authenticated broadcast channel that is available to all parties. A broadcast channel allows
any party to send the same message to all other parties (and all parties to be assured they have
received identical messages) in a single round. We stress that we do not assume a simultaneous
broadcast channel. More generally, we assume that the adversary is rushing, i.e., in a given round,
the adversary may wait to see messages sent by other parties before computing its own messages
to be sent in the same round.

2.2 Setup Assumptions

Our protocols for verifiable secret sharing, presented in Chapters 5 and 6, do not require any setup
assumptions (other than a physical broadcast channel). However, our protocols for broadcast,
presented in Chapters 3 and 4, are constructed assuming a public-key infrastructure (PKI) and the
existence of secure digital signatures [48]. We give more details below.

1For adaptive adversaries, private channels may be realized using adaptively secure encryption.
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A public-key infrastructure is established as follows: each party Pi runs a key-generation al-
gorithm Gen (specified by the protocol) to obtain public key pki along with the corresponding
secret key ski. Then all parties begin running the protocol holding the same vector of public keys
(pk1, . . . , pkn), and with each Pi holding ski. We note that malicious parties can generate their
keys in an arbitrary fashion, e.g., dependent on the keys generated by parties.

In our protocols, we interpret the public key pki as a verification key for a secure digital signature
scheme, and the secret key ski as the corresponding signing key. Our protocols for broadcast make
extensive use of the signature scheme. For the sake of clarity, we often omit additional information
that must be signed along with the messages sent across the network. This includes (a) the identity
of the recipient, (b) the current round number, (c) an identifier for the message in case multiple
messages are sent to the same recipient in the same round, and (d) an identifier for the subprotocol
in case multiple subprotocols are being run. Thus, in general when we say a party signs a message,
we implicitly assume that the party generates a signature over the message concatenated with the
additional information described above. This information is also verified at the time of verification
of the signature.

2.3 Security Model

Our constructions are resilient against a centralized Byzantine (also called active) adversary, typ-
ically denoted A. We say that a protocol tolerates t malicious parties if it is secure against a
centralized Byzantine adversary that can corrupt up to t parties, and coordinate the actions of
these parties. A corrupted party, under the control of the adversary, might deviate from the pre-
scribed protocol arbitrarily. We say that a party is honest if it not corrupted.

It is possible to consider a stronger security model where an adversary decides which parties to
corrupt depending on the protocol execution. Such an adversary is called an adaptive adversary.
In contrast, an adversary that can corrupt only a fixed (but unknown) set of parties in advance of
protocol execution is termed static. We stress that our adaptively secure protocols do not assume
erasure. Another strengthening of the security model allows an adversary to coordinate its actions
across multiple protocols that are concurrently executed among the same (or a subset of the)
parties. Protocols that remain secure when composed with other arbitrarily many protocols are
said to be universally composable [11].

We give a brief overview of the exact security guarantees that our results provide. Our con-
structions in Chapter 3 are demonstrably insecure against an adaptive adversary. Indeed, our main
contribution there is an impossibility result against static adversaries, which obviously rules out
constructions against adaptive adversaries as well. In Chapter 4, we design universally composable
broadcast protocols secure against an adaptive adversary. Our protocol for perfect verifiable se-
cret sharing presented in Chapter 5 is proven secure against an adaptive adversary. Using known
composition results for perfectly secure protocols [70, 13], we conclude that this protocol also
achieves security under universal composition. Our protocols for statistical verifiable secret sharing
presented in Chapter 6 are secure in the presence of a static adversary. We conjecture that our
constructions are universally composable against adaptive adversaries as well.

2.4 Basic Primitives

In this section we present traditional property-based definitions of broadcast and verifiable secret
sharing. We start with the formal definition of broadcast.
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Definition 1 (Broadcast) A protocol for parties P = {P1, . . . , Pn}, where a distinguished dealer
D ∈ P holds an initial input m in some message space M, achieves broadcast if the following hold
(except with negligible probability):

Agreement All honest parties output the same value.

Validity If the dealer is honest, then all honest parties output m. ♦

Observe that the above definition refers to an arbitrary input m for the dealer. However, while
designing protocols, we assume for simplicity that the message space M for the dealer’s input
is {0,1}. Broadcast for arbitrary message spaces can be obtained from binary broadcast using
standard techniques.

We now present definitions of VSS and its variants. We require the dealer’s secret, typically
denoted by s, to lie in some finite field F.

First, we present the definition of perfect weak verifiable secret sharing (WSS).

Definition 2 (Perfect weak verifiable secret sharing) A two-phase protocol for parties P =
{P1, . . . , Pn}, where a distinguished dealer D ∈ P holds initial input s ∈ F, is a WSS protocol
tolerating t malicious parties if the following conditions hold for any adversary controlling at most t
parties:

Privacy If the dealer is honest at the end of the first phase (the sharing phase), then at the end of
this phase the joint view of the malicious parties is independent of the dealer’s input s.

Correctness Each honest party Pi outputs a value si at the end of the second phase (the recon-
struction phase). If the dealer is honest then si = s.

Weak commitment At the end of the sharing phase the joint view of the honest parties defines
a value s′ (which can be computed in polynomial time from this view) such that each honest
party will output either s′ or a default value ⊥ at the end of the reconstruction phase. ♦

Next, we present the definition of perfect VSS below.

Definition 3 (Perfect verifiable secret sharing) A two-phase protocol for parties P = {P1, . . . ,
Pn}, where a distinguished dealer D ∈ P holds initial input s ∈ F, is a VSS protocol tolerating t ma-
licious parties if it satisfies the privacy and correctness requirements of WSS as well as the following
(stronger) commitment requirement:

Commitment At the end of the sharing phase the joint view of the honest parties defines a value
s′ (which can be computed in polynomial time from this view) such that all honest parties will
output s′ at the end of the reconstruction phase. ♦

Next, we present the definition of perfect VSS with 2-level sharing. Such VSS protocols
constitute a useful building block for protocols for general secure multi-party computation (see,
e.g., [63, 68]).

Definition 4 (Perfect verifiable secret sharing with 2-level sharing) A two-phase protocol
for parties P = {P1, . . . , Pn}, where a distinguished dealer D ∈ P holds initial input s ∈ F, is a VSS
protocol with 2-level sharing tolerating t malicious parties if it satisfies the privacy and correctness
requirements of VSS as well as the following requirement:
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Commitment with 2-level sharing At the end of the sharing phase each honest party Pi outputs
si and si,j for j ∈ [n], satisfying the following requirements:

1. There exists a polynomial p(x) of degree at most t such that si = p(i) for every honest
party Pi, and furthermore all honest parties will output s′ = p(0) at the end of the
reconstruction phase.

2. For each j ∈ [n], there exists a polynomial pj(x) of degree at most t such that (1) pj(0) =
p(j) and (2) si,j = pj(i) for every honest party Pi. ♦

This implies the commitment property of VSS, since the value s′ = p(0) that will be output in the
reconstruction phase is defined by the view of the honest parties at the end of the sharing phase.

In the case of statistical VSS, we allow error with probability at most O(1/|F|), so log |F| is the
security parameter. Note that the dealer’s secret can be padded to lie in a larger field, if desired,
to reduce the probability of error.

Our definition of statistical VSS relaxes the correctness/commitment requirement, but not the
privacy requirement. This is the definition that has been considered previously in the literature,
and is the definition that our protocols in Chapter 6 achieve.

Definition 5 (Statistical Verifiable Secret Sharing) Let λ be a statistical security parameter,
and let ε = 2−Θ(λ). A two-phase protocol for parties P = {P1, . . . , Pn}, where a distinguished dealer
D ∈ P holds initial input s ∈ F, is a statistical VSS protocol tolerating t malicious parties if the
following conditions hold for any adversary controlling at most t parties:

Privacy If the dealer is honest at the end of the first phase (the sharing phase), then at the end of
this phase the joint view of the malicious parties is independent of the dealer’s input s.

Correctness Each honest party Pi outputs a value si at the end of the second phase (the recon-
struction phase). If the dealer is honest, then except with probability at most ε, it holds that
si = s.

Commitment Except with probability at most ε, the joint view of the honest parties at the end of
the sharing phase defines a value s′ such that si = s′ for every honest Pi. ♦

2.5 The Dolev-Strong Protocol

We present a modified version of the Dolev-Strong [29] protocol for authenticated broadcast for
t < n. (See Figure 2.1.) The protocol assumes the existence of a public-key infrastructure (PKI)
and digital signature schemes secure against adaptive chosen-message attacks [48]. The protocol is
as secure as the signature scheme employed.

We note that the protocol presented in [29] is recursive, and requires parties to sign over
signatures of other parties. We present a simpler version of the Dolev-Strong protocol that requires
parties only to produce signatures over messages from the message space [34, 81].

At a high level, the protocol described in Figure 2.1 works as follows. Each party Pi maintains
an accepted set of values, denoted by ACCi. Furthermore, each party Pi also collects signatures on
the message 0 in SETi0, and on the message 1 in SETi1. At the end of each round, each party Pi
checks whether the size of the sets SETi0,SETi1 exceeds a given threshold in which case they update
the set of accepted values ACCi. Finally, each party Pi computes an output depending on ACCi
and terminates the protocol.
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Protocol DSφ

The protocol is carried out among a set P = {P1, . . . , Pn} of parties. We let D ∈ P denote the
sender. We let m ∈ {0, 1} denote D’s input, and skD its secret key.

• Stage 1: D sends (m, {SignskD (m)}) to every party. It then outputs m and terminates the

protocol. Each party initializes ACCi = ∅, SETi0 = SETi1 = ∅.

• Stage 2: In rounds r = 1, . . . , φ+ 1, execute the following.

– If a pair (v,SET) is received from some Pj , with v ∈ {0, 1}, and if SET contains valid
signatures on v from at least r distinct parties including the dealer D, then Pi updates
ACCi = ACCi ∪ {v}, and SETiv = SETiv ∪ SET.

– Each party Pi checks whether any value v ∈ {0, 1} was newly added to the set of
accepted values ACCi during round r − 1. In this case, Pi computes Signski(v), and

sends (v,SETiv ∪ {Signski(v)}) to every other party.

• Stage 3: If ACCi = {1}, then Pi outputs mi = 1, else it outputs mi = 0.

Figure 2.1: The Dolev-Strong protocol for broadcast.

Theorem 1 [29] Suppose A corrupts at most t parties among P. Then, if n > t and φ = t,
protocol DSφ achieves broadcast.

Proof Suppose D is honest with input m then we argue that for every honest Pi, it holds that
ACCi = {m}. In fact, at the end of round 1, each Pi will receive (m,SignskD(m)) from D, and
thus will update ACCi to contain m. Now since an honest D’s signature cannot be forged, any pair
(1 −m,SET) received from any party Pj , will never have SET contain a valid signature from D.
Consequently, ACCi will never be further updated to contain 1 − m. Thus, every honest Pi will
output mi = m, and we conclude that validity holds for an honest D.

Next, we need to show that agreement holds (even when D is dishonest). Assume that Pi and
Pj are honest. We will show that ACCi = ACCj holds at the end of the protocol. Without loss
of generality, let some value v ∈ ACCi be first accepted by Pi in some round, say r. Observe that
at this point, i.e., at the end of round r, the set SETiv does not contain signatures from Pi, but
contains r signatures from distinct parties including the dealer D.

If r ≤ φ, then in round r+ 1 party Pi sends (v,SETiv ∪ {Signski(v)}) to all parties including Pj .
Clearly, SETiv ∪{Signski(v)} contains at least r+ 1 signatures from distinct parties including dealer
D, and Pj will update ACCj to contain v.

On the other hand, when r = φ + 1 > t, then at the end of round r, SETiv must contain a
signature from at least one honest party, say Pk. Since honest Pk’s signature cannot be forged,
this implies that Pk must have sent (v,SETkv ∪ {Signskk(v)}) to all parties in some round r′ ≤ r.

In particular, this implies that ACCk must contain v and that SETkv must contain at least r′ − 1
valid signatures from distinct parties including dealer D. Thus, in round r′, both Pi and Pj would
have received (v,SET = SETkv ∪ {Signskk(v)}) from honest Pk. As SET contains r′ valid signatures
from distinct parties including dealer D, parties Pi and Pj must have added v to ACCi and ACCj
respectively. (We note that r′ = r holds in order to avoid a contradiction.) We conclude that
whenever some value v is contained in ACCi, it is also contained in ACCj . Thus ACCi = ACCj holds
at the end of the protocol, and agreement follows.
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Chapter 3

Broadcast with a Partially
Compromised Public-Key
Infrastructure

In this chapter, we give protocols for authenticated broadcast when the underlying public-key
infrastructure (PKI) is compromised. We assume a public-key infrastructure (PKI), established as
follows: each party Pi runs a key-generation algorithm Gen (specified by the protocol) to obtain
public key pki along with the corresponding secret key ski. Then all parties begin running the
protocol holding the same vector of public keys (pk1, . . . , pkn), and with each Pi holding ski.

We model the failure of the PKI by allowing the adversary to learn some of the secret keys
corresponding to honest parties. More formally, we divide the set of honest parties into those
who have been compromised and those who have not been compromised. If honest party Pi is
compromised then the adversary A is given that Pi’s secret key ski. We stress that compromised
parties follow the protocol as instructed: the only difference is that A is now able to forge signatures
on their behalf. On the other hand, we assume A is unable to forge signatures of any honest parties
who have not been compromised. We assume authenticated point-to-point channels between all
honest parties, even those who have been compromised. In other words, although the adversary
can forge the signature of an honest party Pi who has been compromised, it cannot falsely inject a
point-to-point message on Pi’s behalf.

With few exceptions [37, 52], most existing work treats any such compromised party Pi as
corrupt, and provides no guarantees for Pi in this case: the output of Pi may disagree with the
output of other honest parties, and validity is not guaranteed when Pi is the dealer. As a concrete
example, consider the Dolev-Strong protocol presented in Section 2.5. Clearly, if D is compromised,
then A can generate SignskD(m′) on its own for any m′ 6= m. Now consider an adversarial strategy
in which a corrupted party sends (m′, SignskD(m′)) to all parties in round 1. It is easy to verify
that this simple adversarial strategy is sufficient to violate validity when D is compromised.

We argue that compromised parties are most naturally viewed as honest parties whose secret
(signing) keys have been obtained somehow by the adversary. E.g., perhaps an adversary was
able to hack into an honest user’s system and obtain their secret key, but subsequently the honest
party’s computer was re-booted and now behaves honestly. Clearly, it would be preferable to
ensure agreement and validity for honest parties who have simply had the misfortune of having
their signatures forged.

This motivates the following definition of the problem of authenticated broadcast in our setting
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and our modeling of corruptions:

Definition 6 A protocol for parties P = {P1, . . . , Pn}, where a distinguished dealer D ∈ P holds
an initial input m, is an authenticated broadcast protocol if the following hold (except with negligible
probability):

Agreement All honest parties output the same value.

Validity If the dealer is honest, then all honest parties output m.

We stress that “honest” in the above includes those honest parties who have been compromised. ♦

We model our adversary in the following way. An adversary A is called a (ta, tc)-adversary if A
actively corrupts up to ta parties and additionally compromises up to tc of the honest parties. In a
network of n parties, we call A a threshold adversary if A chooses ta, tc subject to the restriction
2ta + min(ta, tc) < n; actively corrupts up to ta parties; and compromises up to tc honest parties.

Our results. In the model described above, we obtain tight feasibility results for the problem of
authenticated broadcast when the PKI is compromised. Say n, ta, tc satisfy the threshold condition
if 2ta + min(ta, tc) < n. We show:

1. For every n, ta, tc satisfying the threshold condition, there exists an efficient authenticated
broadcast protocol.

2. Authenticated broadcast is impossible whenever ta, tc do not satisfy the threshold condition
(except when tc is fixed to 0).

3. Except for a few “exceptional” values of n, there does not exist a single, fixed protocol
achieving authenticated broadcast for all ta, tc satisfying the threshold condition.

4. We give positive results for the exceptional values of n.

Taken together, our results provide a complete characterization of the problem.

Organization. In Section 3.1 we show a protocol for broadcast when 2ta + min(ta, tc) < n holds
and the values of ta, tc are known to all parties. We show our impossibility results in Section 3.2.
In Section 3.3 we give positive results for the exceptional values of n. Finally, in Section 3.4, we
give a protocol that is more efficient than the one in Section 3.3, however the protocol works under
the assumption that at least one party in the network is honest and not compromised.

3.1 Broadcast for (ta, tc)-Adversaries

In this section, we prove the following result:

Theorem 2 Fix n, ta, tc with 2ta+min(ta, tc) < n. Then there exists a protocol achieving broadcast
in the presence of a (ta, tc)-adversary.

The case of ta ≤ tc is easy: ta ≤ tc implies 3ta < n and the parties can run a standard (unauthen-
ticated) broadcast protocol [79, 71] where the PKI is not used at all. (In this case, it makes no
difference whether honest parties are compromised or not.) The challenge is to design a protocol
for tc < ta, and we deal with this case for the remainder of this section.
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Let DSφ refer to the Dolev-Strong protocol [29] that achieves broadcast with a PKI, in the
usual sense (i.e., when no honest parties’ keys can be compromised) when φ = t, for any t < n
corrupted parties. (The Dolev-Strong protocol is presented in Section 2.5.) We prove a slightly
stronger version of Theorem 1.

Lemma 3 Suppose A corrupts at most ta parties, and further compromises at most tc parties.
Then, if n > ta + tc and φ = ta + tc, protocol DSφ achieves the following:

• If D is honest and non-compromised, then validity holds.

• Agreement holds. Further, if Pi and Pj are honest, then ACCi = ACCj holds at the end of the
protocol.

• If D is honest, and if |ACCi| = 1 holds for some honest party Pi, then validity holds.

Proof Suppose D is honest and non-compromised with input m then we argue that for every hon-
est Pi, it holds that ACCi = {m}. In fact, at the end of round 1, each Pi will receive (m,SignskD(m))
from D, and thus will update ACCi to contain m. Now since an honest and non-compromised D’s
signature cannot be forged, any pair (1−m,SET) received from any party Pj , will never have SET
contain a valid signature from D. Consequently, ACCi will never be further updated to contain
1 − m. Thus, every honest Pi will output mi = m, and we conclude that validity holds for an
honest and non-compromised D.

Next, we need to show that agreement holds (even when D is dishonest). Assume that Pi and
Pj are honest. We will show that ACCi = ACCj holds at the end of the protocol. Without loss
of generality, let some value v ∈ ACCi be first accepted by Pi in some round, say r. Observe that
at this point, i.e., at the end of round r, the set SETiv does not contain signatures from Pi, but
contains r signatures from distinct parties including the dealer D.

If r ≤ φ, then in round r+ 1 party Pi sends (v,SETiv ∪ {Signski(v)}) to all parties including Pj .
Clearly, SETiv ∪{Signski(v)} contains at least r+ 1 signatures from distinct parties including dealer
D, and Pj will update ACCj to contain v.

On the other hand, when r = φ + 1 > ta + tc, then at the end of round r, SETiv must contain
a signature from at least one honest and non-compromised party, say Pk. Since honest and non-
compromised Pk’s signature cannot be forged, this implies that Pk must have sent (v,SETkv ∪
Signskk(v)) to all parties in some round r′ ≤ r. In particular, this implies that ACCk must contain

v and that SETkv must contain at least r′− 1 valid signatures from distinct parties including dealer
D. Thus, in round r′, both Pi and Pj would have received (v,SET = SETkv ∪ {Signskk(v)}) from
honest Pk. As SET contains r′ valid signatures from distinct parties including dealer D, parties Pi
and Pj must have added v to ACCi and ACCj respectively. (We note that r′ = r holds in order
to avoid a contradiction.) We conclude that whenever some value v is contained in ACCi, then it
is also contained in ACCj . Thus ACCi = ACCj holds at the end of the protocol, and agreement
follows.

Finally, consider the case when D is honest but compromised with input m. In this case, at the
end of round 1, each Pi will receive (m,SignskD(m) from D, and thus will update ACCi to contain
m. Observe that once a value is added to ACCi it is never deleted. Thus, if |ACCi| = 1 holds at the
end of the protocol then it must hold that ACCi = {m}. Recall that when Pi and Pj are honest, it
holds that ACCi = ACCj . Therefore, for every honest Pj , it must also hold that ACCj = {m}, and
validity follows.
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Protocol 1

The protocol is carried out among a set P = {P1, . . . , Pn} of parties. For notational
convenience, we let D denote the dealer (though in fact any party can act as dealer). We
let m ∈ {0, 1} denote D’s input. In the following, we use DS to denote an execution of
DSφ with φ = ta + tc.

• Stage 1: D sends m to all other parties. Let m′i be the value received by Pi from
D in this step (if the dealer sends nothing to Pi, then m′i is taken to be some default
value).

• Stage 2: In parallel, each party Pi acts as the dealer in an execution of DS(m′i)
(the original dealer D runs DS(m)). We let |CLEAN0| (resp., |CLEAN1|) denote the
number of executions of DS that are both clean and result in output 0 (resp., 1).
(Note that all honest parties agree on sets CLEAN0,CLEAN1.)

• Stage 3: If |CLEAN0| ≥ |CLEAN1| then each Pi sets mi = 0; otherwise, Pi sets
mi = 1. Each Pi outputs mi.

Figure 3.1: A broadcast protocol for tc < ta and 2ta + tc < n.

We say that party Pi declares an execution of DSφ clean if |ACCi| = 1, and dirty otherwise.
From the proof above, we conclude that honest parties agree on whether an execution of DSφ is
clean (or dirty) when n > ta + tc and φ = ta + tc.

Observe that DSφ fails to satisfy Definition 6 only when the dealer is honest but compromised.
Our protocol (cf. Figure 3.1) guarantees validity even in this case (while leaving the other cases
unaffected). In our protocol description, and in the rest of the chapter, we will always set φ = ta+tc.
Simplifying the notation, we use DS to denote an execution of DSφ with φ = ta + tc.

Theorem 4 Let A be a (ta, tc)-adversary with tc < ta and 2ta + tc < n. Then Protocol 1 achieves
broadcast in the presence of A.

Proof We prove agreement and validity. Note that n > ta + tc, so Lemma 3 applies.

Agreement: By Lemma 3, the output of each honest party is the same in every execution of DS
in the second stage of the protocol, and all honest parties agree on whether any given execution of
DS is clean or dirty. So all honest parties agree on |CLEAN0| and |CLEAN1|, and agreement follows.

Validity: Assume the dealer is honest (whether compromised or not). Letting th denote the
number of honest, non-compromised parties, we have th + ta + tc = n > 2ta + tc and so th > ta.
Thus, there are th honest and non-compromised parties that act as dealers in the second stage
of Protocol 1, and each of these parties runs DS(m) where m is the initial input of D. By Lemma
3, all honest parties output m in (at least) these th executions, and each of these th executions is
clean. Furthermore, there can be at most ta clean executions resulting in output 1 −m, as only
adversarial parties will possibly run DS(1−m) in the second stage. The majority value output by
the honest parties is therefore always equal to the original dealer’s input m.
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3.2 Impossibility Results

In this section we show two different impossibility results. First, we show that there is no protocol
achieving broadcast in the presence of a (ta, tc)-adversary when n ≤ 2ta+min(ta, tc) and tc > 0, thus
proving that Theorem 2 is tight. We then consider the case when ta, tc are not fixed, but instead all
that is guaranteed is that 2ta+min(ta, tc) < n. (In the previous section, unauthenticated broadcast
was used to handle the case ta ≤ tc and Protocol 1 assumed tc < ta. Here we seek a single protocol
that handles both cases.) We show that in this setting, broadcast is impossible for almost all n.

3.2.1 The Three-Party Case

We first present a key lemma involving three parties that will be useful for the proofs of both
results described above. Our presentation of the three-party impossibility proof closely follows the
presentation in [34] which considers a different security model. The explanatory figures in the proof
are inspired by suggestions from an anonymous reviewer, and the presentation in [58], a subsequent
work that generalizes our results to the non-threshold setting.

Lemma 5 Broadcast among n = 3 parties {P1, P2, P3} with P1 acting as dealer is not achievable
in the presence of an adversary A that can choose to corrupt in one of the following ways:

• A actively corrupts P1, and compromises the secret key of no other honest party.

• A actively corrupts P2, and compromises the secret key of P1.

• A actively corrupts P3, and compromises the secret key of P1.

Proof Suppose, towards a contradiction, that there exists a protocol Π for achieving broadcast
in the presence of adversary A as specified in the statement of the lemma. Let Π1,Π2,Π3 denote
the program specified by protocol Π for parties P1, P2, P3 respectively. (See Figure 3.2.)

Π1"

Π3"Π2"

Figure 3.2: The real network among parties P1, P2, P3 where protocol Π is executed.

We analyze the protocol Π in a modified network shown in Figure 3.3. In the modified network,
two independent identical copies of program Π1, namely Π1,0 and Π1,1 are run in place of Π1 in
the following way. All messages sent by program Π1,0 to Π3 are discarded, while all messages it
sends to Π2 are correctly delivered to Π2. Similarly, all messages sent by program Π1,1 to Π2 are
discarded, while all messages it sends to Π3 are correctly delivered to Π3. Next, all messages sent
by program Π2 to Π1 in the real network are now routed to program Π1,0 in the modified network.
In particular, Π1,1 does not receive any messages from Π2 in the modified network. Similarly, all
messages sent by program Π3 to Π1 in the real network are now routed to program Π1,1 in the
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modified network, and Π1,0 does not receive any messages from Π3. In other words, programs Π1,0

and Π3 never exchange any messages in the modified network. Similarly, programs Π1,1 and Π2

never exchange any messages in the modified network. Finally, programs Π2 and Π3 interact with
each other in the modified network in the same way as they would in the real network.

Π1,0" Π1,1"

Π3"Π2"

Figure 3.3: The modified network with two copies Π1,0,Π1,1 of P1’s program Π1. Note that the
modified network disables any interaction (represented by the black square at the end of the links)
between Π1,0 and P3, and also between Π1,1 and P2.

We stress that the secret (and public) key used by each of the programs Π1,Π1,0, and Π1,1 is
identical to the secret (and public) key used by P1. We are now ready to prove some relationships
between executions of Π in the real network that happen in the presence of A, and executions of
Π in the modified network where each program behaves honestly.

Claim 6 There exists an adversary A that actively corrupts P1 such that the following holds for
every protocol Π and for every pair of public/secret keys held by P2 and P3. The joint view of P2

and P3 interacting with programs Π1,0 and Π1,1 in an execution of Π in the modified network is
perfectly indistinguishable from the joint view of P2 and P3 interacting with A in an execution of
Π in the real network.

Proof An adversary A corrupting P1 obviously has access to its secret keys, and thus access to
the secret keys used by programs Π1,0 and Π1,1. Now, instead of executing program Π1 in the real
network, A perfectly simulates programs Π1,0 and Π1,1 as shown in Figure 3.4. More concretely, A
internally runs (independent) programs Π1,0 and Π1,1 in the following way. A simulates Π1,0 such
that Π1,0 exchanges messages only with P2. Similarly, A simulates Π1,1 such that Π1,1 exchanges
messages only with P3. The claim follows immediately.

Claim 7 There exists an adversary A that actively corrupts P2 and compromises the secret key of
P1 such that the following holds for every protocol Π and for every pair of public/secret keys held by
P1 and P3. The joint view of P1 and P3 interacting with programs Π2 and Π1,0 in an execution of Π
in the modified network is perfectly indistinguishable from the joint view of P1 and P3 interacting
with A in an execution of Π in the real network.

Proof An adversary A that compromises the secret key of P1 obviously has access to the secret
key used by program Π1,0. Now, instead of allowing program Π2 to interact with P1 in the real
network, A perfectly simulates programs Π1,0 (using P1’s secret key) and Π2 (using P2’s secret
key) as if they are run in the modified network (see Figure 3.5). More concretely, acting as P2,
adversary A discards any message received from Π1, and instead internally runs program Π1,0 and
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Π1,0" Π1,1"

Π3"Π2"

Figure 3.4: The adversary corrupting P1 simulates Π1,0 and Π1,1 interacting with P2 and P3 in the
real network.

simulates its interaction with Π2. In A’s simulation, every message sent by Π2 to Π1 is now routed
to Π1,0, and every message sent by Π1,0 to Π3 is simply discarded by A. Given this, observe that
an execution of Π in the real network exactly mimics an execution of Π in the modified network.
The claim follows immediately.

Π1,0" Π1,1"

Π3"Π2"

Figure 3.5: The adversary corrupting P2 and compromising P1’s keys simulates Π1,0 (using P1’s
secret key) and Π2 (using P2’s secret key) interacting with P1 and P3 in the real network.

Claim 8 There exists an adversary A that actively corrupts P3 and compromises the secret key of
P1 such that the following holds for every protocol Π and for every pair of public/secret keys held by
P1 and P2. The joint view of P1 and P2 interacting with programs Π3 and Π1,0 in an execution of Π
in the modified network is perfectly indistinguishable from the joint view of P1 and P2 interacting
with A in an execution of Π in the real network.

Proof An adversary A that compromises the secret key of P1 obviously has access to the secret
key used by program Π1,0. Now, instead of allowing program Π3 to interact with P1 in the real
network, A perfectly simulates programs Π1,1 (using P1’s secret key) and Π3 (using P3’s secret
key) as if they are run in the modified network (see Figure 3.6). More concretely, acting as P3,
adversary A discards any message received from Π1, and instead internally runs program Π1,1 and
simulates its interaction with Π3. In A’s simulation, every message sent by Π3 to Π1 is now routed
to Π1,1, and every message sent by Π1,1 to Π2 is simply discarded by A. Given this, observe that
an execution of Π in the real network exactly mimics an execution of Π in the modified network.
The claim follows immediately.
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Π1,0" Π1,1"

Π3"Π2"

Figure 3.6: The adversary corrupting P3 and compromising P1’s keys simulates Π1,1 (using P1’s
secret key) and Π3 (using P3’s secret key) interacting with P1 and P2 in the real network.

We will now focus on executions of Π in the modified network. Recall that in the modified
network, none of the four programs Π1,0,Π1,1,Π2, and Π3 are corrupted. Further, observe that
the modified network has two dealers each running Π1,0 and Π1,1 respectively. Aiming for a con-
tradiction, suppose that one copy of Π1, say Π1,0, is initialized with input 0, and the other copy,
i.e., Π1,1, is initialized with input 1. Note that each of the four programs running in the modified
network will ultimately terminate outputting some bit (or a default value). Thus for every execu-
tion of Π in the modified network, there must be one set of adjacent programs, i.e., one set among
S3 = {Π1,0,Π2}, S1 = {Π2,Π3}, S2 = {Π3,Π1,1} such that validity or agreement does not hold for
parties executing programs in that set. This implies that there exists a set S ∈ {S1, S2, S3} such
that over all possible executions, either validity or agreement does not hold for parties executing
programs contained in S with probability at least 1/3.

To transfer these observations in the modified network onto the real network, we will pick one
of the following strategies at random.

• Let A be the adversary implied by Claim 8. Observe that A actively corrupts P3, and
compromises the secret key of P1. In this case, we let S′ = S1.

• Let A be the adversary implied by Claim 6. Observe that A actively corrupts P1, and
compromises the secret key of no other honest party. In this case, we let S′ = S2.

• Let A be the adversary implied by Claim 7. Observe that A actively corrupts P2, and
compromises the secret key of P1. In this case, we let S′ = S3.

In each of the above cases, observe that the joint view of the honest parties interacting with
A in the real network is perfectly indistinguishable from their joint view in the modified network.
Next, note that in each scenario, S′ denotes exactly the programs executed by the honest parties
in the modified network. Thus, when S = S′ holds we conclude that adversary A violates either
the validity or agreement conditions for the honest parties in the real network with probability 1/3.
Since S′ is chosen at random, we have that for every protocol Π, adversary A succeeds in violating
either the validity or agreement for honest parties with probability at least 1/9.

We remark that Lemma 5 holds only when P1 acts as the dealer. Indeed, when P2 or P3 act
as the dealer, it is possible to design a simple protocol for broadcast tolerating A described in
the statement of Lemma 5. For instance, suppose P2 acts as the dealer. Observe that A never
compromises the secret key of an honest P2. Consider the following protocol for broadcast. In the
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first round, P2 sends a signature on his input message to P1 and P3. In the next round, P1 and
P3 exchange the signed messages received from P2. If P2’s signature appears on different messages,
then P1 and P3 output some default value. Else, they output the single value that has P2’s signature
on it. This completes the description of the protocol. To see why this protocol works, observe that
when P2 is honest and non-compromised, P1 and P3 will obtain signatures on the same message,
and the adversary cannot create a valid signature on a different message. Therefore, honest parties
will output the same message in this case. On the other hand, if P2 is malicious, we only need
agreement, and it is easy to see that agreement holds at the end of the second round. As was
also pointed out in [58], the above gives a non-trivial example of a setting where authenticated
broadcast is possible when one party acts as the dealer, and impossible when a different party acts
as the dealer.

3.2.2 Impossibility of Broadcast for 2ta +min(ta, tc) ≥ n

In this section, we extend the three-party impossibility result to the multi-party setting when
thresholds ta, tc are known. We do this using a standard player-partitioning argument.

Theorem 9 Fix n, ta, tc with n ≥ 3, tc > 0 and 2ta+min(ta, tc) ≥ n. There is no protocol achieving
broadcast in the presence of a (ta, tc)-adversary.

Proof Suppose, towards a contradiction, that there exists a protocol Π for achieiving broadcast
among n parties in P = {P1, . . . , Pn} in the presence of a (ta, tc)-adversary.

We partition the set of n parties P = {P1, . . . , Pn} into P1, P2, and P3 in the following way.
P2 and P3 each contain at least one party, and at most ta parties. P1 contains at most min(ta, tc)
parties including the dealer. Indeed, such a partition exists since tc > 0 and 2ta + min(ta, tc) ≥
|P| = n ≥ 3. Let Π1,Π2,Π3 denote the program specified by protocol Π for parties in the sets
P1,P2,P3 respectively. In more detail, each program Πi (for i ∈ {1, 2, 3}) represents the joint
input/output behavior of the individual subprograms executed by parties in Pi.

Consider an adversary A that can choose to corrupt in one of the following ways:

• A actively corrupts all parties in P1, and compromises the secret key of no other honest party.

• A actively corrupts all parties in P2, and compromises the secret keys of all parties in P1.

• A actively corrupts all parties in P3, and compromises the secret keys of all parties in P1.

Verify that A is indeed a (ta, tc)-adversary since |P1| ≤ min(ta, tc) ≤ ta, and |P2|, |P3| ≤ ta.
Now the proof proceeds in the same way as the proof of Lemma 5. More concretely, we analyze

executions on Π in a modified network among four programs Π1,0,Π1,1,Π2, and Π3. As before, in
the modified network two independent identical copies of program Π1, namely Π1,0 and Π1,1 are
run in place of Π1. The modified network is exactly as shown in Figure 3.3 where a bidirectional
link between two programs is interpreted as a complete network of bidirectional links between
the individual subprograms contained in those two programs. Thus, all messages sent between
individual subprograms run as part of Π1,0 and individual subprograms run as part of Π2 are
discarded. Similarly all messages sent between individual subprograms run as part of Π1,1 and
individual subprograms run as part of Π3 are discarded. All other messages are exchanged as in
the real network.

It is straightforward to verify that each of Claims 6, 7, and 8 still hold when P1, P2, P3 are
replaced by P1,P2,P3 in their respective statements. Thus, we can conclude that the joint view
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of honest parties executing protocol Π in the real network is indistinguishable from the joint view
of honest parties executing protocol Π in the modified network. Furthermore, as demonstrated in
the proof of Lemma 5, assigning the dealer in Π1,0 with input 0, and the dealer in Π1,1 with input
1, we are guaranteed that there exist at least two honest parties in P for whom either validity or
agreement is violated with probability at least 1/3, and that A succeeds in violating the same with
probability at least 1/9. This completes the proof of the theorem.

3.2.3 Impossibility of Broadcast with a Threshold Adversary

We now turn to the case of the threshold adversary. Recall that in this setting the exact values of
ta and tc used by the adversary are not known; we only know that they satisfy 2ta+min(ta, tc) < n
(and we do allow tc = 0). In what follows, we show that secure broadcast is impossible if n /∈
{2, 3, 4, 5, 6, 8, 9, 12}. For the “exceptional” values of n, we demonstrate feasibility in Section 3.3.

Theorem 10 If n ≤ 2
⌊
n−1

3

⌋
+
⌊
n−1

2

⌋
, then there does not exist a secure broadcast protocol for n

parties in the presence of a threshold adversary. (Note that n ≤ 2
⌊
n−1

3

⌋
+
⌊
n−1

2

⌋
for all n > 1

except n ∈ {2, 3, 4, 5, 6, 8, 9, 12}.)

Proof Suppose, towards a contradiction, that there exists a protocol Π for achieiving broadcast
among n parties in P = {P1, . . . , Pn} in the presence of a threshold adversary.

We partition the set of n parties P = {P1, . . . , Pn} into P1, P2, and P3 in the following way.
P2 and P3 each contain at least one party, and at most

⌊
n−1

3

⌋
parties. P1 contains at most

⌊
n−1

2

⌋
parties including the dealer. Indeed, such a partition exists since we are given that n > 4 and
2
⌊
n−1

3

⌋
+
⌊
n−1

2

⌋
≥ n hold. Let Π1,Π2,Π3 denote the program specified by protocol Π for parties

in the sets P1,P2,P3 respectively. In more detail, each program Πi (for i ∈ {1, 2, 3}) represents the
joint input/output behavior of the individual subprograms executed by parties in Pi.

Consider an adversary A that can choose to corrupt in one of the following ways:

• A actively corrupts all parties in P1, and compromises the secret key of no other honest party.

• A actively corrupts all parties in P2, and compromises the secret keys of all parties in P1.

• A actively corrupts all parties in P3, and compromises the secret keys of all parties in P1.

Verify that A is indeed a threshold adversary since 2|P1| ≤ 2
⌊
n−1

2

⌋
< n and both 2|P2| +

min(|P2|, |P1|) and 2|P3|+min(|P3|, |P1|) are at most 2
⌊
n−1

3

⌋
+min(

⌊
n−1

3

⌋
,
⌊
n−1

2

⌋
) = 3

⌊
n−1

3

⌋
< n.

Now the proof proceeds in the same way as the proof of Lemma 5. More concretely, we analyze
executions on Π in a modified network among four programs Π1,0,Π1,1,Π2, and Π3. As before, in
the modified network two independent identical copies of program Π1, namely Π1,0 and Π1,1 are
run in place of Π1. The modified network is exactly as shown in Figure 3.3 where a bidirectional
link between two programs is interpreted as a complete network of bidirectional links between
the individual subprograms contained in those two programs. Thus, all messages sent between
individual subprograms run as part of Π1,0 and individual subprograms run as part of Π2 are
discarded. Similarly, all messages sent between individual subprograms run as part of Π1,1 and
individual subprograms run as part of Π3 are discarded. All other messages are exchanged correctly.

It is straightforward to verify that each of Claims 6, 7, and 8 still hold when P1, P2, P3 are
replaced by P1,P2,P3 in their respective statements. Thus, we can conclude that the joint view
of honest parties executing protocol Π in the real network is indistinguishable from the joint view
of honest parties executing protocol Π in the modified network. Furthermore, as demonstrated in
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Protocol ALSP(P, D, m̃, ψ)

Inputs: The protocol is parameterized by an integer ψ. Let D be the dealer with input m̃ of the
form m̃ = (“m”,SignskD (m)).

• Stage 1: D sends m̃ = (“m”,SignskD (m)) to all parties, and outputs m. Let m̃′i denote
the value received by Pi. If m̃′i is invalid (in particular, does not contain a valid signature
of D) then it sets m̃′i = 0. If ψ = 0, then each party Pi outputs m̃i = m̃′i, and terminates.

• Stage 2: Each Pi ∈ P \ {D} executes ALSP(P \ {D}, Pi, (“m̃′i”,Sigski(m̃
′
i)), ψ − 1). For

each Pj ∈ P \ {D}, let m̃
(i)
j = (“m

(i)
j ”, ?) denote its output of this execution.

• Stage 3: Each Pj ∈ P \ {D} computes PARTjm′ = {Pi | m(i)
j contains a valid signature

from D on m′}. Pj obtains mj such that |PARTjm′ | is maximized for m′ = mj . Then, it

obtains m̃j as lexicographically first message in {m(i)
j | Pi ∈ PARTjmj

}. (If PARTjm′ = ∅ for
all m′, then Pj sets m̃j = 0.) Finally, Pj outputs m̃j .

Figure 3.7: Protocol ALSP.

the proof of Lemma 5, assigning the dealer in Π1,0 with input 0, and the dealer in Π1,1 with input
1, we are guaranteed that there exist at least two honest parties in P for whom either validity or
agreement is violated with probability at least 1/3, and that A succeeds in violating the same with
probability at least 1/9. This completes the proof of the theorem.

3.3 Handling the Exceptional Values of n

We refer to {2, 3, 4, 5, 6, 8, 9, 12} as the set of exceptional values for n. (These are the only positive,
integer values of n for which Theorem 10 does not apply.) We show for any exceptional value of n
a broadcast protocol that is secure against any threshold adversary. Designing protocols in this
setting is more difficult than in the setting of Section 3.1, since the honest parties are no longer
assumed to “know” whether ta ≤ tc.

Our main construction, which we refer to as ALSP, is an authenticated version of the exponential
broadcast protocol of Lamport et al. [71] with parameter ψ; see Figure 3.7. Our protocol for broad-
cast is presented in Figure 3.8. Although the message complexity of this protocol is exponential in
the number of parties, the maximum number of parties considered here is 12.

Suppose the dealer’s input message is m. In Protocol 2, the dealer signs this message using his
secret key skD, and then executes protocol ALSP using input m̃ = (“m”, SigskD(m)). In general, we
use the notation (“m”, ?) to denote such messages, with ? acting as a placeholder for an arbitrary
(possibly invalid) signature.

We let th = n− tc − ta denote the number of honest and non-compromised parties. One useful
observation about threshold adversaries that we will repeatedly use is that when ta >

⌊
n−1

3

⌋
, it

follows that th > ta.
The next two lemmas are inspired by [71].

Lemma 11 If D is honest and ψ < n − 2ta holds, then ALSP(P, D, m̃, ψ) achieves validity and
agreement in the following sense. Each honest Pj outputs a message m̃j which contains a valid
signature from D, and further, if m̃ = (“m”, ?), and m̃j = (“mj”, ?), then m = mj holds for every
honest Pj ∈ P \ {D}.
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Proof The proof is by induction on ψ. First observe that when D is honest, it ensures (perhaps,
by setting an invalid message to 0) that m̃ is always valid and contains its signature. Given this,
clearly the lemma is true for ψ = 0. We now assume that the lemma is true for ψ − 1, and prove
it for ψ.

Each honest Pi ∈ P \ {D} executes ALSP with input (“m̃′i”,Sigski(m̃
′
i)) with m̃′i = m̃. Since by

hypothesis ψ < n− 2ta, we have ψ − 1 < n− 1− 2ta, so we can apply the induction hypothesis to

conclude that every honest Pj obtains m̃
(i)
j = m̃′i for honest Pi, and thus each honest Pi ∈ PARTjm

since m̃′i = m̃ = (“m”, ?) contains a valid signature from D. Since there are at most ta corrupt

parties, and n− 1 > 2ta +ψ− 1 ≥ 2ta, a majority of parties in P \ {D} are honest. Thus, PARTjm′

is maximized only for m′ = m, so each honest party Pj outputs mj = m.

Lemma 12 If n > 3ψ and ψ ≥ ta, then ALSP(P, D, m̃, ψ) achieves validity and agreement in the
following sense. Suppose m̃ = (“m”, ?), and for each party Pj, let m̃j = (“mj”, ?) denote its output.
Then mj = mk holds for every honest Pj , Pk ∈ P. Furthermore, if D is honest, then mj = m holds
for every honest party Pj ∈ P.

Proof The proof is by induction on ψ. If there is no corrupted party, then no party sends an
invalid signature. Given this, clearly the lemma is true when ψ = 0. We now assume that the
lemma is true for ψ − 1, and prove it for ψ.

We first consider the case when D is honest. Since n > 3ψ and ψ ≥ ta, we have n > 2ta + ψ,
i.e., ψ < n − 2ta. Thus, we can apply Lemma 11 (which proves something stronger for an honest
D) and conclude that this lemma holds. Now we only need to prove the lemma when D is corrupt.

Since there are at most ta corrupt parties, and D is one of them, so at most ta − 1 of the
remaining n−1 parties are corrupt. Furthermore, observe that n−1 > 3(ψ−1), and ψ−1 ≥ ta−1
still hold. We therefore apply the induction hypothesis to conclude that the lemma holds for
each ALSP execution with ψ − 1. That is, for every honest Pj , Pk ∈ P \ {D} participating in

ALSP(P \ {D}, Pi, m̃′i, ψ − 1), we have m
(i)
j = m

(i)
k . Given this, it follows that PARTjm′ = PARTkm′

holds for every m′. Thus, the lemma holds for ALSP executions with parameter ψ.

We now prove several additional lemmas about ALSP.

Lemma 13 If D is honest and non-compromised, then ALSP(P, D, m̃, ψ) achieves validity and
agreement for any ψ.

Proof Clearly, each honest Pj receives a valid message m̃ in Stage 1. Thus, each honest Pj

obtains output m
(j)
j = m̃ from its own ALSP execution in Stage 2. Therefore, PARTjm̃ is non-

empty. Furthermore, since D is honest and non-compromised, PARTjm′ is empty for every m′ 6= m̃.

PARTjm′ is maximized only for m′ = m̃, so agreement and validity follow immediately.

Lemma 14 Let th be the number of honest and non-compromised parties in P, and let ta be the
number of actively corrupted parties in P. If D is honest, and th > ta, then protocol ALSP(P, D, m̃, ψ)
achieves validity and agreement for any ψ.

Proof The proof is by induction on ψ. First observe that when D is honest, it ensures (perhaps,
by setting an invalid message to 0) that m̃ is always valid and contains its signature. Given this,
clearly the lemma is true for ψ = 0. We now assume that the lemma is true for ψ − 1, and prove
it for ψ.
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Protocol 2

The protocol is carried out among a set P = {P1, . . . , Pn} of parties. For notational convenience,
we let D denote the dealer (though in fact any party can act as dealer). We let m ∈ {0, 1} denote
D’s input, and skD its signing key.

• If n ∈ {5, 6, 8}, execute ALSP(P, D, (“m”,SigskD (m)),
⌊
n−1
3

⌋
+ 1).

• If n ∈ {9, 12}, execute ALSP(P, D, (“m”,SigskD (m)),
⌊
n−1
3

⌋
+ 2).

• Let m̃′i = (m′i, ?) be Pi’s output in the above. Pi outputs mi = m′i and terminates.

Figure 3.8: Broadcast against a threshold adversary.

When D is non-compromised, the lemma follows from Lemma 13. Now we only need to prove
the lemma when D is compromised.

Observe that when D is compromised, the number of honest and non-compromised parties in
P \ {D} is still th, and the number of actively corrupted parties in P \ {D} is still ta. Since
by hypothesis th > ta, we can apply the induction hypothesis to conclude that for every honest
Pi ∈ P \ {D}, protocol ALSP(P \ {D}, Pi, m̃′i, ψ − 1) achieves validity and agreement. Since for

an honest Pi we have m̃′i= m̃, so for every Pj , PARTjm̃ contains all honest parties. Furthermore,

the number of honest parties in P \ {D} is at least th which is in turn greater than ta, so PARTjm′

is maximized only for m′ = m̃. Given this, validity and agreement follow immediately for ALSP
executions with parameter ψ.

Observe that when ψ < n− 2
⌊
n−1

3

⌋
and ta ≤

⌊
n−1

3

⌋
, then ψ < n− 2ta holds. Therefore, using

Lemma 12 (for the case when ta ≤
⌊
n−1

3

⌋
) and Lemma 14 (for the case when ta >

⌊
n−1

3

⌋
), we

obtain the following corollary.

Corollary 15 If D is honest and ψ < n−2
⌊
n−1

3

⌋
, then protocol ALSP(P, D, m̃, ψ) achieves validity

and agreement.

The following trivial facts and the corollary above imply our next lemma.

Fact 16 For n ∈ {5, 6, 8}, it holds that
⌊
n−1

2

⌋
− 1 ≤

⌊
n−1

3

⌋
< n−1

3 .

Fact 17 For n ∈ {9, 12}, it holds that
⌊
n−1

2

⌋
− 2 ≤

⌊
n−1

3

⌋
< n−2

3 .

Lemma 18 If D is honest, then Protocol 2 achieves broadcast for n ∈ {5, 6, 8, 9, 12}.

Lemma 19 Protocol 2 achieves broadcast for n ∈ {5, 6, 8}.

Proof By Lemma 18, we see that the lemma is true when D is honest. We now turn to a
malicious dealer. Consider the n − 1 ALSP executions in Stage 2. Since the dealer is malicious,
at most ta − 1 out of the n − 1 parties in P \ {D} are corrupt. Recall that ta is at most

⌊
n−1

2

⌋
for a threshold adversary, so by Fact 16 we have that for n ∈ {5, 6, 8}, ψ − 1 =

⌊
n−1

3

⌋
≥ ta − 1,

and n − 1 > 3(ψ − 1). Thus, we can apply Lemma 12 to conclude that agreement and validity is
achieved in all ALSP executions in Stage 2. Given this, it is easy to see that there is agreement
among the outputs of honest parties in Stage 3. Thus, the lemma holds.

Lemma 20 Protocol 2 achieves broadcast for n ∈ {9, 12}.
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Proof By Lemma 18, we see that the lemma is true when D is honest. We now turn to the
case when D is malicious. Consider the n − 1 ALSP executions in Stage 2. Out of these n − 1
executions, we focus first on executions with a honest dealer. Using Fact 17, verify that ψ − 1 =⌊
n−1

3

⌋
+ 1 < (n − 1) − 2

⌊
n−2

3

⌋
holds. Applying Corollary 15, we conclude that agreement and

validity are achieved in all Stage 2 ALSP executions with a honest dealer.
We now turn to the Stage 2 ALSP executions with a malicious dealer D′. Since the dealer is

malicious, at most ta−2 out of the n−2 parties in P\{D,D′} are corrupt. Using Fact 17, verify that
ψ−2 =

⌊
n−1

3

⌋
+ 1 ≥ ta−2 and n−2 > 3(ψ−2). Applying Lemma 12, we conclude that agreement

and validity are achieved in all ALSP executions among parties in P \{D,D′}. Given this, it is easy
to see that there is agreement among the outputs of honest parties in ALSP(P \ {D}, D′, ?, ψ − 1).

Thus, we conclude that agreement is achieved in all Stage 2 ALSP executions in ALSP(P, D, ?, ψ)
irrespective of whether the dealer is honest or malicious. Given this, agreement among the outputs
of honest parties in Stage 3 of ALSP(P, D, ?, ψ) follows immediately, and the lemma holds.

Theorem 21 For any value n ∈ {2, 3, 4, 5, 6, 8, 9, 12} there exists a protocol for n parties that
achieves broadcast in the presence of a threshold adversary.

Proof The case n = 2 is trivial. When n = 3, it follows from our constraints that ta ≤ 1 and
tc = 0, so we can run any authenticated byzantine agreement protocol. When n = 4, it follows
from our constraints that ta ≤ 1, and therefore that n > 3ta, so we can ignore the PKI and run
a protocol that is secure without authentication. By Lemma 19 and Lemma 20, we have that
Protocol 2 achieves broadcast when n ∈ {5, 6, 8, 9, 12}. This concludes the proof of the theorem.

3.4 A More Efficient Protocol When th > 0

As in the previous section, we refer to {2, 3, 4, 5, 6, 8, 9, 12} as the set of exceptional values for n.
We show for any exceptional value of n a broadcast protocol that is secure against any threshold
adversary. A full proof of the above was given in Section 3.3, but it was based on the exponential
algorithm of Lamport et al. [71] rather than the more efficient protocol of Dolev-Strong [29]. In
this section, we deal with the “easier” case where there is guaranteed to be at least one honest,
non-compromised party1 (i.e., ta + tc < n). This assumption allows us to provide a protocol that is
based on the more efficient construction of Dolev-Strong (cf. Section 2.5), similar to the protocol
we presented in Section 3.1.

As in Section 3.1, our protocol begins with the dealer sending its input (here referred to as m)
to each party; each party then runs DS(m). However, because we no longer know whether ta ≤ tc,
the following problem arises: when the dealer is honest but compromised and ta ≤ tc, we cannot
be sure that the value output in the majority of clean runs is m. It is possible that th < ta, and
(recalling that the adversary can force all executions of DS by compromised parties to be dirty) it
is feasible for the adversary to force the majority of clean runs to have output 1−m.

To address this, we design our protocol to carefully look at the number of clean runs and use
this information in a particular way when determining the output. Specifically, notice that if there
are many dirty runs d (specifically, d > 2n/3) then the honest parties can conclude that ta < n/3:
this follows because 2n/3 < d ≤ ta + tc, so if ta ≥ n/3 then we would have n ≤ 2ta + min(ta, tc),

1The difficulty that arises when ta+tc = n is that the compromised parties may not agree on whether an execution
of DS is clean or dirty (since Lemma 3 no longer holds). This is not a problem in Section 3.1 because, there, whenever
ta + tc < n, the parties run an unauthenticated broadcast protocol that does not use a PKI.
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Protocol 3

The protocol is carried out among a set P = {P1, . . . , Pn} of parties. For notational convenience,
we let D denote the dealer (though in fact any party can act as dealer). We let m ∈ {0, 1} denote
D’s input. In the following, we use DS to denote an execution of DSφ with φ = ta + tc.

• Stage 1: D acts as the dealer in an execution of DS(m). Denote party Pi’s output by mDS
i .

If the dealer’s run was clean, then each party Pi outputs mi = mDS
i and terminates. Else,

D sends m to all other parties. Let m′i be the value received by Pi from D.

• Stage 2: In parallel, each Pi ∈ P \ {D} acts as the dealer in an execution of DS(m′i). For
b ∈ {0, 1}, let CLEANb denote the set of parties whose execution of DS is clean, and results
in an output of b. Initialize flag = 0, and for b ∈ {0, 1}, set CLEAN′b = CLEANb.

• Stage 3: Let CLEAN = CLEAN0 ∪CLEAN1, and DIRTY = P \CLEAN. Parties execute the
following sequentially:

(a) If |CLEAN′0| >
⌊
n−1
3

⌋
or |CLEAN′1| >

⌊
n−1
3

⌋
, then output 0 if |CLEAN′0| ≥ |CLEAN′1|,

and output 1 otherwise.

(b) If flag = 1 or |CLEAN| <
⌊
n−1
3

⌋
+ 2, then each party Pi participates in an execution of

BGP protocol with input m′i. Let party Pi’s output be mBGP
i . Each party Pi outputs

mi = mBGP
i and terminates.

Each party Pj ∈ DIRTY sends m′j to parties in CLEAN. Each party Pi ∈ CLEANb sets value
m′′i as follows:

m′′i =

{
b if at most

⌊
n−1
3

⌋
− |CLEAN1−b| parties in DIRTY sent 1− b to Pi

null otherwise
.

• Stage 4: In parallel, each party Pi ∈ CLEAN runs DS(m′′i ). If for some Pi ∈ CLEAN0 (resp.
CLEAN1), the run DS(m′′i ) is dirty, we add Pi to DIRTY, remove Pi from CLEAN0 (resp.
CLEAN1), and go to Stage 3. Else, for b ∈ {0, 1}, add to CLEAN′b all parties in CLEAN1−b
that gave a clean run on null, set flag = 1, and goto Stage 3.

Figure 3.9: Broadcast against a threshold adversary, assuming ta + tc < n.

exceeding the assumed threshold. Thus, when many dirty runs are detected the parties can switch
to running any unauthenticated broadcast protocol that does not use the PKI at all. (We use the
unauthenticated broadcast protocol based on the consensus protocol of Berman et al. [6], denoted
by BGP as a subprotocol in this case.) On the other hand, when there are few dirty runs (roughly
less than n/3), intuitively the parties can safely trust the majority output of the clean runs.

The above leaves a “gap” in which there are too few dirty runs to conclude that n > 3ta, and
too many to trust the majority output of the clean runs. This is only problematic if the number
of clean runs resulting in output m is close to the number of clean runs resulting in output 1−m,
and this balance will allow us to extract one last piece of information. Such a balance can occur in
only two ways. The first is when a Byzantine dealer gives m to some non-faulty parties and 1−m
to others, splitting the clean runs almost evenly between them. In this case we only need to worry
about agreement since the dealer is Byzantine. The more difficult case involves a compromised
dealer, since then correctness is also required. Here the key is to note that all clean runs with
honest dealers result in output m; thus, to achieve the assumed balance, almost all the Byzantine
parties must run cleanly with output 1−m. If most of the Byzantine parties give clean executions,
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it follows that the dealers in dirty executions are honest (but compromised), and we can rely on
them to correct the majority value back to m. The protocol is described in Figure 3.9.

Theorem 22 For n ∈ {2, 3, 4, 5, 6, 8, 9, 12}, Protocol 3 achieves broadcast in the presence of a
threshold adversary A under the additional assumption that ta + tc < n.

Proof One can verify that, for n as in the theorem, n > bn−1
2 c+ 2bn−1

3 c. We use this property
throughout the proof.

The value
⌊
n−1

3

⌋
serves as a sort of breakpoint for the parameter ta: if ta ≤

⌊
n−1

3

⌋
, then (because

A is a threshold adversary) we have n > 3
⌊
n−1

3

⌋
≥ 3ta; when ta >

⌊
n−1

3

⌋
then it holds that tc < ta

and, consequently ta < th holds.2 These are exactly the two cases handled (independently) in
Protocol 1. The difficulty here is to identify which of these scenarios is the “right” one. We prove
the correctness of our protocol in the following three lemmas.

Lemma 23 If D is honest and non-compromised then validity and agreement hold.

Proof When the dealer is honest and non-compromised, then in Stage 1, the dealer’s execution
of DS is clean and results in output m (cf. Lemma 3). Thus, all honest parties terminate with
output m in Stage 1.

Lemma 24 If D is honest but compromised then validity and agreement hold.

Proof Note that when the protocol terminates at Stage 1, we are guaranteed agreement and
validity. For the rest of the proof, we assume that the protocol continues past Stage 1. We consider
separately the cases ta >

⌊
n−1

3

⌋
and ta ≤

⌊
n−1

3

⌋
.

Case 1: ta >
⌊
n−1

3

⌋
. Let th denote the number of honest and non-compromised parties. Recall that

for a threshold adversary, when ta >
⌊
n−1

3

⌋
, it follows that tc < ta and th > ta, i.e., th ≥

⌊
n−1

3

⌋
+ 2.

Clearly, all honest and non-compromised parties would run DS on input m in Stage 2. By Lemma 3,
at least th runs in Stage 2 are clean and result in output m. Therefore, in Stage 2, either CLEAN0 or
CLEAN1 is of size at least th and hence greater than

⌊
n−1

3

⌋
. The protocol thus terminates in Stage 2

and we have agreement. Observe that all honest parties are contained in either CLEANm or in DIRTY
(and not in CLEAN1−m). Validity follows from the fact that ta < th and |CLEANm| > |CLEAN1−m|.

Case 2: ta ≤
⌊
n−1

3

⌋
. When ta ≤

⌊
n−1

3

⌋
, the honest parties are in two-thirds majority, i.e., n > 3ta.

Therefore, whenever the parties terminate with an output obtained by running BGP, it is always
guaranteed to be correct, i.e., for every honest Pi, we have mBGP

i = m. The only other termination
condition is when |CLEAN′b| >

⌊
n−1

3

⌋
for some b ∈ {0, 1}. Since for every honest party Pi we have

m′i = m, the set CLEAN′1−m will never contain any honest party. Thus |CLEAN′b| >
⌊
n−1

3

⌋
can hold

only for b = m. Therefore all possible terminations of the protocol result in correct output.

Lemma 25 When D is corrupt, agreement holds.

Proof Observe that the protocol can terminate in two ways: either (a) by a termination condition
that depends on CLEAN′0 and CLEAN′1 in Stage 3, or (b) by running an instance of BGP in Stage 3.
Since all honest parties agree on the values of CLEAN′0 and CLEAN′1, agreement is always guaranteed

2Note that n = ta + tc + th. By the threshold condition, n > 2ta + min(ta, tc). Since ta > tc, we have
n = ta + tc + th > 2ta + tc, i.e., th > ta.
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when the protocol terminates because of that condition. Hence, we restrict our attention to the
case when parties terminate by running an instance of BGP.

Observe that when ta ≤
⌊
n−1

3

⌋
, we have n > 3

⌊
n−1

3

⌋
> 3ta, and agreement is guaranteed

whenever the protocol terminates after running BGP. Therefore, we are left with analyzing the
case when ta >

⌊
n−1

3

⌋
. In fact, we will prove that in this case, parties never terminate after

running BGP.
Let th represent the number of honest and non-compromised parties, recall that in this case

th > ta, implying th ≥
⌊
n−1

3

⌋
+2. All honest and non-compromised parties give clean runs resulting

in |CLEAN| ≥ th ≥
⌊
n−1

3

⌋
+ 2.

We now argue that there exists b ∈ {0, 1} such that |CLEAN′b| >
⌊
n−1

3

⌋
. (Indeed if this is the

case, then we have proved that all parties agree on the final output.) By way of contradiction
assume that |CLEAN′0|, |CLEAN′1| <

⌊
n−1

3

⌋
. Consequently, |CLEAN0|, |CLEAN1| <

⌊
n−1

3

⌋
, and thus

each of CLEAN0,CLEAN1 contains at least one honest and non-compromised party.
Next, since |CLEAN| ≥

⌊
n−1

3

⌋
+2, we have |CLEAN′0\CLEAN0|+|CLEAN′1\CLEAN1| ≤

⌊
n−1

3

⌋
−2.

Since the maximum value of n considered here is 12, we have |CLEAN′0 \ CLEAN0| + |CLEAN′1 \
CLEAN1| ≤ 1. Thus for some b ∈ {0, 1}, we have |CLEAN′1−b \ CLEAN1−b| = 0. Therefore, every
honest (and non-compromised) party Pi in CLEANb retained his value, i.e., set m′′i = m′i = b.
The following claim implies that every honest (and non-compromised) party Pj in CLEANb set
m′′j = null, and gave a clean run on m′′j .

Claim 26 If for some b ∈ {0, 1}, there exists an honest party Pi ∈ CLEANb that sets m′′i = b, then
all honest parties Pj ∈ CLEAN1−b set m′′j = null.

Proof Consider an honest party Pi ∈ CLEANb, that sets m′′i = b. Let DIRTY contain t′a corrupt
parties and t′c honest but compromised parties. Let t′c,b be the number of honest but compromised

parties who received bit b from D in the first round. Now t′c,1−b ≤
⌊
n−1

3

⌋
−|CLEAN1−b|. Otherwise,

it is easy to see that Pi would have set m′′i = null. We claim that t′c,b >
⌊
n−1

3

⌋
−|CLEANb|. Suppose

that is not true, then we have t′c = t′c,0+t′c,1 ≤ 2
⌊
n−1

3

⌋
−|CLEAN|, i.e. t′c+|CLEAN| ≤ 2

⌊
n−1

3

⌋
. Since

n = t′a+t′c+|CLEAN| , we have n ≤ t′a+2
⌊
n−1

3

⌋
≤ ta+2

⌊
n−1

3

⌋
. This is a contradiction since, we are

given that n > 2
⌊
n−1

3

⌋
+bn−1

2 c ≥ 2
⌊
n−1

3

⌋
+ ta. Hence we have proved that t′c,b >

⌊
n−1

3

⌋
−|CLEANb|

and thus all the honest parties Pj ∈ CLEAN1−b will set m′′j = null.

Therefore, CLEAN′b contains all honest and non-compromised parties in CLEANb and in CLEAN1−b,
and consequently |CLEAN′b| ≥ th ≥

⌊
n−1

3

⌋
+ 2 which is a contradiction.

This concludes the proof of correctness of Protocol 3 and hence the theorem.

Protocol 3 runs at most O(n2) instances of the DS subprotocol and one instance of the BGP
subprotocol. A single DS instance has communication complexity O(n3) signatures, and a BGP
instance has communication complexity O(n2) bits. Therefore the total communication complexity
of Protocol 3 is O(n5) signatures. In contrast, the protocol ALSP has communication complexity
at least O(n!) signatures. We note that even for small values of n as considered here, there is a
substantial difference in the efficiency of the two protocols.
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Chapter 4

Adaptively Secure Broadcast

Motivated by a recent result by Hirt and Zikas [57] we study adaptive attacks on existing broadcast
protocols in this chapter. They studied the problem of designing broadcast protocols with security
against adaptive adversaries who can choose which parties to corrupt during the course of the
protocol (cf. [14]). Hirt and Zikas showed explicit attacks against all existing broadcast protocols
when t ≥ n/3 and, moreover, proved the impossibility of realizing adaptively secure broadcast with
corruption threshold t > n/2. (They gave constructions of adaptively secure protocols for the
regime n/3 ≤ t ≤ n/2.) Their work calls into question the feasibility of realizing adaptively secure
multi-party computation (MPC) for t > n/2 in point-to-point networks.

A closer look at the Hirt-Zikas result shows that they make a very strong assumption regarding
the adversary (or, alternately, a very weak assumption regarding the communication network):
namely, they assume the adversary has the ability to corrupt parties in the middle of a round,
in between sending messages to two other parties in the network. Specifically, their impossibility
result crucially relies on the fact that the following sequence of events can occur when an honest
party P sends its messages in some round:

1. The adversary (who has already corrupted some of the other players) receives the message(s)
sent to it by P .

2. Based on this, the adversary then decides whether to corrupt P .

3. If the adversary corrupts P , it can then send messages of its choice (on behalf of P ) to the
remaining parties in the same round.

While the above is consistent with theoretical models for asynchronous cryptographic protocols, as
well as some previous treatments of adaptive security in the synchronous setting (e.g., [11]), allowing
such adversarial behavior seems unrealistically pessimistic: in the real world, implementing such
an attack would require either an exceedingly fast adversary or an extremely slow network. A more
realistic model of synchronous communication (see, e.g., [10]) is one in which messages sent by
honest parties within any given round are delivered atomically to all other parties.1

Importantly, however, the attacks that were demonstrated by Hirt and Zikas [57] on existing
broadcast protocols remain valid even if we assume atomic message delivery. Consider, for example,
the authenticated broadcast protocol of Dolev and Strong [29] where, at a high level, in the first

1We still allow rushing, meaning that corrupted parties may receive their messages in some round before having
to send any of their own. This reflects the fact that corrupted parties can choose to delay their own communication.
However, it seems unrealistic to assume that honest parties would delay sending any of their own messages.
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round the sender digitally signs and sends his message to all the other parties, while in subsequent
rounds parties append their signatures and forward the result. Roughly, if any party ever observes
valid signatures of the sender on two different messages then that party forwards both signatures
to all other parties and disqualifies the sender (and all parties output some default message). The
Hirt-Zikas attack against this protocol works as follows: a corrupted party P in the network waits
to receive the initial message from the (uncorrupted) sender. If P likes the message sent by the
sender then P runs the protocol honestly. If P does not like the message sent by the sender then
P adaptively corrupts the sender, uses the sender’s signing key to generate a valid signature on
another message (in the next round), and thus ensures that the sender will be disqualified and the
default message used.

While this outcome might be acceptable with respect to a property-based definition (since the
sender is corrupted by the end of the protocol in the second case), the outcome is not something
that should be possible with respect to a simulation-based definition (since corruption of the sender
depends on the sender’s initial input). Realizing the latter, stronger definition is a natural goal;
moreover, a simulation-based definition is especially critical for broadcast which is typically used
as a sub-protocol within some larger protocol.

Given that the Hirt-Zikas attack applies even when atomic message delivery is assumed, one
might wonder whether their impossibility result holds in that model as well. Alternately, one may
be willing to give up on “full” broadcast and hope that some weaker form of broadcast might be
sufficient to achieve secure MPC for t > n/2. (Indeed, in the presence of a dishonest majority the
standard definitions of secure MPC give up on guaranteed output delivery, so in particular secure
MPC for t > n/2 does not imply broadcast for t > n/2.) These are the questions with which we
concern ourselves in this chapter.

Our results and techniques. As our main result in this chapter, we show that the Hirt-Zikas
impossibility result does not apply in the synchronous model with atomic message delivery. That is,
we show a construction of an adaptively secure broadcast protocol tolerating an arbitrary number
of corruptions in this communication model. We prove security of our protocol within the UC
framework [11], under the usual assumptions that a PKI and digital signatures are available. We
stress that we require only a standard PKI where each party chooses their public key and all
other parties know it; in particular, we do not require the stronger “registered public key” model
considered in [2].

The main idea for avoiding the Hirt-Zikas attack is to design a protocol where the adversary
does not learn the (honest) sender’s message until agreement has already been reached; that way,
the adversary must make its decision as to whether or not to corrupt the sender independently of
the sender’s input. This suggests the following two-stage approach: First, the signer broadcasts a
commitment to its message; once agreement is reached, the signer then decommits. While this does
prevent the above attack, it also introduces a new problem when we try to prove security, since
the simulator must commit to the sender’s message before knowing what the sender’s message is!
(Since the sender might still get corrupted in the middle of the protocol, it also does not work for
the simulator to obtain the output of the broadcast functionality before starting the simulation.)
This could be handled by using a universally composable commitment scheme (e.g., [15]), which
satisfies even stronger properties, but we would prefer to avoid the stronger setup assumptions that
are required for constructing universally composable commitments [15].

Instead, we show that a very weak form of commitment suffices to make the approach sound.
Specifically, we use commitment schemes that (informally) are hiding and binding for an honest
sender, but where binding can be (easily) violated by a dishonest sender. To see why this works,
note that the only time binding is needed is when the adversary corrupts the sender after the
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sender has already committed to its message. Since the sender in that case was honest at the time
the commitment was generated, the binding property holds and the adversary will not be able to
change the committed value. On the other hand, the simulator can behave as a dishonest sender and
generate a commitment that it can later open to any desired value, and in particular to the sender’s
true input in case the sender remains uncorrupted until the end of the protocol. We show that
commitment schemes with the desired properties can be constructed from one-way functions (which
are, in turn, implied by digital signature schemes); thus, in summary, we obtain an adaptively
secure, universally-composable broadcast protocol assuming a PKI and digital signatures.

We also study the impact of adaptive attacks on secure multi-party computation protocols
(where broadcast is commonly used as a subcomponent), and establish the variants of broadcast
that are needed in this setting. Interestingly, we show that the full functionality of broadcast is not
needed in order to obtain secure MPC for t ≥ n/2; instead, a weaker form of broadcast — which
can be realized even in the Hirt-Zikas communication model — suffices.

Organization. In Section 4.1 we present our network model and elaborate on simulation-based
definitions of security. Section 4.2 defines various notions of broadcast. In Section 4.3 we introduce
a special type of commitment scheme, and we show how to construct such schemes in Section 4.3.1.
In Section 4.4 we show how to use such commitments to realize adaptively secure broadcast in
the atomic communication model. We discuss the consequences for adaptively secure multi-party
computation in Section 4.5.

4.1 Preliminaries

4.1.1 Network Model

We consider a network with synchronous communication, where there is a set of n players (prob-
abilistic polynomial-time Turing machines) P = {P1, P2, · · · , Pn} connected by point-to-point au-
thenticated channels. Each round of the protocol proceeds as follows. The honest parties send
their messages for that round, and these messages are received by all parties (both honest and
corrupted). The adversary may then choose to corrupt additional players, and then it sends mes-
sages on behalf of the parties who were corrupted at the beginning of that round. (This models
a rushing adversary.) When it is done, the adversary must then “advance the clock” to the next
round. We allow the adversary to corrupt any t < n of the parties, and to behave in an arbitrary
(“Byzantine”) manner. We stress that we do not assume erasures.

We stress that our model is different from that considered by Hirt and Zikas [57], where in each
round the honest parties’ messages are first delivered to the corrupted parties only and then the
adversary is allowed to corrupt additional parties and decide what messages to send on behalf of
those parties to other honest players. In contrast, we assume that honest parties’ messages are
delivered “atomically”, which is equivalent to assuming that adversarial corruption cannot occur
in the time interval between when a message is sent and when it is received. We sometimes refer
to our model as “atomic”, and to the Hirt-Zikas model as “non-atomic”.

4.1.2 Simulation-Based Security

We use a simulation-based definition of security in Chapter 4, which is in line with work in the area
of cryptographic-protocol design but which differs from most of the classical work on Byzantine
agreement and broadcast. Simulation-based definition are formulated by defining an “ideal” version
of some desired functionality that is implemented by a trusted third-party; a protocol is secure if
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the protocol “emulates” this ideal world no matter what the adversary does. One advantage of a
simulation-based approach is that it simultaneously captures all the properties that are guaranteed
by the ideal world, without having to enumerate some list of desired properties. Simulation-
based definitions are also useful for applying composition theorems that enable proving security of
protocols that use other protocols as sub-routines.

We formulate our simulation-based definitions by presenting appropriate functionalities within
the UC framework. We give a brief introduction to this model, and refer readers elsewhere for
more details [11]. The basic entities involved are parties P1, . . . , Pn, an adversary A, and an
“environment” Z. The environment Z gives inputs to and receives outputs from all the parties;
it also interacts with A in an arbitrary way throughout its execution. In the ideal world, the
parties and Z all interact via an ideal functionality F : the parties send their inputs to (with
corrupted parties sending anything they like) and receive outputs from F , and A interacts with F
as specified by F itself. We let idealF ,A,Z(n) denote the output of Z in this case. In the real
world, the parties run some protocol π with the corrupted parties behaving arbitrarily as directed
by A. We let realπ,A,Z(n) denote the output of Z in that case. A protocol π securely realizes the
functionality F if for any probabilistic polynomial-time (ppt) real-world adversary A there exists
a ppt ideal-world adversary S (often called a simulator) such that for all ppt environments Z the
following is negligible:

|Pr[realπ,A,Z(n) = 1]− Pr[idealF ,S,Z(n) = 1]| .

Say we want to design a protocol for some functionality F . It is often helpful to design and
reason about this in a hybrid world where the parties can run a protocol π while at the same time
having access to some ideal functionality G. We let hybridGπ,A,Z(n) denote the output of Z in
that case, and say that π securely realizes F in the G-hybrid model if for any ppt hybrid-world
adversary A there exists a ppt ideal-world adversary S such that for all ppt environments Z we

have
∣∣∣Pr[hybridGπ,A,Z(n) = 1]− Pr[idealF ,S,Z(n) = 1]

∣∣∣. In the UC framework, the following useful

composition result holds: if π securely realizes F in the G-hybrid model, and ρ is any protocol that
securely realizes G, then the composed protocol πρ securely realizes F (in the real world).

4.2 Definitions of Broadcast

As mentioned previously, classical results show that broadcast (or even relaxed broadcast) cannot
be realized for t ≥ n/3 corrupted parties in a “plain model”, and so some setup must be considered
if we wish to go beyond this bound. As stated in the Introduction, we assume a PKI and digital
signatures. Within the UC framework, this is modeled by the certificate functionality FCERT

introduced in [12]. This functionality provides both message-signing capability as well as binding
between a signature and a party in the network, and thus simultaneously captures both the presence
of a PKI and the ability to issue signatures.

Our definitions of broadcast are induced by ideal functionalities in the UC framework. Namely,
we say a protocol π achieves (strong) broadcast if it securely realizes the functionality FBC shown
in Figure 4.1; it achieves relaxed broadcast if it securely realizes the functionality FRBC given
in Figure 4.2. Our definition of broadcast is essentially standard, though one can also consider a
definition where the sender’s message m is not revealed to S. (I.e., our definition does not guarantee
secrecy for m; note that this only makes a difference when S corrupts no parties.) Our definition
of relaxed broadcast is from [57].

It is instructive to examine the two functionalities in light of the Hirt-Zikas attack. Observe
that FBC does not allow their attack (and so any protocol securely realizing FBC must not be
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Functionality FBC

The functionality interacts with an adversary S and a set P = {P1, . . . , Pn} of parties.

• Upon receiving (Bcast, sid,m) from Pi, send (Bcast, sid, Pi,m) to all parties in P
and to S.

Figure 4.1: The broadcast functionality.

susceptible to the attack) since the adversary cannot change the sender’s message m unless the
adversary corrupts the sender Pi in advance, before it learns m. On the other hand, FRBC allows
their attack: this is so because the adversary can first learn m (in step 1) and then decide whether
to corrupt the sender Pi based on that information; if the adversary decides to corrupt P1 then the
adversary is allowed change the message that will be received by all the other parties in step 2.

The following result was proved in [57]:

Lemma 27 The Dolev-Strong protocol [29] securely realizes FRBC in the FCERT-hybrid model
against an adaptive adversary corrupting any t < n parties.

In fact, the above result holds even in the non-atomic communication model.
It is also possible to define a stronger variant of FRBC, called F+

RBC, that more closely corre-
sponds to what is actually accomplished by the Hirt-Zikas attack. The difference between FRBC

and F+
RBC is that the latter only allows the adversary to have m′ =⊥. That is, the adversary

is allowed to adaptively corrupt the sender (based on the sender’s original message) and thereby
cause agreement on an error, but is unable to cause agreement on some other valid message. F+

RBC

can be realized fairly easily in the FRBC-hybrid model using the commitment scheme defined in
the following section. Alternately, it can be realized directly in the FCERT-hybrid model using an
appropriate variant of the Dolev-Strong protocol.

Functionality FRBC

The functionality interacts with an adversary S and a set P = {P1, . . . , Pn} of parties.

1. Upon receiving (Bcast, sid,m) from Pi, send (Bcast, sid, Pi, m) to S.

2. Upon receiving m′ from S, do:

• If Pi is corrupted, send (Bcast, sid, Pi, m
′) to all parties in P;

• If Pi is not corrupted, send (Bcast, sid, Pi, m) to all parties in P.

Figure 4.2: The relaxed broadcast functionality.

4.3 Honest-Binding Commitment Schemes

Commitment schemes are a standard cryptographic tool. Roughly, a commitment scheme allows
a sender S to generate a commitment com to a message m in such a way that (1) the sender can
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later open the commitment to the original value m (correctness); (2) the sender cannot generate a
commitment that can be opened to two different values (binding); and (3) the commitment reveals
nothing about the sender’s value m until it is opened (hiding). For our application, we need a
variant of standard commitments that guarantees binding when the sender is honest but ensures
that binding can be violated if the sender is dishonest. (In the latter case, we need some additional
properties as well; these will become clear in what follows.) Looking ahead, we will use such
commitment schemes to construct a broadcast protocol in the following way: the sender will first
generate and send a commitment to its message, and then send the decommitment information
needed to open the commitment. In the simulation for the case when the sender Pi starts out
uncorrupted, we will have the simulator S generate a commitment dishonestly. This will give S
the flexibility to break binding and open the commitment to any desired message (if needed), while
also being able to ensure binding (when desired) by claiming that it generated the commitment
honestly.

We consider only non-interactive commitment schemes. For simplicity, we define our schemes
in such a way that the decommitment information consists of the sender’s random coins ω that it
used when generating the commitment.

Definition 7 A (non-interactive) commitment scheme for message space {Mk} is a pair of ppt
algorithms S,R such that for all k ∈ N, all messages m ∈ Mk, and all random coins ω it holds
that R(m,S(1k,m;ω), ω) = 1.

A commitment scheme for message space {Mk} is honest-binding if it satisfies the following:

Binding (for an honest sender) For all ppt algorithms A (that maintain state throughout their
execution), the following is negligible in k:

Pr

[
m← A(1k);ω ← {0, 1}∗; com← S (1k,m;ω); (m′, ω′)← A(com, ω) :

R(m′, com, ω′) = 1
∧
m′ 6= m

]

Equivocation There is an algorithm S̃ = (S̃1, S̃2) such that for all ppt A (that maintain state
throughout their execution) the following is negligible:∣∣∣∣∣∣ Pr

 m← A(1k);
ω ← {0, 1}∗; com← S (1k,m;ω) :

A(1k, com, ω) = 1

− Pr

 (com, st)← S̃1(1k);

m← A(1k); ω ← S̃2(st,m) :
A(1k, com, ω) = 1

 ∣∣∣∣∣∣
♦

Equivocation implies the standard hiding property, namely, that for all ppt algorithms A (that
maintain state throughout their execution) the following is negligible:∣∣∣∣Pr

[
(m0,m1)← A(1k); b← {0, 1}; com← S (1k,mb) : A(com) = b

]
− 1

2

∣∣∣∣ .
We also observe that if (com, ω) are generated by (S̃1, S̃2) for some message m as in the definition
above, then binding still holds: namely, no ppt adversary can find (m′, ω′) with m′ 6= m such that
R(m′, com, ω′) = 1.
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4.3.1 Constructing Honest-Binding Commitment

We show two constructions of honest-binding commitment schemes. The proofs that these schemes
satisfy Definition 7 are relatively straightforward, and are therefore omitted.

The first construction, based on the commitment scheme of Naor [74], relies on the minimal as-
sumption that one-way functions exist. We describe the scheme for committing single-bit messages,
though it could be extended to arbitrary length messages in the obvious way. In the following, G
is a length-tripling pseudorandom generator.

S (1k,m;ω)
parse ω as crs‖r,

with |crs| = 3k
and |r| = k;
c := G(r)⊕ (crs ·m);
com := (crs, c);
return com;

R(m, (crs, c), ω)
parse ω as crs‖r,

with |crs| = 3k
and |r| = k;

if c
?
= G(r)⊕ (crs ·m)

return 1;
else return 0;

S̃1(1k)

r0, r1 ← {0, 1}k;
crs := G(r0)⊕G(r1);
c := G(r0);
com := (crs, c);
st := (r0, r1, com);
return (com, st);

S̃2(st,m)
parse st as (r0, r1, com);
parse com as (crs, c);

if m
?
= 0

ω := crs‖r0;
else
ω := crs‖r1;

return ω;

Next, we show an efficient scheme that allows for direct committments to strings. This construc-
tion, based on the Pedersen commitment scheme [80], relies on the discrete-logarithm assumption.
In the following, we let G be a cyclic group of order q, with generator g ∈ G. (For simplicity, we
view (G, q, g) as public parameters, though they could just as well be generated by the sender.)

S (1k,m;ω)
Parse ω as h‖x,

with h ∈ G
and x ∈ Zq;

return com := (h, gmhx);

R(m, com, ω)
Parse ω as h‖x,

with h ∈ G
and x ∈ Zq;

if com
?
= (h, gmhx)

return 1;
else return 0;

S̃1(1k)

r, y ← Zq;
com := (gr, gy)
return (com, (r, y))

S̃2((r, y),m)

if r
?
= 0 return ⊥;

x := (y −m) · r−1 mod q;
return ω := gr‖x;
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Protocol πBC

The protocol is carried out among a set P = {P1, . . . , Pn} of parties. We let D ∈ P
denote the sender. We let (S,R) be a non-interactive commitment scheme.

• Stage 1: Upon receiving input (Bcast, sid,m) from the environment Z, the
sender D chooses random ω ← {0, 1}∗, computes com := S (1k,m;ω), and sends
(Bcast, sid, com) to FRBC. Let com′ denote the value received by the honest parties
in this stage (note that this value is the same for all honest parties).

• Stage 2: Upon receiving (Bcast, sid, D, com) from FRBC, the sender D sends (m,ω)
to every other party over point-to-point channels.

• Stage 3: The following is done by each party Pi: Let (m′i, ω
′
i) denote the value

that Pi received from D in stage 2. (If Pi receives nothing, it takes (m′i, ω
′
i) as some

default values.) Pi sends (Bcast, sid, (m′i, ω
′
i)) to FRBC.

• Stage 4: Each party Pj receives messages {(Bcast, sid, Pi, (m
′′
i , ω

′′
i ))}i∈[n] from

FRBC, taking (m′′i , ω
′′
i ) as some default values if nothing is received (note that the

(m′′i , ω
′′
i ) values are the same for all honest parties). Each party Pj then decides on

its output as follows: Let valid = {i ∈ [n] | R(m′′i , com′, ω′′i ) = 1}. If valid is empty,
then output some default value. Otherwise, let k be the smallest value in valid and
output mj = m′′k.

Figure 4.3: A protocol realizing FBC in the FRBC-hybrid model.

4.4 An Adaptively Secure Broadcast Protocol

In this section we show a protocol that securely realizes FBC in the FCERT-hybrid model, in the
presence of t < n adaptive corruptions. The challenge of realizing FBC, and the property that
is exactly exploited in the Hirt-Zikas attack on existing protocols, is that when the sender is
uncorrupted then the adversary should not learn the sender’s message unless all honest parties
will (eventually) agree on that message (cf. Figure 4.1). In [57], the authors construct a broadcast
protocol for t < n/2 by having the sender use verifiable secret sharing (VSS) to “commit” to its
message before revealing it. (For t = n/2 they use a slight variant of this idea.) This approach
works even in the non-atomic communication setting; however, it requires at least half of the parties
to be honest.

Our approach is to use computationally secure commitment schemes in place of VSS. That is,
we first have the sender announce a commitment to its message; once agreement on this commit-
ment is reached, the sender then decommits. (We add an additional stage in which the sender’s
decommitment is “echoed” by all parties; this prevents a dishonest sender from sending valid de-
commitment information to some honest parties but not others.) In order to simulate this protocol,
we have the sender use honest-binding commitments as introduced in the previous section.

The details of our protocol πBC are presented in Figure 4.3. We describe our protocol in
the FRBC-hybrid model. Since FRBC can be securely realized in the FCERT-hybrid model (cf.
Lemma 27), this implies that FBC can be securely realized in the FCERT-hybrid model as well.

Theorem 28 Let (S,R) be an honest-binding commitment scheme. Then protocol πBC securely
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realizes FBC in the FRBC-hybrid model against an adaptive adversary corrupting any t < n of the
parties.

The above theorem holds only in the atomic communication model considered here; protocol
πBC does not securely realize FBC in the non-atomic communication model of [57]. (Indeed, by
the impossibility result proven in [57], it cannot.) Atomic communication is used crucially in the
second stage of our protocol when the sender transmits decommitment information to all the parties.
(Observe this is the only step in our protocol in which parties communication directly, rather than
via the ideal functionality FRBC.) If non-atomic communication were assumed, then the adversary
could learn the decommitment information (and thus the sender’s message) first, and then decide
to corrupt the sender and not transmit the decommitment information to any of honest parties.

Proof Let A be an active, adaptive adversary that interacts with players running the above
protocol in the FRBC-hybrid model. We construct an adversary (simulator) S running in the
ideal world with access to functionality FBC, such that no ppt environment Z can distinguish
whether it is interacting with A and parties running πBC in the FRBC-hybrid model, or whether
it is interacting with S and (dummy) parties communicating directly with FBC. The simulator S
starts by internally invoking the adversary A, and forwarding all messages between A and Z in
the usual way. The simulator will simulate both the ideal functionality FRBC for A, as well as an
execution of protocol πBC.

In our description of S, we distinguish two cases depending on whether or not the sender Pi is
corrupted at the outset.

Case 1: We first treat the easier case where D is corrupted at the outset. Here, A requests
to corrupt D (in the hybrid world) and so S corrupts D (in the ideal world). Any additional
corruptions that A requests throughout its execution can be easily simulated by S, so we do not
mention them.

When Z provides input to D, this input is read by S who forwards it to A. Then A be-
gins running the first stage of πBC (on behalf of the corrupted D) by specifying some message
(Bcast, sid, com′) to send to FRBC. The simulator S stores com′, and simulates the response of FRBC

by giving (Bcast, sid, D, com′) to A (and all corrupted parties). Next, A (now executing the second
stage of πBC) decides on messages (m′i, ω

′
i) to send to each honest party Pi on behalf of D. In

response, S simulates the third stage of πBC by giving (Bcast, sid, Pi, (m
′
i, ω
′
i)) to A for every honest

party Pi. For each such Pi, the adversary A may then choose to (corrupt Pi and) replace (m′i, ω
′
i)

by some other message (m′′i , ω
′′
i ). Once A has sent some (m′′i , ω

′′
i ) to the appropriate instance of

FRBC for all Pi, the simulator simulates the output of FRBC for all corrupted parties in the obvious
way. Finally A, executing the third stage of πBC on behalf of the remaining corrupted parties,
specifies messages (Bcast, sid, (m′′i , ω

′′
i )) that each such party Pi should send to FRBC.

S now has values (m′′i , ω
′′
i ) for every Pi ∈ P, defined by the output of each appropriate (sim-

ulated) instance of FRBC in the (simulated) third stage of the protocol. S defines a set valid and
determines k,m′′k as prescribed by the protocol. It then sends (Bcast, sid,m′′k) (on behalf of D) to
its own ideal functionality FBC.

It is not hard to see that S provides a perfect simulation. The view of A is clearly identical
whether it is running in the FRBC-hybrid model or whether it is being run as a sub-routine by S
in the ideal world with access to FBC. As for the outputs of the honest parties (i.e., those that
are honest by the end of the protocol execution), note that if A were running in the FRBC-hybrid
model then every honest party Pj would receive com′ in the first stage and {(m′′i , ω′′i )}Pi∈P in the
third stage, and would thus decide on output m′′k exactly as S does. Since S sends m′′k to FBC,

38



the output of each honest party in the ideal world is also m′′k. We remark that the fact that the
commitment scheme is not binding (for a malicious sender) is irrelevant here.

Case 2: We now turn to the more difficult case where D is not corrupted at the outset. As
before, adaptive corruptions of parties other than D can be handled easily, so we do not mention
it. Corruption of D will, however, be explicitly mentioned.
S begins by computing (com, st) ← S̃1(1k). It then simulates the first stage of πBC (on behalf

of the honest D) by giving to A the message (Bcast, sid, D, com) on behalf of FRBC. At this point,
A can choose whether to corrupt D or not, and we further divide our description of S depending
on which is the case.

If A requests to corrupt D, then S corrupts D and waits until it receives input (Bcast, sid,m)
from Z. At that point, S computes ω ← S̃2(st,m) and gives m and ω to A as the state of D. The
remainder of the simulation then proceeds exactly as in the case when Pi was corrupted at the
outset. (Note in particular that A may choose to change com to some other value com′.)

If A does not corrupt D, then S waits until it receives a message (Bcast, sid, D,m) from its ideal
functionality FBC. (Note that at this point, the output of every honest party in the ideal world
is m.) S then computes ω ← S̃2(st,m), and simulates the second phase of the protocol by sending
(m,ω) to every corrupted party. The remainder of the protocol is simulated in the obvious way,
essentially the same as before (with the only difference being that it provides state m,ω to A if D
is ever corrupted).

In this case, S provides a computationally indistinguishable simulation for Z. The only dif-
ference between the view of A in the above simulation and the view of A when it is running in
the FRBC-hybrid model is with regard to (com, ω): in the former case these are produced using
(S̃1, S̃2), whereas in the latter case these are produced using the honest sender algorithm. Defini-
tion 7 guarantees that these distributions are computationally indistinguishable. As for the outputs
of the honest parties, if D is corrupted during stage 1 then the argument is as given previously. If
D is not corrupted during stage 1, then we need to argue that with all but negligible probability
every honest party would output m in that case in the FRBC-hybrid world (since, as noted above,
every honest party outputs m in that case in the ideal world). This follows from the honest-binding
property of Definition 7.

4.5 Adaptively Secure Multi-Party Computation

In the previous section we showed a protocol (call it bc) that securely realizes the broadcast func-
tionality FBC in the presence of an adaptive adversary corrupting any number of parties. Given
any protocol π (e.g., the one of [17]) for securely computing some function f in the presence of
an adaptive adversary corrupting any number of parties in the FBC-hybrid model (i.e., protocol π
assumes an ideal broadcast channel), the composed protocol πbc securely computes f in the pres-
ence of an adaptive adversary corrupting any number of parties in the FCERT-hybrid model, using
point-to-point communication only. The above is stated in the UC framework, but an analogous
composition theorem could be stated with respect to “stand-alone” notions of security as well [10].
(We refer the reader to [47] for a detailed treatment of security notions for MPC with dishonest
majority.)

Even given the above, it is interesting to explore whether adaptively secure MPC can be achieved
in the weaker FRBC-hybrid model, for at least two reasons:

• If we take as our communication model the non-atomic, point-to-point model of Hirt-Zikas,
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it is impossible to realize FBC when t > n/2. Thus, if we want to realize adaptively secure
MPC for t > n/2 in this communication model, some other approach is needed.

• Even in the atomic communication model, one may prefer to base adaptively secure MPC on
relaxed broadcast rather than broadcast since protocols for the former may be more efficient
than protocols for the latter.

Note that, in the case of dishonest majority, adaptively secure MPC does not imply adaptively
secure broadcast because the usual notions of security for MPC do not guarantee output delivery
or fairness (see [47] for a more extensive treatment) — these properties are, in general, not achiev-
able [21] — whereas definitions of security for broadcast do require guaranteed output delivery.
In particular, the Hirt-Zikas impossibility result for adaptively secure broadcast in the non-atomic
communication model says nothing about the feasibility of adaptively secure MPC in that setting.

Although we cannot claim that all adaptively secure MPC protocols using broadcast remain
secure when broadcast is replaced with relaxed broadcast, it turns out that specific protocols from
the literature do remain secure in that case. Once again, we focus on protocols proven secure
in the UC framework, though we expect these results would extend to protocols analyzed in the
“stand-alone” setting as well.

Specifically, consider the adaptively secure MPC protocol π of Canetti, Lindell, Ostrovsky, and
Sahai [17], which relies on a broadcast channel. We first observe that the protocol remains secure
even in the non-atomic communication model. In either communication model, the protocol also
remains secure if the broadcast channel is replaced with relaxed broadcast. At a high level, the
reason is that the messages that are broadcast are always commitments to some values, except in
the last round where the broadcast messages reveal the output. The ability to corrupt a sender
based on the message being broadcast is “useless” in the former case; in the latter case such an
attack corresponds to preventing output delivery/violating fairness, something which is permitted
by the definitions of security when there is a dishonest majority. We remark that the advantage of
using relaxed broadcast as opposed to the “echo broadcast” protocol from [47] is that the former
ensures agreement on abort.

Even given the above, there are several reasons to securely realize FBC rather than be contended
with FRBC. First, one may be interested in broadcast itself, rather than as a sub-protocol for some
larger task. Furthermore, there is an advantage to working with FBC in that it can be safely used
to instantiate the broadcast channel in arbitrary protocols, so one can avoid having to examine
protocols on a case-by-case basis to determine whether FRBC suffices.
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Chapter 5

Round Complexity of Perfect VSS in
Point-to-Point Networks

In this chapter, we study the round complexity of perfect VSS in point-to-point networks. Perfect
VSS is known to be possible if and only if t < n/3 [5, 27]. Previous research investigating the
round complexity of VSS, surveyed further below, has focused on optimizing the round complexity
assuming a broadcast channel is available “for free”. (We remark that broadcast is essential for
VSS, in a way we make precise below.) As argued previously [63], however, if the ultimate goal
is to optimize the round complexity of protocols for point-to-point networks (where protocols are
likely to be run), then it is preferable to minimize the number of rounds in which broadcast is used
rather than to minimize the total number of rounds. This is due to the high overhead of emulating
a broadcast channel over a point-to-point network: deterministic broadcast protocols require Ω(t)
rounds [33]; known randomized protocols [31, 35, 62] require only O(1) rounds in expectation, but
the constant is rather high.

As a concrete example (taken from [63]) to illustrate the point, consider the VSS protocol of
Micali and Rabin [73] and the “round-optimal” VSS protocol of Fitzi et al. [36]. The former uses
16 rounds but only a single round of broadcast; the latter uses 3 rounds, two of which require
broadcast. Compiling these protocols for a point-to-point network using the most round-efficient
techniques known (see [63]), the Micali-Rabin protocol requires 26 rounds in expectation while the
protocol of Fitzi et al. requires at least 60 rounds in expectation!

In light of the above, when discussing the round complexity of protocols that assume a broadcast
channel we keep track of both the number of rounds as well as the number of rounds in which
broadcast is used. (In a given round when broadcast is used, each party may use the broadcast
channel but a rushing adversary is still assumed. Existing broadcast protocols can be modified
so that the round complexity is unchanged even if many parties broadcast in parallel.) We say a
protocol has round complexity (r, r′) if it uses r rounds in total, and r′ ≤ r of these rounds invoke
broadcast. Recall that the round complexity of VSS refers to the sharing phase only since most
known protocols, as well as the protocols described in this chapter, utilize only a single round of
point-to-point communication in the reconstruction phase. (Exceptions include [36, 76, 69].)

Our results and techniques. Gennaro et al. [43] show that three rounds are necessary for perfect
VSS, even assuming a broadcast channel. We also observe that it is impossible to construct a strict
constant-round protocol for VSS without using a broadcast channel at all: VSS implies broadcast
using one additional round (the message to be broadcast can be treated as the input for VSS),
and results of Fischer and Lynch [33] rule out strict constant-round protocols for broadcast. Prior
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work [73, 36, 63, 68] shows that optimal round complexity as well as optimal use of the broadcast
channel could each be obtained individually for VSS, but it was unknown whether they could be
obtained simultaneously. Here, we resolve this question and show a (3, 1)-round VSS protocol that
is optimal in both measures. As a consequence, we obtain a VSS protocol with the best known
round complexity in point-to-point networks. Our work also leads to an improvement in the round
complexity of the most round-efficient broadcast protocols known [62].

A nice feature of our VSS protocol is that it also satisfies a certain “2-level sharing” property
that is not achieved by the 3-round protocol from [36]. Roughly speaking, this means that the
following conditions hold at the end of the sharing phase when the dealer’s (effective) input is s:

1. There exists a polynomial f(x) of degree at most t such that f(0) = s and each honest party
Pi holds the value f(i). Said differently, at the end of the sharing phase each honest party Pi
holds a value si with the property that these {si} all lie on a degree-t polynomial f (whose
constant term is s).

2. For each party Pi, there exists a polynomial fi(x) of degree at most t such that fi(0) = f(i)
and each honest party Pj holds the value fi(j).

VSS protocols with these properties (the first one in particular) constitute a useful building block
for protocols for general secure multi-party computation (see, e.g., [63, 68]).

Our protocol is efficient, in that the computation and communication are polynomial in n. The
communication complexity of our protocol is O(n2t) field elements, which matches the communi-
cation complexity of [36] but is worse than that of [43].

We now summarize the basic techniques used to prove our main result. As in [36], we begin by
constructing a protocol for weak verifiable secret sharing (WSS) [84]. (In WSS, informally, if the
dealer is dishonest then, in the reconstruction phase, each honest party recovers either the dealer’s
input or a special failure symbol.) Fitzi et al. show a (3, 2)-round WSS protocol that essentially
consists of the first three rounds of the 4-round VSS protocol from [43]. On a high level, their
protocol works as follows: In the first round, the dealer distributes the shares of the secret using a
random bivariate polynomial; in parallel, each pair of parties (Pi, Pj) exchanges a random pad ri,j .
In the second round, Pi and Pj check for an inconsistency between their shares by broadcasting
their common shares masked with the random pad. In the third round, if there is a disagreement
between Pi and Pj in round 2 (note that all parties agree whether there is disagreement since
broadcast is used in round 2), then the dealer, Pi, and Pj all broadcast the share in question. This
allows the rest of the parties to determine whether the dealer “agrees” with Pi or with Pj .

A (5, 1)-round WSS protocol is implicitly given in [63].1 There, rather than using the “random
pad” technique, a different method is used to detect disagreement between Pi and Pj . While this
saves one round of broadcast, it requires additional rounds of interaction.

To construct a (3, 1)-round WSS protocol, we modify the (3, 2)-round WSS protocol from [36]
by using the random pad idea with the following twist: in the second round of the protocol, Pi and
Pj check if there is any inconsistency between their shares by exchanging their common shares over
a point-to-point link; they also send the random pad ri,j to the dealer. In the third round of the
protocol, if there is a disagreement between Pi and Pj , then Pi and Pj each broadcast the shares
they hold; otherwise, they broadcast the value of their common share masked with the random
pad. The dealer will broadcast the corresponding share masked with the random pad (or the share
itself if the random pads it received from Pi and Pj are different). Notice that secrecy of the share

1That work shows a 6-round VSS protocol that uses broadcast in the final two rounds. The first five rounds of
that protocol suffice for WSS.
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is preserved if Pi, Pj , and the dealer are all honest. On the other hand, if the dealer is malicious
and there is a disagreement between honest parties Pi and Pj , then the dealer can only “agree”
with at most one of Pi and Pj in round 3, but not both of them.

The above is the high-level idea of our WSS protocol. Using the same techniques as in [36], we
can then immediately obtain a (3, 1)-round VSS protocol. However, the VSS protocol constructed
in this manner will not have the “2-level sharing” property; as a consequence, the resulting protocol
cannot directly be plugged in to existing protocols for general secure multi-party computation.

To convert the VSS protocol into one with 2-level sharing we note that, by the end of the sharing
phase, there is a set of honest parties (that we call a “core set”) who already do have the required
2-level shares; thus, we only need to provide honest parties outside the core set with their required
shares. We achieve this, as in [25], by having the dealer use a symmetric bivariate polynomial to
share its input, and then modifying the protocol so that honest parties who are not in the core set
can still generate appropriate shares by interpolating the shares of the parties in the core set. Of
course, this process needs to be carefully designed so that no additional information is leaked to
the adversary. We defer the details of this to a later section.

Other related work. Gennaro et al. [43] initiated a study of the exact round complexity of VSS.
For t < n/3, they show an efficient (i.e., polynomial-time) (4, 3)-round protocol, and an inefficient
(3, 2)-round protocol. (Recall that the round complexity of VSS is defined as the number of rounds
in the sharing phase; unless otherwise stated, all protocols mentioned use only one round, without
broadcast, in the reconstruction phase.) They also show that three rounds are necessary for VSS
when t < n/3. For t < n/4, they show that two rounds are necessary and sufficient for efficient
VSS. Settling the question of the absolute round complexity of efficient VSS for t < n/3, Fitzi et
al. [36] show an efficient (3, 2)-round VSS protocol. The reconstruction phase of their protocol,
however, requires one round of broadcast.

As discussed extensively already, although the protocol by Fitzi et al. is optimal in terms of
the total number of rounds, it is not optimal in terms of its usage of the broadcast channel. VSS
protocols for t < n/3 using one round of broadcast are known, but these protocols are not optimal
in terms of their overall round complexity. Micali and Rabin [73] give a (16, 1)-round VSS protocol,
and recent work [63, 68] improved this to give a (7, 1)-round protocol.

All the works referenced above, as well as the results in this chapter, focus on perfect VSS.
A natural relaxation is to consider statistical VSS where privacy and/or correctness may fail to
hold with negligible probability. Surprisingly, work subsequent to our own [76] shows that the
lower bound of Gennaro et al. no longer holds in this setting, and that there exists a protocol
for statistical VSS tolerating t < n/3 corruptions that uses only two rounds in the sharing phase.
Interestingly, the reconstruction phase of their statistical VSS protocol requires two rounds, and
so the total round complexity (of the sharing and reconstruction phases combined) matches the
total round complexity of our protocol. It remains open whether the total round complexity can
be improved for statistical VSS.

5.1 Weak Verifiable Secret Sharing

We show a (3, 1)-round WSS protocol tolerating t < n/3 malicious parties.

5.1.1 The Protocol

Sharing phase. The sharing phase consists of three rounds, with broadcast used in the last round.
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Round 1: The dealer holds s. The following steps are carried out in parallel:

– The dealer chooses a random bivariate polynomial F (x, y) of degree at most t in each
variable such that F (0, 0) = s. The dealer then sends to each party Pi the polynomials
fi(x) := F (x, i) and gi(y) := F (i, y).

– Each party Pi picks a random pad ri,j ∈ F for all j 6= i, and sends ri,j to both Pj and
the dealer D.

Round 2: Each player Pi does the following:

– For all j 6= i, send ai,j := fi(j) and bi,j := gi(j) to Pj .

– Let r′j,i be the random pad that Pi received from Pj in the previous round. For all j 6= i,
send r′j,i to D.

Round 3: Each player Pi does the following:

– Let a′j,i, b
′
j,i be the values Pi received from Pj in the previous round.

– For all j 6= i, if b′j,i 6= fi(j) then Pi broadcasts (j: “disagree-f”, fi(j), ri,j); otherwise,
Pi broadcasts (j: “agree-f”, fi(j) + ri,j).

– For all j 6= i, if a′j,i 6= gi(j) then Pi broadcasts (j: “disagree-g”, gi(j), r
′
j,i); otherwise,

Pi broadcasts (j: “agree-g”, gi(j) + r′j,i).

In parallel with the above, the dealer D does the following for all ordered pairs (i, j):

– Let r
(1)
i,j be the appropriate random pad sent by Pi to D in round 1, and let r

(2)
i,j be the

appropriate random pad sent by Pj to D in round 2.

– If r
(1)
i,j 6= r

(2)
i,j , then D broadcasts ((i, j): “not equal”, F (j, i)). Otherwise, D broadcasts

((i, j): “equal”, F (j, i) + r
(1)
i,j ).

Local computation. An ordered pair of parties (Pi, Pj) is conflicting if, in round 3, party Pi
broadcasts (j : “disagree-f”, fi(j), ri,j); party Pj broadcasts (i: “disagree-g”, gj(i), r

′
i,j); and

ri,j = r′i,j . For a pair of conflicting parties (Pi, Pj), we say Pi (resp., Pj) is unhappy if one of the
following conditions hold:

– The dealer broadcasts ((i, j): “not equal”, di,j) and di,j 6= fi(j) (resp., di,j 6= gj(i)).

– The dealer broadcasts ((i, j): “equal”, di,j) and di,j 6= fi(j) + ri,j (resp., di,j 6= gj(i) + r′i,j).

A player is happy if it is not unhappy. Note that all parties agree on which players are happy and
which are not. If there are more than t unhappy parties, the dealer is disqualified and a default
value is shared.

Reconstruction phase. The reconstruction phase is similar to the one in [36], except that we do
not use broadcast.

1. Every happy party Pi sends the polynomials fi(x) and gi(y) to all other parties.

2. Let f ij , g
i
j denote the polynomials that Pj sent to Pi in the previous step. Pi then constructs

a consistency graph Gi whose vertices correspond to the happy parties:

– Initially, there is an edge between Pj and Pk in Gi if and only if f ij(k) = gik(j) and

gij(k) = f ik(j). (Note that we allow also the case j = k here.)
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– If there exists a vertex in Gi whose degree is less than n− t (including self-loops), then
that vertex is removed from Gi. This is repeated until no more vertices can be removed.

Let Corei denote the parties whose corresponding vertices remain in Gi.

3. If |Corei| < n − t, then Pi outputs ⊥. Otherwise, Pi reconstructs the polynomial F ′(x, y)
defined by any t+ 1 parties in Corei, and outputs s′ := F ′(0, 0).

We remark that, since we do not use broadcast in the reconstruction phase, it is possible that
Corei,Corej are different for different honest parties Pi, Pj .

5.1.2 Proofs

Lemma 29 If the dealer is not corrupted by the end of the sharing phase, then privacy is preserved.

Proof Let C denote the set of parties corrupted by the end of the sharing phase. We show that
if the dealer remains uncorrupted, then the information the adversary has about the dealer’s input
at the end of the sharing phase consists of the polynomials {fi(x), gi(y)}Pi∈C . Since F (x, y) is a
random bivariate polynomial of degree at most t and |C| ≤ t, a standard argument implies that the
view of the adversary is independent of the dealer’s input s.

It is immediate that the adversary learns nothing additional about s in rounds 1 or 2. As for
the values broadcast in round 3, consider any ordered pair (Pi, Pj) of parties who remain honest
throughout the sharing phase. Since the dealer is honest, we have fi(j) = gj(i) = F (j, i) and, since
Pi, Pj are honest, we have ri,j = r′i,j . Thus, in round 3 parties Pi, Pj , and the dealer all broadcast
the same “blinded” value F (j, i) + ri,j . Since ri,j is chosen uniformly at random, the parties in C
do not learn anything about the value of F (j, i).

Lemma 30 If the dealer is not corrupted by the end of the sharing phase, then correctness holds.

Proof If the dealer remains honest then no honest party will be unhappy. It follows that the
dealer is not disqualified at the end of sharing phase.

Let Pi be honest. In the reconstruction phase, Corei contains all the honest parties and so
|Corei| ≥ n− t. We claim that for any Pj ∈ Corei, it holds that f ij(x) = F (x, j) and gij(y) = F (j, y),
where F is the dealer’s polynomial. When Pj is honest this is immediate. When Pj is malicious, the
fact that Pj ∈ Corei means that f ij(k) = gik(j) = F (k, j) for at least n−2t ≥ t+1 honest parties Pk.

Since f ij(x) has degree at most t, it follows that f ij(x) = F (x, j). A similar argument shows that

gij(y) = F (j, y). Therefore, the polynomial F ′(x, y) reconstructed by Pi is equal to F (x, y), and Pi
outputs s = F (0, 0).

Lemma 31 Weak commitment holds.

Proof The case of an honest dealer follows from the proof of correctness, so we consider the case
of a malicious dealer. If there are more than t unhappy parties, the dealer is disqualified and weak
commitment trivially holds; so, assume there are at most t unhappy parties. Then there are at
least n − 2t ≥ t + 1 honest parties who are happy. Let H denote the first t + 1 such parties. The
polynomials fi sent by the dealer to the parties in H define a bivariate polynomial F̂ (x, y) in the
natural way: namely, let F̂ be such that F̂ (x, i) = fi(x) for each Pi ∈ H. Because parties in H
are happy, it holds also that F̂ (i, y) = gi(y) for all Pi ∈ H. Set s′ := F̂ (0, 0). We show that every
honest party outputs either ⊥ or s′ in the reconstruction phase.

45



Consider an honest party Pi in the reconstruction phase. If |Corei| < n−t then Pi outputs ⊥ and
we are done. Say |Corei| ≥ n− t. We claim that for each Pj ∈ Corei, it holds that f ij(x) = F̂ (x, j)

and gij(y) = F̂ (j, y). When Pj is honest, the fact that Pj is happy (which is true since Pj ∈ Corei)

means that f ij(k) = fj(k) = gk(j) = F̂ (k, j) for all t+ 1 parties Pk ∈ H. Since f ij is a polynomial of

degree at most t, this implies that f ij(x) = F̂ (x, j). A similar argument shows that gij(y) = F̂ (j, y).

When Pj ∈ Corei is malicious, we have that f ij(k) = gik(j) = F̂ (k, j) for at least n − 2t ≥ t + 1

honest parties Pk ∈ Corei. Again, since f ij(x) has degree at most t it follows that f ij(x) = F̂ (x, j),

and a similar argument shows that gij(y) = F̂ (j, y). Therefore, the polynomial reconstructed by Pi

is equal to F̂ (x, y), and Pi outputs s′ = F̂ (0, 0).

As the proof of the above lemma indicates, our WSS protocol also satisfies a weak variant of
2-level sharing that we state for future reference:

Lemma 32 Say the dealer is not disqualified in an execution of the WSS protocol, and let H denote
the set of all honest parties who are happy. Then there is a bivariate polynomial F̂ of degree at
most t in each variable such that, at the end of the sharing phase, the polynomials fi, gi held by
each Pi ∈ H satisfy fi(x) = F̂ (x, i) and gi(y) = F̂ (i, y).

As a consequence, each Pi ∈ H can compute si and {si,j}j∈{1,...,n} such that:

1. There is a polynomial p(x) of degree at most t with si = p(i), and furthermore all honest
parties output either s′ = p(0) or ⊥ in the reconstruction phase.

2. For each j ∈ {1, . . . , n}, there exists a polynomial pj(x) of degree at most t such that
(1) pj(0) = p(j) and (2) si,j = pj(i).

Proof When the dealer is honest take F̂ to be the dealer’s polynomial. When the dealer is
dishonest, let F̂ be the bivariate polynomial defined in the proof of the preceding lemma. Set

p(x)
def
= F̂ (0, x) and pj(x)

def
= F̂ (x, j). In what follows we assume a dishonest dealer, but it is

immediate that everything (trivially) holds also if the dealer is honest.
The proof of the preceding lemma shows that, at the end of the sharing phase, each Pi ∈ H

holds polynomials fi, gi with fi(x) = F̂ (x, i) and gi(y) = F̂ (i, y), and such that all honest parties
output either s′ = F̂ (0, 0) or ⊥ in the reconstruction phase. Then each Pi ∈ H can compute
si := fi(0) = F̂ (0, i) = p(i) and si,j := gi(j) = F̂ (i, j) = pj(i). Furthermore, s′ = p(0). Finally,
pj(0) = F̂ (0, j) = p(j) for all j ∈ {1, . . . , n}. Thus, all the stated requirements hold.

5.2 Verifiable Secret Sharing

Before we describe our VSS protocol with 2-level sharing, we review the ideas used in [36] to
transform their WSS protocol into a VSS protocol (that does not have 2-level sharing). At a high
level, the sharing phase of the VSS protocol is more-or-less the same as the sharing phase of the
underlying WSS protocol; the difference is that now, in the reconstruction phase, each party reveals
the random pads they used in the sharing phase. A problem that arises is to ensure that a malicious
party Pi reveals the “correct” random pads. This is enforced by having each player act as a dealer in
its own execution of WSS, and “binding” the random pads of each party to this execution of WSS.
In more detail: in parallel with the sharing phase of the larger VSS protocol, each party Pi also acts
as a dealer and shares a random secret using the WSS protocol. Let F padi (x, y) be the corresponding

bivariate polynomial chosen by Pi. Then Pi will use ri,j := F padi (0, j) as the appropriate “random
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pad” in the larger VSS protocol. (The pads {ri,j} used by any honest party Pi are thus no longer
independent, but secrecy is still preserved since they lie on a random degree-t polynomial.) These
random pads are then revealed in the reconstruction phase by using the reconstruction phase of
the underlying WSS protocol.

We can use the ideas outlined in the previous paragraph to obtain a (3, 1)-round VSS protocol,
but the resulting protocol will not have 2-level sharing. Yet all is not lost. As observed already in
Lemma 32, by the end of the sharing phase the honest parties who are happy will have the required
2-level shares. To achieve our desired result we must therefore only enable any unhappy honest
party to construct its 2-level shares.

At a high level, we do this as follows: Suppose F̂ (x, y) is the dealer’s bivariate polynomial,
defined by the end of the sharing phase of the VSS protocol, and let Pi be an honest party who is
unhappy. We need to show how Pi constructs the polynomials F̂ (x, i) and F̂ (i, y) (which it will use
to generate its 2-level shares exactly as in the proof of Lemma 32). Let Pj be a party such that:

– Pj is happy (in the larger VSS protocol);

– Pj was not disqualified as a dealer it its own execution of WSS; and

– Pi is happy in Pj ’s execution of WSS.

From the proof of Lemma 32, we know there is a bivariate polynomial F̂ padj (x, y) for which Pi holds

the univariate polynomial F̂ padj (x, i). Furthermore, Pj has effectively broadcasted the polynomial

Bj(x)
def
= F̂ (x, j) + F̂ padj (0, x) in round 3, since it has broadcasted F̂ (k, j) + F̂ padj (0, k) for all k.

Thus, party Pi can compute

F̂ (i, j) := Bj(i)− F̂ padj (0, i) = F̂ (i, j)

for any party Pj satisfying the above conditions. If there are t + 1 parties satisfying the above
conditions, then Pi can reconstruct the polynomial F̂ (i, y).

Unfortunately, it is not clear how to extend the above approach to enable Pi to also reconstruct
the polynomial F̂ (x, i) in the case when F̂ is an arbitrary bivariate polynomial. For this reason, we
have the dealer use a symmetric2 bivariate polynomial. Then F̂ (x, i) = F̂ (i, x) and we are done.

5.2.1 The Protocol

We show a (3, 1)-round VSS protocol with 2-level sharing that tolerates t < n/3 malicious parties.

Sharing phase. The sharing phase consists of three rounds, with broadcast used in the last round.

Round 1: The dealer holds s. The following steps are carried out in parallel:

– The dealer chooses a random symmetric bivariate polynomial F (x, y) of degree t in
each variable such that F (0, 0) = s. Then D sends to each party Pi the polynomial
fi(x) := F (x, i). Note that F (x, i) = F (i, x) since F is symmetric.

– Each party Pi picks a random value ŝi and executes the first round of the WSS protocol
described in the previous section, acting as a dealer to share the “input” ŝi. We refer to
this instance of the WSS protocol as WSSi.

– Let F padi (x, y) denote the bivariate polynomial used by Pi in WSSi (i.e., F padi (0, 0) = ŝi).

Party Pi sends the polynomial ri(y) := F padi (0, y) to the dealer D.

2A polynomial F is symmetric if, for all `,m, the coefficient of the term x`ym is equal to the coefficient of the
term xmy`. If F is symmetric then F (i, j) = F (j, i) for all i, j.
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Round 2: Each party Pi does the following:

– Run round 2 of WSSj , for all j.

– For all j 6= i, send ai,j := fi(j) to Pj .

– For all j 6= i, let fpadj,i (x) be the polynomial that Pj sent to Pi in round 1 of WSSj . (If

Pj is honest then fpadj,i (x) = F padj (x, i).) Party Pi sends r′j,i := fpadj,i (0) to D.

Round 3: Each party Pi does the following:

– Run round 3 of WSSj , for all j.

– For all j 6= i, let a′j,i be the value Pi received from Pj in the previous round. If a′j,i 6=
fi(j), then Pi broadcasts (j: “disagree”, fi(j), F

pad
i (0, j)). Otherwise, Pi broadcasts (j:

“agree”, fi(j) + F padi (0, j)).

In parallel with the above, the dealer D does the following for all ordered pairs (i, j):

– Let r
(1)
i be the polynomial sent by Pi to D in round 1, and let r

(2)
i,j be the appropriate

random pad sent by Pj to D in round 2.

– If r
(1)
i (j) 6= r

(2)
i,j , thenD broadcasts ((i, j): “not equal”, F (j, i)). Otherwise, D broadcasts

((i, j): “equal”, F (j, i) + r
(1)
i (j)).

Local computation. Each party locally carries out the following steps:

1. An ordered pair of parties (Pi, Pj) is conflicting if, in round 3, party Pi broadcasts (j: “dis-

agree”, fi(j), F
pad
i (0, j)); party Pj broadcasts (i: “disagree”, fj(i), f

pad
i,j (0)); and it holds that

F padi (0, j) = fpadi,j (0). For a pair of conflicting parties (Pi, Pj), we say that Pi (resp., Pj) is
unhappy if one of the following conditions hold:

(.1) D broadcasts ((i, j): “not equal”, di,j) and di,j 6= fi(j) (resp., di,j 6= fj(i)).

(.2) D broadcasts ((i, j): “equal”, di,j) and di,j 6= fi(j) + F padi (0, j) (resp., di,j 6= fj(i) +

fpadi,j (0)).

A party is happy if it is not unhappy.

Let Core denote the set of parties who are happy with respect to the definition above. For
every Pi who was not disqualified as the dealer in WSSi, let Corei denote the set of parties
who are happy with respect to WSSi. (If Pi was disqualified in WSSi, then set Corei := ∅.)
Note that all parties have the same view regarding Core and the {Corei}.

2. For all i, j, remove Pj from Corei if either of the following hold for the ordered pair (i, j) in
round 3:

– Pi broadcasts (j: “agree”, y) and Pj did not broadcast (i: “agree”, y).

– Pi broadcasts (j : “disagree”, ?, w) and Pj broadcasts either (i : “agree”, ?) or (i :
“disagree”, ?, w′) with w′ 6= w. (Here, ? denotes an arbitrary value.)

3. Remove Pi from Core if |Core ∩ Corei| < n − t. (Thus, in particular, if Pi was disqualified in
WSSi then Pi 6∈ Core.)

Note that all parties still have the same view of Core and the {Corei}.
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4. If |Core| < n− t, then the dealer is disqualified and a default value (along with default 2-level
shares) are shared.

5. Each party Pi computes a polynomial f̂i(x) of degree at most t:

(.1) If Pi ∈ Core, then f̂i(x) is the polynomial that Pi received from the dealer in round 1.

(.2) If Pi /∈ Core, then Pi computes f̂i(x) in the following way:

i. Pi first defines a set Core′i as follows: A party Pj is in Core′i if and only if all the
following conditions hold:

• Pj ∈ Core and Pi ∈ Corej .

• Define pj,k, for k ∈ {1, . . . , n}, as follows: if in round 3 party Pj broadcasted (k :
“agree”, yj,k), then set pj,k := yj,k. If Pj broadcasted (k: “disagree”, wj,k, zj,k),
then set pj,k := wj,k + zj,k.

We require that the {pj,k} lie on a polynomial Bj(x) of degree at most t; i.e.,
such that Bj(k) = pj,k for all k. (If not, then Pj is not included in Core′i.)

Our proofs will show that |Core′i| ≥ t+ 1 if the dealer is not disqualified.

ii. For each Pj ∈ Core′i, set pj := pj,i − fpadj,i (0). Let f̂i be the polynomial of degree at

most t such that f̂i(j) = pj for every Pj ∈ Core′i. (It will follow from our proof that

such an f̂i exists.)

6. Finally, Pi outputs si := f̂i(0) and si,j := f̂i(j) for all j ∈ {1, . . . , n}.

Reconstruction phase. Each party Pi sends si to all other parties. Let s′j,i be the value that
Pj sends to Pi. Using Reed-Solomon decoding, Pi computes a polynomial f(x) of degree at most t
such that f(j) = s′j,i for at least 2t+ 1 values of j. The final output of Pi is f(0).

5.2.2 Proofs

We prove that the protocol given in the previous section is a VSS protocol with 2-level sharing that
tolerates t < n/3 malicious parties.

Lemma 33 If the dealer is not corrupted by the end of the sharing phase, privacy is preserved.

Proof Let C denote the set of parties corrupted by the end of the sharing phase. We show
that if the dealer remains uncorrupted, then the view of the adversary can be simulated given the
polynomials {fi(x)}Pi∈C . Since F (x, y) is a random symmetric bivariate polynomial of degree at
most t and |C| ≤ t, a standard argument (see, e.g., [22]) implies that the view of the adversary is
independent of the dealer’s input s.

It is immediate that the adversary learns nothing additional about s in round 2. As for the values
broadcast in round 3, consider an ordered pair (Pi, Pj) of parties who remain honest throughout the
sharing phase. Since the dealer is honest, we have fi(j) = F (j, i) = F (i, j) = fj(i) and, since Pi, Pj
are honest, ri(j) = r′i,j . Thus, in round 3, parties Pi, Pj , and the dealer all broadcast the same

“blinded” value fi(j) +F padi (0, j). Since F padi (0, y) is a random polynomial of degree at most t this
does not leak any information about the {fi(x)}Pi 6∈C that the adversary does not already know.

Lemma 34 If the dealer is not corrupted by the end of the sharing phase, then correctness and
commitment with 2-level sharing hold.
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Proof If the dealer is honest, then no honest party is unhappy. Also, all honest parties are in
Corei for any honest player Pi. Since there are at least n − t honest parties, no honest party is
removed from Core. It follows that the dealer is not disqualified.

Since all honest parties are in Core, each honest party Pi sets f̂i(x) := fi(x) = F (x, i). Defin-

ing p(x)
def
= F (0, x) and pj(x)

def
= F (j, x), it is straightforward to verify that the properties of

commitment with 2-level sharing hold:

• Each honest party Pi outputs si := f̂i(0) = F (0, i) = p(i).

• For all j, it holds that pj(0) = F (j, 0) = F (0, j) = p(j).

• For each honest party Pi and all j ∈ {1, . . . , n}, we have

si,j = f̂i(j) = F (j, i) = pj(i).

In the reconstruction phase, s′j,i = sj = p(j) for any honest party Pj . Thus, each honest party Pi
receives at most t values s′j,i that do not lie on the polynomial p(x). It follows that Pi outputs
s = p(0) = F (0, 0), the dealer’s input. This completes the proof.

We now move on to show that commitment with 2-level sharing holds even when the dealer is
malicious. The case of a disqualified dealer is obvious, so we focus on the case of a malicious dealer
who is not disqualified. We begin by proving three claims:

Claim 35 If the dealer is not disqualified, then for any honest Pi it holds that |Core′i| ≥ t+ 1.

Proof If the dealer was not disqualified, then Core contains at least n−2t ≥ t+1 honest parties.
We show that any honest Pj ∈ Core is also in Core′i, proving the claim.

Since Pi and Pj are both honest, Pi ∈ Corej . Set B(x)
def
= fj(x)+F padj (0, x). This is a polynomial

of degree at most t, and the pj,k computed by Pi all lie on Bj(x). We conclude that Pj ∈ Core′i.

Claim 36 If the dealer is not disqualified in the sharing phase, there is a bivariate symmetric
polynomial F̂ (x, y) of degree at most t in each variable that is consistent with the polynomials f̂i
computed by every honest party in Core; i.e., for every honest Pi ∈ Core it holds that f̂i(x) = F̂ (x, i).

Proof If the dealer is not disqualified, then there are at least n − t parties in Core and at least
n−2t ≥ t+1 of them are honest. Let H denote the first t+1 such parties. The polynomials fi sent
by the dealer to the parties in H define a bivariate polynomial F̂ (x, y) in the natural way: namely,
let F̂ be such that F̂ (x, i) = fi(x) for each Pi ∈ H. We show that F̂ satisfies the requirements of
the claim.

By definition of F̂ , we have f̂i(x) = fi(x) = F̂ (x, i) for any Pi ∈ H. Next, observe that for
every honest Pi, Pj ∈ Core it holds that f̂i(j) = f̂j(i). Indeed, it must be the case that fi(j) = fj(i)

(or else one of Pi or Pj would be unhappy), and since Pi, Pj ∈ Core we have f̂i(x) = fi(x) and

f̂j(x) = fj(x). Since H ⊂ Core, this implies that F̂ is symmetric. It also implies that for every

honest Pi ∈ Core (i.e., not just the Pi ∈ H) we have f̂i(x) = F̂ (i, x) = F̂ (x, i), proving the claim.

Claim 37 Assume the dealer is not disqualified in the sharing phase, and let F̂ be the polynomial
guaranteed to exist by Claim 36. Then for any honest Pi 6∈ Core, it holds that f̂i(x) = F̂ (x, i).
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Proof Fix an honest Pi 6∈ Core, and an arbitrary Pj ∈ Core′i. (Claim 35 shows that Core′i is
non-empty.) By definition, this means Pj ∈ Core and Pi ∈ Corej . So Pj was not disqualified as a

dealer in WSSj and, by Lemma 32, there exists a bivariate polynomial F̂ padj of degree at most t

in each variable such that fpadj,k (x) = F̂ padj (x, k) for all Pk ∈ Corej . (Recall that fpadj,k denotes the
polynomial that Pj sent to Pk in round 1 of WSSj .)

Let pj,k be the values computed by Pi, and let Bj(x) be a polynomial of degree at most t such
that Bj(k) = pj,k for all k. Such a polynomial is guaranteed to exist because otherwise Pj 6∈ Core′i.

Since Pj remains in Core, we have |Core ∩ Corej | ≥ n − t. This means that there are at least
n−2t ≥ t+1 honest parties that are in both Core and Corej . Letting F̂ be the symmetric polynomial
guaranteed by the previous claim, we now show that for any honest Pk ∈ Core ∩ Corej we have

Bj(k) = F̂ (k, j) + F̂ padj (0, k). There are two cases to consider:

– If in round 3 party Pj broadcasted (k : “agree”, yj,k), then pj,k := yj,k. Since Pk ∈ Corej , this
implies that party Pk must have broadcasted (j : “agree”, yk,j) with yk,j = yj,k in that round
(cf. step 2 of the local computation phase). Since Pk is honest we have

Bj(k) = pj,k = yj,k = yk,j

= fk(j) + fpadj,k (0)

= F̂ (j, k) + fpadj,k (0) (using Claim 36 and Pk ∈ Core)

= F̂ (j, k) + F̂ padj (0, k) (since Pk ∈ Corej)

= F̂ (k, j) + F̂ padj (0, k),

using the fact that F̂ is symmetric.

– If in round 3 party Pj broadcasted (k : “disagree”, wj,k, zj,k) then, because Pk ∈ Corej , this
implies that party Pk must have broadcasted (j : “disagree”, wk,j , zk,j) with zk,j = zj,k. It
must also be the case that wk,j = wj,k or else one of Pj or Pk would be unhappy. It follows
that

Bj(k) = pj,k = wj,k + zj,k = wk,j + zk,j ,

and then an argument as before shows that Bj(k) = F̂ (k, j) + F̂ padj (0, k).

Summarizing, we have Bj(k) = F̂ (k, j) + F̂ padj (0, k) for at least t + 1 values of k. Since Bj(x)

has degree at most t, this means Bj(x) = F̂ (x, j) + F̂ padj (0, x).
Party Pi next computes

pj := pj,i − fpadj,i (0) = Bj(i)− F̂ padj (0, i)

= F̂ (i, j) + F̂ padj (0, i)− F̂ padj (0, i) = F̂ (i, j),

using the fact that Pi ∈ Corej in the first line. Since this is true for arbitrary Pj ∈ Core′i, we see that

the polynomial f̂i computed by Pi satisfies f̂i(x) = F̂ (i, x) = F̂ (x, i). This completes the proof.

Lemma 38 Even when the dealer is malicious, commitment with 2-level sharing holds.

Proof By the preceding two claims, at the end of the sharing phase there exists a symmetric
bivariate polynomial F̂ (x, y) with degree at most t in each variable such that f̂i(x) = F̂ (x, i) for any
honest party Pi. Set p(x) := F̂ (x, 0) and pj(x) := F̂ (x, j). One can then verify that the properties
of commitment with 2-level sharing hold:
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• Each honest party Pi outputs si
def
= f̂i(0) = F̂ (0, i) = F̂ (i, 0) = p(i).

• At the end of the reconstruction phase, each honest party Pi will output s′ = p(0).

• For all j, it holds that pj(0) = F̂ (0, j) = p(j).

• For each honest party Pi and all j ∈ {1, . . . , n}, we have

si,j
def
= f̂i(j) = F̂ (j, i) = F̂ (i, j) = pj(i).

This completes the proof.
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Chapter 6

Round Complexity of Statistical VSS
with Honest Majority

In this chapter we study the round complexity of information-theoretic VSS in the presence of a
honest majority. In this setting, we require the security requirements of VSS to hold even when the
malicious parties have unbounded computational power. In the previous chapter, we saw perfect
VSS, where all security requirements hold unconditionally (i.e., even against a computationally
unbounded adversary) with zero error probability. However, it is known that perfect VSS is possible
if and only if t < n/3 [5, 27]. On the other hand, statistical VSS (cf. Definition 5), where security
requirements may be violated with negligible probability, is possible (assuming the existence of a
broadcast channel) up to a threshold t < n/2 [83].

The round complexity of perfect VSS has been extensively studied. For the case of optimal
threshold (i.e., t < n/3), Gennaro et al. [43] showed that 3 rounds1 are necessary and sufficient
for perfect VSS, and gave an efficient 4-round protocol for the task. The 3-round VSS protocol by
Gennaro et al. requires communication exponential in the number of players, but Fitzi et al. [36]
later demonstrated that an efficient 3-round protocol is possible. In Chapter 5, we showed that
perfect VSS can be achieved with optimal round complexity and, at the same time, optimal use of
the broadcast channel.

For the case of statistical VSS, the best known upper bound on the exact round complexity was
obtained by Cramer et al. [23]. Their protocol required eleven rounds. The 3-round lower bound
of Gennaro et al. was generally believed to apply also to the case of statistical VSS. Surprisingly,
Patra et al. [76] showed that statistical VSS could be realized in two rounds for t < n/3. (The
protocol of Patra et al. does not apply when n/3 ≤ t < n/2.) On the other hand, the work of Patra
et al. proves that 2-round statistical VSS is impossible for t ≥ n/3, which obviously applies to
setting of honest majority as well. Motivated by the discussion above, we aim to develop a better
understanding of the round complexity of statistical VSS in the presence of an honest majority.

Our results and techniques. We consider a definition of statistical VSS that relaxes the cor-
rectness/commitment requirement, but not the privacy requirement (cf. Definiton 5). This is the
definition that has been considered previously in the literature [83, 23]. In more detail, we relax
the security requirements in the following way. For a given a statistical security parameter λ, our
VSS protocol always achieves perfect privacy, and may fail to achieve correctness/commitment with
probability at most 2−Θ(λ). Under this relaxation, we obtain the following results. First, we show
a 3-round protocol for statistical VSS, thereby settling the exact round complexity of statistical

1Following the accepted convention, the round complexity of VSS refers to that of the sharing phase.
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VSS with optimal threshold. Our construction is inefficient, in that the computation and commu-
nication are exponential in the number of parties. Second, we show an efficient 4-round protocol
for statistical VSS with optimal threshold, i.e., with computation and communication polynomial
in n. Our work also leads to an improvement in the exact round complexity of coin-tossing in the
presence of an honest majority.

We now summarize the basic techniques used to prove our results. As in [84, 23], we build
statistical VSS protocols using several instances of a primitive known as information checking.
Loosely speaking, a protocol for information checking allows a sender to send a “signature” on a
secret s to a receiver, such that the receiver can later produce a “proof” that convinces a verifier
that it indeed received s from the sender. Recently, the work of Patra et al. [78, 77] improved and
generalized previous protocols for information checking. More specifically, they construct a 3-round
protocol that allows every party to simultaneously act as a verifier while guaranteeing agreement
among honest parties’ decision to accept or reject the receiver’s proof. We employ their information
checking protocol as a subroutine in all our constructions. Indeed, much of the efficiency gains we
achieve may be attributed to the use of their round-efficient information checking protocol. We
observe that prior statistical VSS protocols (e.g., [23]) would also enjoy significant improvements
if they are modified to work with the information checking protocol of Patra et al. However, this
modification alone does not suffice to yield even a five round protocol for statistical VSS.

We also propose and work with a slightly relaxed definition for information checking, and observe
that Patra et al.’s construction satisfies this weaker definition without any further modification.
More concretely, our definition of information checking differs from the traditional definition in
the following way. Earlier works [23, 78, 77] defined a protocol for information checking as a
three-phase protocol that required to satisfy a privacy property and three additional “correctness”
properties. In contrast, we define a protocol for information checking (cf. Definition 8) as a two-
phase protocol (with the two phases being a sharing phase, and a reconstruction phase) that satisfies
three requirements, namely privacy, correctness, and a relaxed commitment property. Our reasons
for pursuing this alternate definition of information checking are as follows. First, our definition is
sufficient for our purposes, and further considerably simplifies the design of our VSS protocols and
proofs. Next, we believe that our definition clearly highlights the similarities between information
checking and verifiable secret sharing. In other words, it clearly shows how information checking is
weaker than verifiable secret sharing. Furthermore, our definition of information checking allows us
to immediately observe how a stronger version of information checking directly yields a statistical
VSS protocol. (See Section 6.1.1.)

Our three round statistical VSS protocol may be best viewed as a stronger version of our in-
formation checking protocol. We explain this in detail. Patra et al. generalized the traditional
information checking protocol to simultaneously accommodate multiple verifiers. We further ex-
tend this idea, and generalize their information checking protocol to simultaneously accommodate
multiple receivers while preserving both the security guarantees and the round complexity of in-
formation checking. We do this in two steps. First, we define a primitive called weak information
checking for multiple receivers, denoted WICP, which extends information checking to simultane-
ously accommodate up to t receivers (cf. Definition 9). The guarantees provided by WICP are weak,
and in particular, correctness and commitment properties are guaranteed only when all receivers
are honest. We give a 3-round protocol for WICP. Our next primitive which we call information
checking for multiple receivers, denoted SICP, builds on, and significantly strengthens the proper-
ties provided by WICP. In SICP, both correctness and commitment are guaranteed as long as at
least one of the receivers is honest (cf. Definition 10). We give a 3-round protocol for SICP. This
protocol runs in time exponential in the number of parties, but it achieves strong guarantees that
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are sufficient to construct a simple protocol for statistical VSS. Indeed, our three round protocol
for statistical VSS is obtained by running exponentially many instances of SICP in parallel, one for
each possible set of receivers. We remark that in order to guarantee that the security properties
fail to hold with probability at most 2−Θ(λ), we assume that the dealer’s (possibly padded) secret
s lies in a finite field F satisfying log |F| = κ > max(λ, 10n).2

As mentioned before, we also construct an efficient 4-round protocol for statistical VSS with
optimal threshold. We employ extensively the information checking protocol of Patra et al. [78, 77]
in our construction. In the following description, we say that party Pi sends a “signature” on a
message s to another party Pj , if Pi acts as a sender with input s and Pj acts as the receiver
in an execution of the sharing phase of an information checking protocol. Similarly, we say Pj
reveals a “signature” on s, if Pj executes the reconstruction phase of the corresponding information
checking protocol. On a high level, we use the following strategy to design our protocol. In the first
round, the dealer distributes a signature on the shares of the secret to each party using a random
symmetric bivariate polynomial; in parallel, each pair of parties (Pi, Pj) exchanges signatures on a
random pad ri,j . Pi also sends a signature on random pad ri,j to the dealer. In the second round,
Pi and Pj check for an inconsistency between their shares by broadcasting their common shares
masked with the random pad. The dealer will broadcast the corresponding share masked with the
random pad. In the third round, if there is a disagreement between Pi and Pj in round 2 (note that
all parties agree whether there is disagreement since broadcast is used in round 2), then the dealer,
Pi, and Pj all broadcast the share in question. This allows the rest of the parties to determine
whether the dealer “agrees” with Pi or with Pj . Notice that secrecy of the share is preserved if
Pi, Pj , and the dealer are all honest. On the other hand, if the dealer is malicious and there is a
disagreement between honest parties Pi and Pj , then the dealer can only “agree” with at most one
of Pi and Pj in round 3, but not both of them.

Unfortunately, the above is not sufficient when the signatures are implemented by means of an
information checking protocol. This is because information checking provides no security guarantees
when both the sender and receiver are dishonest. Furthermore, the information checking protocol
that we use allows a dishonest sender to change the message in the very last round of the protocol.
To overcome such adversarial strategies, we require parties to begin the reconstruction phase of
some instances of information checking protocols in order to expose a cheating dealer by revealing
its signatures on inconsistent shares. Such a solution would work, but unfortunately requires
5 rounds since the reconstruction phase of our information checking protocol requires 2 rounds.
Our main novelty is to allow the reconstruction phase of some information checking subprotocols
to begin while concurrently executing the (last round of the) sharing phase of all information
checking subprotocols. Of course, this process needs to be carefully designed so that no additional
information is leaked to the adversary. We defer the details of this to Section 6.3, where we also
prove that the above strategy is sufficient to yield an efficient 4-round statistical VSS protocol.

Other related work. Statistical VSS protocols with optimal resilience were first shown by Rabin
and Ben-Or [84, 83], thereby showing information-theoretic MPC for t < n/2. A more efficient
protocol for statistical VSS, and consequently for secure computation with an honest majority, was
shown later by Cramer et al. [23]. Previous research has also investigated the design of statistical
VSS protocols when a setup (for e.g., a PKI) is available. In such a setting, statistical VSS protocols
are often simpler to design, and enjoy better round complexity [35, 63, 68]. For instance, given a
setup, it is possible to collapse the 11-round protocol of [23] into a 4-round protocol [68, 63]. We

2Contrast this with the statistical VSS protocol of [23], where the size of the underlying finite field is simply 2λ,
and is independent of the number of parties.

55



stress that our protocols do not assume any setup.
As observed in Chapter 5, the number of broadcast rounds in VSS protocols contributes sig-

nificantly to their round complexity in point-to-point networks. Recent work by Garay et al. [38]
addresses this issue and shows a 9-round statistical VSS protocol with optimal resilience that uses
broadcast only in three rounds. In contrast, we note that our protocols use broadcast in at least
four rounds. Subsequent to our work, Backes et al. [1] investigated the round complexity of com-
putational VSS (with no additional setup) when t < n/2, and show a 2-round protocol that they
prove is round-optimal.

Notation. Let λ denote a statistical security parameter. Our VSS protocols will fail with probabil-
ity at most ε = 2−Θ(λ). In our protocols, we use a field F with |F| = 2κ such that κ > max(λ, 10n).
Without loss of generality, we assume that the dealer’s input s lies in F. Finally, we say that
an event happens with negligible probability if the probability of that event occurring is at most
ε = 2−Θ(λ).

Organization. We define information checking, present the information checking protocol given by
Patra et al. [78, 77], and prove its security in Section 6.1.1. Then, in Section 6.1.2, we define WICP
and present our WICP protocol and its proof of security. Section 6.1.3 contains the definition
of SICP and a protocol that meets this definition. In Section 6.2, we present our inefficient 3-
round protocol for statistical VSS. Finally, Section 6.3 contains our efficient 4-round statistical
VSS protocol.

6.1 Building Blocks

6.1.1 Information Checking

Our protocols build on information checking protocol (ICP), a notion first introduced by Rabin
and Ben-Or [84]. The traditional definition of an ICP [84, 23] involves the dealer, a party who
acts as the intermediary, and a party who acts as the verifier. In an initial phase, the dealer
gives a secret value s ∈ F along with some auxiliary information to the intermediary party and
some verification information (that reveals nothing about s) to the verifier. Later, using s and the
auxiliary information provided by the dealer, the intermediary party can give s to the verifier along
with a “proof” that s is indeed the value that it received from D.

The basic definition of ICP involves only a single verifier; Patra et al. [78, 77], extend this
definition to allow every party in the network to act as a verifier. Enabling multiple verifiers
considerably simplifies the description of our VSS protocols. Formally, an information checking
protocol (ICP) is defined in the following way.

Definition 8 (Information Checking) A two-phase protocol for parties P = {P1, . . . , Pn}, where
a dealer D holds initial input s and a receiver Pi, is an information checking protocol with multiple
verifiers if the following conditions hold for any adversary controlling at most t parties:

Privacy If D and Pi are honest at the end of the first phase (the sharing phase), then at the end
of this phase the joint view of the malicious parties is independent of the dealer’s input s.

Correctness Each honest party Pk outputs a value sk at the end of the second phase (the re-
construction phase). If the dealer D is honest then except with negligible probability, sk = s
holds.
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Conditional Commitment If Pi is honest, then at the end of the sharing phase, except with
statistically negligible probability, the joint view of the honest parties defines a value s′ such
that each honest party will output s′ at the end of the reconstruction phase. ♦

We remark that the above definition is a more simplified (and slightly weaker) version of the
traditional definition presented in prior work. Earlier work [84, 23, 78, 77] defines a protocol for
ICP as a tuple of algorithms Distr, AuthVal, and RevealVal, and furthermore required perfect
correctness when both D and Pi are honest. However, it is usually the case that Distr and AuthVal
are executed successively, and typically in the “sharing phase” of a larger protocol that uses ICP
as a subprotocol. Indeed, our definition groups the two algorithms together in the sharing phase
of the ICP protocol. Similarly, RevealVal is typically executed in the “reconstruction phase” of
a larger protocol that employs ICP as a subprotocol. Our definition simply dubs RevealVal as
the reconstruction phase. Finally, note that since we are interested only in developing statistically
secure VSS protocols, it is reasonable to consider a definition which requires correctness to hold
only with high probability (even when both D and Pi are honest). We also note that information
checking protocols are typically employed in constructing protocols for secure computation when
t < n/2. It is well-known that perfect security is impossible in this setting (or, more generally when
t ≥ n/3 [5]).

We believe that our definition is natural (for our purposes) and furthermore, considerably
simplifies the description of our VSS protocols. We will use ICP protocols as building blocks
for designing new (and more complicated) primitives, and our simplified definition will make it
easier to see the successive strengthenings our new primitives achieve. Indeed, our strategy for
obtaining a 3-round VSS protocol is simply to strengthen the conditional commitment property of
a 3-round ICP protocol. Suppose we design a protocol π with the exact same guarantees as an ICP
protocol except the commitment property holds even for a dishonest Pi. Now consider the following
candidate VSS protocol that employs π as a subprotocol. First, the dealer additively shares his
secret input into n shares. Then, the dealer executes n instances of π, one with each party Pi using
input the ith additive share. It is easy to see that all VSS properties (namely privacy, correctness,
and commitment) follow directly from the corresponding properties of π, and furthermore the round
complexity of the resulting VSS protocol is the same as the round complexity of π. (Although this
may be viewed as a high level overview of our strategy, we stress that we are unable to exactly
realize protocol π.)

The Protocol

Here we present a simple ICP protocol tolerating t < n/2 malicious parties. Our construction is
based on the ICP protocol of Patra et al. [78, 77]. The protocol requires 3 rounds in an initial
sharing phase, and an additional 2 rounds in the reconstruction phase.

Sharing phase. The sharing phase consists of three rounds.

Round 1: The dealer holds s. The following steps are carried out in parallel:

– The dealer chooses a random degree-t polynomial F (x) such that s = F (0), and sends
F (x) to Pi. In addition, the dealer sends a random degree-t polynomial R to Pi. Let F ′,
R′ denote the polynomials received by Pi.

– For each Pk ∈ P, the dealer chooses verification points xk ∈ F \ {0} at random, and
sends xk, F (xk), and R(xk) to Pk. Let x′k, y

′
k, and z′k denote the values received by Pk.
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Round 2: Pi chooses a random multiplier d ∈ F\{0}, computesB = dF ′(x)+R′(x), and broadcasts
(d,B(x)).

Round 3: If it does not hold that B(x) = dF (x) +R(x), then the dealer broadcasts s(D) = s.

Local Computation. If dealer broadcasted s(D) in round 3 of the sharing phase, then each party
sets conflictD,i(s) = 1, else they set conflictD,i(s) = 0.

Reconstruction phase. The reconstruction phase consists of two rounds. For the sake of clarity,
we handle the following two cases separately. First, if D broadcasted s(D) in round 3 of the sharing
phase, i.e., if conflictD,i(s) = 1 holds, each party Pk ∈ P sets sk = s(D), and terminates the
reconstruction protocol.

The remainder of the reconstruction phase deals with the second case where conflictD,i(s) = 0.

Round 1: Pi broadcasts F ′(x).

Round 2: Each party Pk ∈ P broadcasts “accept” if either of the following conditions hold.

• It holds that y′k = F ′(x′k).

• It holds that B(x′k) 6= dy′k + z′k.

Local Computation. If at least t+ 1 parties broadcasted “accept”, then each party Pk ∈ P sets
sk = F ′(0). If not, else set sk = ⊥.

This completes the description of the protocol.

The following shorthand will be useful in description of more complicated constructions that
follow. We say that Pi conflicts with Pj if in an execution of ICPi,j(s), it holds that conflicti,j(s) = 1.

Proofs

We now prove the protocol ICPD,i(s) given in the previous section is a statistical ICP protocol
tolerating t < n/2 parties when κ > max(λ, 10n). (Recall |F| = 2κ.)

Claim 39 (Privacy) If D and Pi remain honest throughout the sharing phase, then privacy is
preserved.

Proof Let C denote the set of parties corrupted by the end of the sharing phase. We show that if
the dealer remains uncorrupted, then the view of the adversary can be simulated given the values
{xk}Pk∈C , {F (xk)}Pk∈C , and {R(xk)}Pk∈C . Since F (x) and R(x) are random polynomials of degree
at most t and |C| ≤ t, a standard argument implies that the view of the adversary at the end of
round 1 of the sharing phase is independent of the dealer’s input s, and the values of polynomials
F (x) and R(x) except at points {xk}Pk∈C .

When Pi is honest, clearly an honest D does not broadcast s(D) in round 3 of the sharing phase.
Thus, it remains to be shown that the view of the adversary remains independent of the dealer’s
input s even after Pi broadcasts (d,B(x)) in round 2 of the sharing phase. Recall that the view
of the adversary is independent of the values of the polynomial R(x) except at points {xk}Pk∈C .
Thus, using R(x) to mask the true value of F (x) (as is the case in B(x) = dF (x) +R(x)) does not
leak any information about the {F (xk)}Pk 6∈C that the adversary does not already know.
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Claim 40 (Correctness) If the dealer remains uncorrupted throughout the sharing phase, then
correctness holds with all but negligible probability.

Proof Clearly, when conflictD,i(s) equals 1, each party outputs s(D) which equals s for an honest
D, and correctness follows immediately. For the rest of the proof, we assume conflictD,i(s) = 0. We
first consider the case when Pi is honest. In this case, Pi broadcasts F ′(x) = F (x). Since the dealer
is honest, we have that y′k = F ′(xk) holds for every honest Pk ∈ P. Therefore, at least n− t ≥ t+ 1
parties will broadcast “accept” in the reconstruction phase. Correctness follows immediately since
s = F ′(0) is reconstructed.

Consider now the case when (a dishonest) Pi broadcasts F ′(x) 6= F (x). We will prove that
for every honest Pk ∈ P, neither y′k = F ′(x′k) nor B(x′k) 6= dy′k + z′k holds. First, we will show
that y′k 6= F ′(x′k) holds with high probability when Pk is honest. Using (a) two distinct degree-t
polynomials are identical at at most t points, and (b) the value of x′k is completely independent of
the adversary’s view, we conclude that F ′(x′k) = F (x′k) holds with probability at most t/(|F| − 1).
Since κ > max(λ, 10n) (recall κ = |F|), we conclude that y′k 6= F ′(x′k) holds with all but negligible
probability.

Now it remains to be shown that for every honest Pk, it holds that B(x′k) = dy′k + z′k. Observe
that an honest D checks in round 3 whether B(x) = dF (x) +R(x) holds. In case it does not hold,
then D broadcasts s(D) which in turn makes every party update conflictD,i(s) to hold value 1. This
contradicts our assumption that conflictD,i(s) = 0. Therefore, for every honest Pk it must hold that
B(x′k) = dF (x′k) + R(x′k). That is, when the dealer is honest, B(x′k) = dy′k + z′k holds for every
honest Pk ∈ P. This completes the proof of the claim.

Claim 41 (Conditional Commitment) If Pi remains uncorrupted throughout the entire proto-
col, then commitment holds with all but negligible probability.

Proof It is easy to verify that the claim is true when conflictD,i(s) = 1 holds. For the rest of
the proof we assume that conflictD,i(s) = 0 holds. We will prove that for every honest Pk ∈ P,
either y′k = F ′(x′k) holds, or B(x′k) 6= dy′k + z′k holds. This suffices because since n > 2t, at least
n− t ≥ t+ 1 honest parties will broadcast “accept” and the value F ′(0) held by honest Pi during
the sharing phase will be reconstructed.

By way of contradiction, assume that y′k 6= F ′(x′k) holds. We consider two cases depending
on whether z′k = R(x′k) holds or not. First, assume that z′k = R(x′k) holds. Then, B(x′k) =
dF ′(x′k) +R′(x′k) 6= dy′k + z′k holds for an honest Pi since d is chosen from F \ {0} Therefore, in this
case, we conclude that with high probability, party Pk will broadcast “accept”.

On the other hand, suppose z′k 6= R(x′k) holds. Note that each of x′k, y
′
k, and z′k are received

by honest Pk in round 1 of the sharing phase (in particular, before Pi chooses d and broadcasts
(d,B(x))), and these values are never modified later. Given this, dy′k + z′k equals dF ′(x′k) +R′(x′k)
only in the event that d = (R′(x′k)−z′k)/(F ′(x′k)−y′k) holds. However, this event happens only with
negligible probability (more concretely, with probability 1/(|F| − 1)) when Pi is honest. Therefore,
we conclude that with high probability, party Pk will broadcast “accept” in this case as well. This
completes the proof of the claim.

We will denote an ICP protocol with D as dealer with input s, and receiver Pi, using the
notation ICPD,i(s). More generally, we denote an ICP protocol where Pi acts as dealer with input
ri,j and Pj acts as as receiver using the notation ICPi,j(ri,j).

Also, in the protocol constructions that follow, we will execute many instances of ICP subpro-
tocols (sometimes using the same input) in parallel. In each instance, honest parties will obviously
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use independent randomness. This will allow us to argue the following. Suppose ` instances of ICP
subprotocols are executed in parallel. Then, using a simple union bound, we see that correctness
property holds for each of the ` ICP subprotocols with probability at least 1− (`t/(|F| − 1)). Sim-
ilarly, we see that the conditional commitment property holds for each of the ` ICP subprotocols
with probability at least 1− (`/(|F| − 1)).

6.1.2 Weak Information Checking for Multiple Receivers

We will generalize the ICP protocol by allowing multiple receivers. This will allow us to leverage
the presence of any honest party who acts as a receiver, in order to obtain stronger commitment
guarantees. Second, this will also allow us to base our commitment and correctness properties
on a publicly verifiable condition. Contrast this with the basic definition of ICP (cf. Definition 8)
which guarantees commitment (resp. correctness) properties only when the receiver (resp. dealer)
is honest, an inherently unverifiable condition.

As mentioned before, we note that our definition is weak in the sense that the correctness and
commitment properties hold only if the view of honest parties satisfies a certain condition (denoted
by cleanS(s)). (We will strengthen this further in the next section.) Formally, we define weak
information checking for multiple receivers below.

Definition 9 (Weak Information Checking for Multiple Receivers) A two-phase protocol
WICPS(s) for parties P = {P1, . . . , Pn}, where a dealer D holds initial input s and a set of re-
ceivers S with |S| = t, is a weak information checking protocol for multiple receivers if the following
conditions hold for any adversary controlling at most t parties:

Privacy If D and all parties in S are honest at the end of the first phase (the sharing phase), then
at the end of this phase the joint view of the malicious parties is independent of the dealer’s
input s.

Conditional Correctness By the end of the sharing phase, all parties in P agree on a value
cleanS(s) ∈ {0, 1}. Further, if cleanS(s) = 1, each honest party Pk outputs a value sk at the
end of the second phase (the reconstruction phase). If the dealer is honest then except with
statistically negligible probability, sk = s holds.

Conditional Commitment By the end of the sharing phase, all parties in P agree on a value
cleanS(s) ∈ {0, 1}. Further, if cleanS(s) = 1, then at the end of the sharing phase, except with
statistically negligible probability, the joint view of the honest parties defines a value s′ such
that each honest party will output s′ at the end of the reconstruction phase.

Non-triviality If D and all parties in S are honest at the end of the sharing phase, then at the
end of this phase the value of cleanS(s) will always equal 1. ♦

We briefly mention that our final 3-round statistical VSS protocol is based on replication-based
secret sharing [43, 24, 60], which loosely speaking allows the same secret share to be held by a set of
receivers (rather than just a single receiver). Indeed, it is easy to see that our definition of WICP
naturally leads us towards such a design. We mention that schemes based on replication-based
secret sharing are typically not linear (this is also the case in our VSS construction).

We mention that our scheme (or more generally, typical replication-based secret sharing schemes
e.g., [43]) may be viewed as a simple application of Bracha’s player-virtualization technique [8], in
which a set of parties work together to simulate a single virtual party. Looking at our definition,
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we see that S may be viewed as a single virtual party being simulated together by each Pi ∈
S. Given this, the non-triviality requirement (along with conditional correctness and conditional
commitment) may be viewed as saying that such a simulation is “useful” when performed faithfully.
Viewed via this lens, it is easy to verify that a WICP protocol provides exactly the same guarantees
as an ICP protocol between the dealer and a virtual party S as long as the simulation is faithful.
This correctness of simulation is exactly what we capture by the condition cleanS(s) = 1.

The Protocol

We show a statistical WICP (weak information checking for multiple receivers) protocol that tol-
erates t < n/2 malicious parties. The protocol requires 3 rounds in the sharing phase, and an
additional 2 rounds in the reconstruction phase.

Sharing phase. The sharing phase consists of three rounds.

Round 1: The dealer holds s. The following steps are carried out in parallel:

– The dealer executes the first round of the ICP protocol (described in Section 6.1.1) with
each Pi ∈ S as receiver on input s. We refer to such an instance of the ICP protocol as
ICPD,i(s). Let s′i denote the value received by Pi. Define s′D := s.3

– Each party Pi ∈ S ∪ {D} picks a random value ri,j for every Pj ∈ S ∪ {D} \ {Pi} and
executes the first round of the ICP protocol with Pj as receiver on input ri,j . We refer
to this instance of the ICP protocol as ICPi,j(ri,j). Let r′i,j denote the value received by
Pj .

Round 2: Each party Pi ∈ S ∪ {D} does the following:

– Run round 2 of ICPi,j(ri,j), for all Pj ∈ S ∪ {D} \ {Pi}.
– For all Pj ∈ S ∪ {D} \ {Pi}, broadcast ai,j := s′i,j + ri,j .

– For all Pj ∈ S ∪ {D} \ {Pi}, broadcast bi,j := s′i,j + r′j,i.

In parallel with the above, the dealer executes the second round of the ICPD,i(s) with each
Pi ∈ S.

Round 3: Each party Pi ∈ S ∪ {D} runs round 3 of ICPi,j(ri,j), for all Pj ∈ S ∪ {D} \ {Pi}.
In parallel with the above, the dealer D does the following for each Pi ∈ S:

– Run round 3 of ICPD,i(s). If D conflicts with Pi, or for some Pj ∈ S∪{D}\{Pi}, either
ai,j 6= bj,i, or ai,j = ⊥, then D broadcasts s(D) := s. In this case, each party in P sets
local variable resolvedS(s) = 1.

Local computation. Each party locally carries out the following steps.

1. Each party disqualifies the dealer, and outputs some default secret if the dealer does not
follow the protocol.

2. For each Pi ∈ S, initialize flagi(s) = 1. Reset flagi(s) = 0 if any of the following is true for
some Pj ∈ S \ {Pi}.

3We remark that the variable s′D is used merely to simplify exposition of our claims and proofs.
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(.1) Pi conflicts with Pj .

(.2) It holds that ai,j 6= bj,i.

(.3) It holds that aj,i 6= bi,j .

3. Initialize resolvedS(s) = 0. If the dealer broadcasted s(D) in round 3 of the sharing phase,
then each party Pk ∈ P resets resolvedS(s) = 1.

4. Initialize cleanS(s) = 1. Reset cleanS(s) = 0 if each of the following conditions are satisfied.

(.1) It holds that resolvedS(s) = 0.

(.2) There is pair of parties Pi, Pj ∈ S such that Pi conflicted with Pj in round 3 of the
sharing phase, and Pj also conflicted with Pi in round 3 of the sharing phase.

Reconstruction phase. The reconstruction phase consists of two rounds.

Round 1: Each party executes the following in parallel for every Pi ∈ S ∪ {D}:

– If Pi 6= D, run round 1 of the reconstruction phase of ICPD,i(s).

– For every Pj ∈ S ∪ {D} \ {Pi}, run round 1 of the reconstruction phase of ICPi,j(ri,j).

Round 2: Each party executes the following in parallel for every Pi ∈ S ∪ {D}:

– If Pi 6= D, run round 2 of the reconstruction phase of ICPD,i(s).

– For every Pj ∈ S ∪ {D} \ {Pi}, run round 2 of the reconstruction phase of ICPi,j(ri,j).

In parallel with the above D broadcasts s̃D := s.4

Local Computation. Each party locally carries out the following steps.

1. If D broadcasted s(D) in round 3 of the sharing phase, then each party Pk ∈ P outputs
sk = s(D), and terminates the reconstruction protocol.

2. For every Pi ∈ S ∪ {D}, perform the following:

(.1) If Pi 6= D, carry out the local computation of ICPD,i(s).

Let s̃i denote the reconstructed value.

(.2) For every Pj ∈ S ∪ {D} \ {Pi}, carry out the local computation of ICPi,j(ri,j).

Let r̃i,j denote the reconstructed value.

3. Initialize REC = {D}. Add Pi ∈ S to REC if s̃i 6= ⊥ holds.

4. Delete D from REC if for some Pi ∈ REC, it holds that s̃D 6= s̃i.

5. Delete Pi from REC if for some Pj ∈ S ∪ {D} \ {Pi} any of the following hold:

(.1) r̃i,j 6= ⊥ and s̃i + r̃i,j 6= ai,j .

(.2) Pj did not conflict with Pi and bi,j − r̃j,i 6= s̃i.

4We remark that this step is necessary for handling the case when all t parties in S decide to abort the recon-
struction phase.
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6. If cleanS(s) = 0, then each Pk ∈ P outputs sk = ⊥, and terminates the reconstruction
protocol.5

7. Each party picks some Pi ∈ REC and outputs s′ = s̃i.

Proofs

We now prove that the protocol given in the previous section is a statistical WICP protocol toler-
ating t < n/2 parties when κ > max(λ, 10n). (Recall |F| = 2κ.)

Claim 42 (Privacy) If all parties in S ∪ {D} remain uncorrupted throughout the sharing phase,
privacy is preserved.

Proof Let C denote the set of parties corrupted by the end of the sharing phase. We show
that if the dealer remains uncorrupted, then the view of the adversary can be simulated using
simulators for each ICP subprotocol. Observe that when all parties in S ∪ {D} are honest, every
ICP subprotocol is run with an honest dealer and an honest receiver. We can apply Claim 39
to conclude that each of these ICP subprotocols when considered individually, preserve privacy
of dealer’s input and the random pads that are exchanged between honest players. Furthermore,
since honest parties use independent randomness (in particular, independent random masks) in each
of these ICP subprotocols (including ones that run using the same input), we note that parallel
executions of these ICP subprotocols still preserves privacy of each execution. Therefore, simulators
that simultaneously preserve privacy for each ICP subprotocol are implied by Claim 39.

Also, honest parties are guaranteed to follow the protocol, and thus will never conflict (within
any ICP subprotocol) with another honest party. Other conditions that force D to broadcast s(D)

are easily verified not to hold when all parties S ∪ {D} is honest.
As for the values broadcast in round 2, consider an ordered pair (Pi, Pj) of parties who remain

honest throughout the sharing phase. Since the dealer is honest, we have that s′i = s = s′j holds,
and since Pi, Pj are honest, ri,j = r′i,j and rj,i = r′j,i. Since ri,j and rj,i are completely random
field elements, “blinded” values s′i + ri,j and s′j + rj,i do not leak any information about the secret
s that the adversary does not already know.

Note that the value of cleanS(s) is updated depending on broadcasts made by parties in S. Thus,
by the end of the sharing phase, (honest) parties will agree on the final value of cleanS(s). Further,
since an honest party never conflicts with another honest party, the value of cleanS(s) always equals
1 when all parties in S∪{D} are honest. Thus, our protocol satisfies the non-triviality requirement
when all parties in S ∪ {D} are honest.

We will now make an observation about executing multiple instances of ICP subprotocols in
parallel with one another. Recall that when ` instances of ICP subprotocols are run in parallel, then
(a) the correctness property holds for each of the ` instances except with probability O(`t/|F|), and
(b) the conditional commitment property holds for each of the ` instances except with probability
O(`/|F|). From the claim above, we see that rest of the WICP execution other than the ICP
subprotocols yields no information to the adversary that it already does not know. Finally, in our
WICP subprotocol, we see that ` = O(n2), and since |F| > 2max(λ,10n), we see that except with
negligible probability, correctness and conditional commitment holds for every ICP subprotocol
simultaneously. We will use this fact repeatedly in our proofs. We are now ready to prove that

5We remark that executing this step at the beginning of the reconstruction phase is sufficient. However, since our
main goal is to construct a VSS protocol, it will be useful to execute this step after the set REC is defined. This will
simplify our proofs, and especially allow us to state and prove Corollary 45 which holds even when cleanS(s) = 0.
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our protocol satisfies the conditional commitment property, and derive the conditional correctness
property of our protocol as a corollary.

Claim 43 (Conditional Commitment) Suppose cleanS(s) = 1. Then, even when the dealer is
malicious, commitment holds with all but negligible probability.

Proof The claim trivially holds when the dealer is disqualified in the sharing phase, or when the
dealer broadcasts s(D) in round 3 of the sharing phase. For the rest of the proof, we assume that
none of these events happened. Since |S∪{D}| > t, there is at least one honest party Pi ∈ S∪{D}.
(For the rest of the proof, we assume that Pi is honest. Note that Pi could be the dealer.)

First, we show that honest Pi ∈ S ∪ {D} is contained in REC. We start by considering Pi ∈ S.
Note that since D did not conflict with Pi, by the conditional commitment property of ICPD,i(s)
we have that s̃i = s′i is true with all but negligible probability. If s′i = ⊥, then ai,j = ⊥ would
hold, and D would be forced to broadcast s(D) in round 3 of the sharing phase. Since we assume
that the latter event did not happen, we conclude that s̃i 6= ⊥. In this case, Pi is added to REC.
Also, observe REC is initialized with {D}, therefore an (honest) D is always added to REC. We
now argue that with high probability, none of the deletion rules apply to an honest Pi ∈ S ∪ {D}.

1. As argued earlier, s̃i = s′i must hold except with negligible probability. Thus, ai,j = s̃i + ri,j
holds for honest Pi. Furthermore, since Pi is honest, r̃i,j revealed by every Pj must satisfy
r̃i,j ∈ {⊥, ri,j} with all but negligible probability. (This follows from the correctness property
of ICP subprotocols. Note that the correctness property is violated only when malicious
receiver can guess at least one “verification point” xk held by an honest party Pk. Since
when the dealer is honest, this value xk is independent of every other ICP execution, and
furthermore, is never revealed either in the sharing or reconstruction phase by Pk.) We
conclude that ai,j = s̃i + r̃i,j holds with high probability.

2. Suppose some Pj ∈ REC did not conflict with Pi. Then, with high probability it holds that
r̃j,i= r′j,i. Recalling that when Pi is honest, s̃i= s′i holds with high probability, we see that
bi,j − r′j,i = bi,j − r̃j,i = s′i = s̃i holds with high probability.

(Note that when D is honest, by the correctness property of ICP we have that except with negligible
probability no Pj ∈ S will be able to reveal s̃j 6∈ {⊥, s̃D}. Then, following an argument similar to
the one outlined above, we see that none of the deletion rules apply to an honest D.) Thus, every
honest Pi ∈ S ∪ {D} is contained in REC.

Next, we show that for every Pj ∈ REC, the value of s̃j equals s̃i. For the rest of the proof we
assume that both ai,j = bj,i and aj,i = bi,j hold, since otherwise, D would be forced to broadcast
s(D) and consequently, commitment would follow immediately. Since cleanS(s) = 1, then in round 3
of the sharing phase, either Pi did not conflict with Pj , or Pj did not conflict with Pi.

We consider two cases. First, suppose Pi did not conflict with Pj . In this case, since Pj is
not deleted from REC, we conclude that bj,i − r̃i,j = s̃j holds. Furthermore since Pi is honest, by
the conditional commitment property of ICP, with all but negligible probability, it must hold that
r̃i,j ∈ {⊥, ri,j}. Since bi,j− r̃i,j = s̃j , it must be the case that r̃i,j = ri,j . Recall that ai,j = bj,i holds
by assumption, so we conclude that ai,j − r̃i,j = s̃j must hold. Observe that for Pi ∈ REC, it holds
that ai,j − r̃i,j = s̃i (else Pi is deleted from REC). Thus, we conclude that s̃j = s̃i holds. Given
this, it is immediate that all parties output s′ = s̃i.

Second, suppose Pj did not conflict with Pi. In this case, since Pi is contained in REC, we
conclude that bi,j − r̃j,i = s̃i. Furthermore since Pi is honest, by the commitment property of ICP,
with all but negligible probability, it must hold that r̃j,i = rj,i. Recall that aj,i = bi,j holds by
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assumption, so we conclude that aj,i − r̃j,i = s̃i must hold. Observe that for Pj ∈ REC, when
r̃j,i 6= ⊥ (as is the case here) it holds that aj,i − r̃j,i = s̃j (else Pj is deleted from REC). Thus, we
conclude that s̃j = s̃i holds in this case as well. Given this, it is immediate that all parties output
s′ = s̃i.

So far we have that if D neither broadcasted s(D) nor got disqualified during the sharing
phase, then all parties output s′ = s̃i where s̃i is held by an honest party Pi. By the conditional
commitment property of ICP we have that with all but negligible probability s̃i reconstructed
by honest Pi will equal s′i received from D in (round 1 of) the sharing phase. Thus, with high
probability, the reconstructed secret s′ is fixed at the end of the sharing phase. This concludes the
proof of the claim.

The following corollary is immediate from the proof of Claim 43.

Corollary 44 Let Pi ∈ S ∪ {D}. Suppose Pi is honest such that Pi holds s′i at the end of round 1
of the sharing phase. Furthermore, suppose resolvedS(s) = 0 and cleanS(s) = 1 hold. Then at the
end of the reconstruction phase s′ = s′i holds with all but negligible probability.

Also, observe that when flagi(s) = 1 holds, honest Pi does not conflict with any Pj ∈ S ∪{D} \
{Pi}. Following an analysis similar to the proof of Claim 43, we obtain the following corollary that
holds even when cleanS(s) = 0.

Corollary 45 Let Pi ∈ S∪{D}. Suppose Pi is honest such that Pi received s′i at the end of round 1
of the sharing phase. Furthermore, suppose flagi(s) = 1 and resolvedS(s) = 0 hold. Then at the end
of the reconstruction phase for every Pj ∈ REC, we have that s̃j = s′i holds with all but negligible
probability.

Claim 46 (Conditional Correctness) Suppose cleanS(s) = 1. Further suppose that the dealer
remains uncorrupted throughout the sharing phase. Then, correctness holds with all but negligible
probability.

Proof Clearly, a dealer that remains uncorrupted throughout the sharing phase follows the
protocol, and thus is never disqualified at the end of the sharing phase. It is also easy to see that
correctness holds when resolvedS(s) = 1 holds since an honest dealer broadcasts s(D) = s in this
case. For the rest of the proof, we assume that resolvedS(s) = 0 holds. Note that when D is honest,
by the commitment property of ICPD,i(s), we have that with high probability s̃j ∈ {⊥, s} holds
for every Pj ∈ S ∪ {D} \ {Pi}. Furthermore, s′i = s holds for every honest Pi ∈ S ∪ {D} at the end
of round 1 of the sharing phase. (Recall that since |S ∪ {D}| > t, there is party Pi which remains
honest throughout the protocol. In particular, Pi is honest during the entire reconstruction phase.)
Given this, the claim follows immediately from Corollary 44.

We will denote a WICP protocol with D as dealer with input s, and S as the set of receivers
using the notation WICPS(s).

Also, in the protocol constructions that follow, we will execute (exponentially) many instances
of WICP subprotocols in parallel. In each instance, honest parties will use independent randomness.
This will allow us to argue the following. Suppose ` instances of WICP subprotocols are executed
in parallel. Then, using a simple union bound, we see that the conditional correctness property
holds for each of the ` WICP subprotocols except with probability O(`n3/|F|). Similarly, we see
that the conditional commitment property holds for each of the ` WICP subprotocols except with
probability O(`n2/|F|).
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6.1.3 Information Checking for Multiple Receivers

We will now strengthen the weak ICP protocol described in the previous section. In particular, our
strengthening will ensure that correctness and commitment properties are satisfied unconditionally.
Formally, we define information checking for multiple receivers below.

Definition 10 (Information Checking for Multiple Receivers) A two-phase protocol SICPS(s)
for parties P = {P1, . . . , Pn}, where a dealer D holds initial input s and a set of receivers S with
|S| = t, is an information checking protocol for multiple receivers if the following conditions hold
for any adversary controlling at most t parties:

Privacy If D and all parties in S are honest at the end of the first phase (the sharing phase), then
at the end of this phase the joint view of the malicious parties is independent of the dealer’s
input s.

Correctness Each honest party Pk outputs a value sk at the end of the second phase (the re-
construction phase). If the dealer is honest then except with statistically negligible probability
sk = s holds.

Commitment At the end of the sharing phase, except with statistically negligible probability, the
joint view of the honest parties defines a value s′ such that each honest party will output s′ at
the end of the reconstruction phase. ♦

Recall that we designed the WICP protocol by virtualizing the receiver in an ICP protocol,
and that this provided slightly weaker guarantees since the simulation of the virtual party may not
be performed honestly. In order to obtain stronger guarantees in our SICP protocol, we virtualize
the verifiers of the ICP protocol as well. Such a virtualization ensures that the conditions in
the definition of information checking (cf. Definition 8) are always satisfied. In more detail, since
|S ∪{D}| > t, at least one party in S ∪{D} is honest. This turns out to be sufficient to strengthen
the conditional commitment and correctness properties of WICP (and ICP) to their respective
unconditional variants as seen in the definition above.

At a high level, our protocol introduces an additional level of information checking to the WICP
protocol. In more detail, our protocol runs the 3-round WICP protocol described in Section 6.1.2
using the dealer’s input secret. In parallel with the above, parties also execute a variant of the ICP
protocol that uses a polynomial of high degree and whose verification points are distributed (using
a WICP protocol) among subsets of parties (i.e., virtual parties).

The easy case is when the WICP execution involving the dealer’s secret input itself is clean.
The commitment property follows directly from the guarantees of a clean WICP execution. To the
deal with the case when the above WICP execution is not clean, our protocol requires the parties
to broadcast their high degree polynomial when the parties, loosely speaking, sense that there is a
possibility that the WICP execution may not be clean. Polynomials revealed in this fashion will then
be checked (in the reconstruction phase) against all verification points whose corresponding WICP
executions were clean. Thus, in this case, commitment follows because (a) revealed polynomials
are obviously fixed at the end of the sharing phase, and (b) the verification points that are used for
checking the polynomial (i.e., those involving clean WICP executions) is also fixed at the end of
the sharing phase. We remark that the above is merely an informal overview of our protocol and
omits several minor but important details.
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The Protocol

We show a statistical SICP (information checking for multiple receivers) protocol that tolerates
t < n/2 malicious parties. Our protocol requires 3 rounds in the sharing phase, and an additional
2 rounds in the reconstruction phase.

Sharing phase. The sharing phase consists of three rounds.

Round 1: The dealer holds s. Let S1, . . . , Sη be distinct subsets of P\{D} of size-t. The following
steps are carried out in parallel:

– The dealer chooses a random degree-τ polynomial F (x) such that F (0) = s, and sends
F (x) to each Pi ∈ S. In addition, the dealer sends a random degree-τ polynomial Ri(x)
to each Pi ∈ S. Let F ′i (x), R′i(x) denote the polynomials received by Pi.

– The dealer executes the first round of the WICP protocol with S as receivers on input
s. We refer to this instance of the WICP protocol as WICPS(s). We let s′i denote the
value Pi ∈ S receives from the dealer in the first round of WICPS(s).

– For each k ∈ [η], the dealer chooses xk ∈ F \ {0} at random and executes the following.

• The first round of the WICP protocol with Sk as receivers on input xk. We refer to
this instance of the WICP protocol as WICPSk(xk).

• The first round of the WICP protocol with Sk as receivers on input F (xk). We refer
to this instance of the WICP protocol as WICPSk(F (xk)).

• For each Pi ∈ S, the first round of the WICP protocol with Sk as receivers on input
Ri(xk). We refer to this instance of the WICP protocol as WICPSk(Ri(xk)).

Round 2: Each party Pi ∈ S chooses a random di ∈ F \ {0}, computes Bi(x) = diF
′
i (x) + R′i(x)

and broadcasts (di, Bi(x)). In addition, each Pi ∈ S checks whether s′i = F ′i (0) holds. If not,
Pi broadcasts “complaint”.

In parallel with the above, the dealer executes the following.

– Run round 2 of WICPS(s).

– For each k ∈ [η], run round 2 of WICPSk(xk).

– For each k ∈ [η], run round 2 of WICPSk(F (xk)).

– For each k ∈ [η] and for each Pi ∈ S, run round 2 of WICPSk(Ri(xk)).

Round 3: If for some Pi ∈ S, it does not hold that diF (x) + Ri(x) = Bi(x), or Pi broadcasted
“complaint” in round 2 of the sharing phase, then the dealer broadcasts s(D) = s. Else, the
dealer executes the following in parallel.

– Run round 3 of WICPS(s).

– For each k ∈ [η], run round 3 of WICPSk(xk).

– For each k ∈ [η], run round 3 of WICPSk(F (xk)).

– For each k ∈ [η] and for each Pi ∈ S, run round 3 of WICPSk(Ri(xk)).

(Recall that each Pi ∈ S maintains a local variables flagi(s) in protocol WICPS(s).)

If for some Pi ∈ S, party Pi set flagi(s) = 0, then it broadcasts F ′i (x).

Local computation. Each party locally carries out the following steps.
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1. Each party disqualifies the dealer, and outputs some default secret if the dealer does not
follow the protocol.

2. Recall that each party Pk ∈ P maintains a local variable resolvedS(s) in protocol WICPS(s).
Suppose the dealer broadcasted s(D) in round 3 of the sharing phase, then each party Pk sets
resolvedS(s) = 1, and terminates the local computation.

3. Each party disqualifies the dealer, and outputs some default secret if the dealer gets disqual-
ified within any WICP subprotocol.

4. The local computation of each WICP subprotocol is carried out. In particular, the values of
cleanS(s), cleanSk(xk), cleanSk(F (xk)), cleanSk(Ri(xk)) are determined for each Pi ∈ S and for
each k ∈ [η].

5. Initialize U = {Pi | Pi ∈ S and flagi(s) = 0}.

6. For each k ∈ [η], parties set recflagk = 1 if each of the following are simultaneously satisfied:

(.1) It holds that cleanSk(xk) = 1 and resolvedSk(xk) = 0.

(.2) It holds that cleanSk(F (xk)) = 1 and resolvedSk(F (xk)) = 0.

(.3) For every Pi ∈ S, both cleanSk(Ri(xk)) = 1 and resolvedSk(Ri(xk)) = 0 hold.

Otherwise, parties set recflagk = 0.

7. If there does not exist some k ∈ [η] such that recflagk = 1, then each party disqualifies the
dealer, and outputs some default secret.

Reconstruction phase. The reconstruction phase consists of two rounds. For the sake of clarity,
we handle the following three cases separately. First, if D broadcasted s(D) in round 3 of the sharing
phase of SICPS(s) or WICPS(s), i.e., if resolvedS(s) = 1 holds, then each party Pk ∈ P outputs
sk = s(D), and terminates the reconstruction protocol.

Second, if cleanS(s) = 1, then parties run the 2-round reconstruction phase of WICPS(s). Each
party Pk ∈ P outputs sk as the output of WICPS(s), and terminates the reconstruction protocol.

The remainder of the reconstruction phase deals with the third case where cleanS(s) = 0.

Round 1: The following steps are carried out in parallel.

– Run round 1 of the reconstruction phase of WICPS(s).

– For each k ∈ [η], if recflagk = 1, then parties in Sk execute the following.

• Run round 1 of the reconstruction phase of WICPSk(xk).

• Run round 1 of the reconstruction phase of WICPSk(F (xk)).

• For each Pi ∈ S, run round 1 of the reconstruction phase of WICPSk(Ri(xk)).

Round 2: The following steps are carried out in parallel.

– Run round 2 of the reconstruction phase of WICPS(s).

– For each k ∈ [η], if recflagk = 1, then parties in Sk execute the following.

• Run round 2 of the reconstruction phase of WICPSk(xk).

• Run round 2 of the reconstruction phase of WICPSk(F (xk)).

• For each Pi ∈ S, run round 2 of the reconstruction phase of WICPSk(Ri(xk)).
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Local Computation. Each party locally carries out the following steps:

1. For each k ∈ [η] with recflagk = 1, perform the local computation steps of WICPSk(xk),
WICPSk(F (xk)), and of WICPSk(Ri(xk)) for each Pi ∈ S. Let x′k, y

′
k, and z′i,k denote the

corresponding reconstructed values.

2. For every Pi ∈ U , check whether the following is true. For each k ∈ [η] with recflagk = 1,
either

(.1) it holds that y′k = F ′i (x
′
k), or

(.2) it holds that Bi(x
′
k) 6= diy

′
k + z′i,k.

If for some k ∈ [η], neither condition holds, then remove Pi from U .

3. Suppose |U| ≥ 2. If for some Pi, Pj ∈ U it holds that F ′i (0) 6= F ′j(0), then each party Pk ∈ P
outputs sk = ⊥ and terminates the reconstruction protocol. If after this step, |U| > 0 holds,
then each party Pk ∈ P picks any Pi ∈ U and outputs sk = F ′i (0).

4. Perform the local computation step of WICPS(s). Each party Pk ∈ P outputs sk as the
output of WICPS(s), and terminates the reconstruction protocol.

Proofs

We now prove that the protocol given in the previous section is a statistical SICP protocol tolerating
t < n/2 parties when κ > max(λ, 10n). (Recall |F| = 2κ.)

Claim 47 (Privacy) If all parties in S ∪ {D} remain uncorrupted throughout the sharing phase,
privacy is preserved.

Proof Let C denote the set of parties corrupted by the end of the sharing phase. We show
that if the dealer remains uncorrupted, then the view of the adversary can be simulated given
the values {xk}C∩Sk 6=∅, {F (xk)}C∩Sk 6=∅, and {Ri(xk)}Pi∈S,C∩Sk 6=∅, along with simulators for each
WICP subprotocol involving receivers that are all honest. Suppose all parties in Sk are honest.
We can apply Claim 42 to conclude that each WICP subprotocol involving parties in Sk when
considered individually, preserves privacy of dealer’s input of that execution. Furthermore, observe
that honest parties use independent randomness within each WICP subprotocol, and therefore,
parallel executions of these WICP subprotocols still preserves privacy of each execution. Therefore,
simulators that simultaneously preserve privacy for all WICP subprotocols that involve a honest
set of receivers are implied by Claim 42.

Also, honest parties are guaranteed to follow the protocol, and thus will never conflict (within
any ICP subprotocol) with another honest party, nor will they broadcast “complaint” and force the
dealer to reveal the secret. Thus, for an honest Pi, the value flagi(s) always remains 1. Therefore,
no honest party Pi in S will broadcast F (x).

Observe that F (x) and Ri(x) are random polynomials of degree at most τ , and that |{Sk |
C ∩ Sk 6= ∅}| < η = τ holds when n > 2t. Using a standard argument it follows that the view of
the adversary at the end of round 1 of the sharing phase is independent of the dealer’s input s, and
the values of polynomials F (x) and {Ri(x)}Pi∈S except at points {xk}C∩Sk 6=∅.

When all parties in S∪{D} are honest, clearly an honest D does not broadcast s(D) in round 3 of
the sharing phase. Thus, it remains to be shown that the view of the adversary remains independent
of the dealer’s input s even after each Pi ∈ S broadcasts (di, Bi(x)) in round 2 of the sharing phase.
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Recall that the view of the adversary is independent of the values of the polynomial Ri(x) except
at points {xk}C∩Sk 6=∅. Thus, using random and independent polynomials Ri(x) to mask the true
value of F (x) (as is the case in Bi(x) = diF (x) +Ri(x) for every honest Pi ∈ S) does not leak any
information about the {F (xk)}C∩Sk 6=∅ that the adversary does not already know.

We will now make an observation about executing multiple instances of WICP subprotocols in
parallel with one another. Recall that when ` instances of WICP subprotocols are run in parallel,
then (a) the conditional correctness property holds for each of the ` instances except with probability
O(`n3/|F|), and (b) the conditional commitment property holds for each of the ` instances except
with probability O(`n2/|F|). From the claim above, we see that rest of the SICP execution other
than the WICP subprotocols yields no information to the adversary that it already does not know.
Finally, in our WICP subprotocol, we see that ` = O(η) = O(2n), and since |F| > 2max(λ,10n),
we see that except with negligible probability, correctness and conditional commitment holds for
every WICP subprotocol simultaneously. We will use this fact repeatedly in our proofs. We are
now ready to prove that our protocol satisfies the commitment and correctness properties.

First, note that the value of recflagk is updated depending on broadcasts made by parties in S.
Thus, by the end of the sharing phase, (honest) parties will agree on the final value of recflagk.

Claim 48 Suppose Pi is honest and it holds that resolvedS(s) = 0. Then, if flagi(s) = 0 holds and
if the dealer is not disqualified at the end of the sharing phase, then with all but negligible probability
Pi is contained in U at the end of the reconstruction phase.

Proof Clearly, Pi with flagi(s) = 0 is included in U when U is initialized. We only need to show
that honest Pi is never deleted from U .

Fix some k ∈ [η] such that recflagk = 1. (Such a k exists, since otherwise the dealer is disqualified
at the end of the sharing phase.) We will now prove that either y′k = F ′i (x

′
k), or Bi(x

′
k) 6= diy

′
k+z′i,k

holds. Since this is trivially true when y′k = F ′i (x
′
k), for the rest of the proof we only consider

the case when y′k 6= F ′i (x
′
k) holds. Furthermore, when z′i,k = R′i(x

′
k) holds, we have that Bi(x

′
k) =

diF
′
i (x
′
k) + R′i(x

′
k) 6= diy

′
k + z′i,k holds for an honest Pi except when di = 0. However, di = 0

holds for an honest Pi only with negligible probability. Thus, it suffices to consider the case when
y′k 6= F ′i (x

′
k) and z′i,k 6= R′i(x

′
k) hold simultaneously.

Since recflagk = 1, we have that each of the following are simultaneously satisfied:

1. It holds that cleanSk(xk) = 1 and resolvedSk(xk) = 0.

2. It holds that cleanSk(F (xk)) = 1 and resolvedSk(F (xk)) = 0.

3. It holds that cleanSk(Ri(xk)) = 1 and resolvedSk(Ri(xk)) = 0.

By Corollary 44, we conclude that for every honest party Pj ∈ Sk ∪ {D}, party Pj must have
received x′k, y

′
k, z

′
i,k from D in round 1 of the sharing phase of WICPSk(xk), WICPSk(F (xk)),

WICPSk(Ri(xk)) respectively. Thus, we conclude that the dealer must have chosen the values x′k,
y′k, and z′i,k before round 2, i.e., before it learned the value of di broadcasted by Pi. Recalling that
y′k 6= F ′i (x

′
k) and z′i,k 6= R′i(x

′
k) hold by assumption, we see that diy

′
k + z′i,k = diF

′
i (x
′
k) + R′i(x

′
k)

is true only when di = (R′i(x
′
k) − z′i,k)/(F ′i (x′k) − y′k). Since honest Pi chooses di ∈ F at random,

the probability that the above equality is satisfied is negligible. We conclude that with all but
negligible probability Bi(x

′
k) 6= diF

′
i (x
′
k) +R′i(x

′
k) holds. This completes the proof of the claim.

Claim 49 Suppose resolvedS(s) = 0 holds. If the dealer remains uncorrupted at the end of the
sharing phase, then at the end of the reconstruction phase s = F ′i (0) holds for every Pi ∈ U .
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Proof We begin by observing that when n > 2t there exists k ∈ [η] such that all parties in
Sk ∪ {D} are honest. Furthermore, since (honest) parties in Sk ∪ {D} never conflict or contradict
with one another, the dealer never broadcasts in round 3 of the WICP protocols with receiver
set Sk. Combining this with the non-triviality condition, we see that each of the following are
simultaneously satisfied:

1. It holds that cleanSk(xk) = 1 and resolvedSk(xk) = 0.

2. It holds that cleanSk(F (xk)) = 1 and resolvedSk(F (xk)) = 0.

3. It holds that cleanSk(Ri(xk)) = 1 and resolvedSk(Ri(xk)) = 0.

We conclude that recflagk is set to 1 at the end of the sharing phase. Furthermore, by Corollary 44,
we have that with all but negligible probability x′k = xk is reconstructed. Using a similar argument,
we conclude that reconstructed values y′k, z

′
i,k both y′k = F (xk) and z′i,k = Ri(xk) are satisfied with

high probability.
We now prove that when dishonest Pi broadcasts F ′i (x) 6= F ′i (x), then with all but negligible

probability, Pi will be removed from U . More concretely, we will prove that y′k 6= F ′i (x
′
k) and

Bi(x
′
k) = diy

′
k + z′i,k both hold. These are precisely the conditions checked in the reconstruction

phase, and if both hold, it is easy to verify that Pi will be deleted from U . The second condition
Bi(x

′
k) = diy

′
k + z′i,k is easily verified to be true for an honest D when resolvedS(s) = 0. In the rest

of the proof, we will show that y′k 6= F ′i (x
′
k).

First, observe that by the privacy property of WICPSk(xk), WICPSk(F (xk)), WICPSk(Ri(xk)),
we can conclude that dishonest Pi does not know the values of x′k, y

′
k, z

′
i,k from these executions.

(Note that any information about y′k and z′i,k leaks information about x′k.)
We use the fact that two distinct degree-τ polynomials can have identical values at at most τ

points. This implies that for a randomly chosen x′k ∈ F, the equation F ′i (x
′
k) = F (x′k) is satisfied

with probability at most τ/|F|. When τ = η < 2n and κ > max(λ, 10n) (recall |F| = 2κ), and since
honest D chooses xk at random, we have that y′k 6= F ′i (x

′
k) holds except with negligible probability.

This concludes the proof of the claim.

Claim 50 (Commitment) Even when the dealer is malicious, commitment holds with all but
negligible probability.

Proof The claim trivially holds when the dealer is disqualified in the sharing phase, or when
resolvedS(s) = 1 holds. For the rest of the proof, we assume that resolvedS(s) = 0 holds.

Suppose at the end of the sharing phase, U is non-empty, say U contains Pj . Note that Pj may
or may not be removed from U during the reconstruction phase. However, we will show that, except
with negligible probability, this decision is determined by the joint view of the honest parties at
the end of the sharing phase. As a first step, observe that for every k ∈ [η] the value of recflagk
is determined at the end of the sharing phase. Now if for some k ∈ [η], it holds that recflagk = 1,
then by Corollary 44, we see that except with negligible probability, the reconstructed values x′k,
y′k, and {z′i,k}Pi∈S are completely determined by the joint view of the honest parties at the end of
the sharing phase. Combining this with the fact that F ′j(x) is broadcasted by Pj during the sharing
phase (and since F ′j(x) remains unchanged through the end of the protocol), we conclude that the
decision to delete Pj from U is, with high probability, determined by the joint view of the honest
parties at the end of the sharing phase. If |U| > 0 holds at the end of the reconstruction phase, we
conclude that commitment holds as well.
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For the rest of the proof we assume that at the end of the reconstruction phase it holds that
the set U is empty. Observe that in this case (i.e., |U| = 0), the reconstructed value s′ is simply the
output of WICPS(s). Note that since |S∪{D}| > t, there is at least one honest party Pi ∈ S∪{D}.
(For the rest of the proof, we assume that Pi is honest. Note that Pi could be the dealer.) We
consider two cases depending on the value of flagi(s). If flagi(s) = 0, then by Claim 48 we see that
with high probability Pi is contained in U at the end of the reconstruction phase. This contradicts
the assumption that |U| = 0. Now, on the other hand if flagi(s) = 1, then by Corollary 45, we see
that, except with negligible probability, the set {s̃j}Pj∈REC contains exactly one value, namely s′i.
Since s′i is defined by the view of honest Pi at the end of round 1 of the sharing phase, we conclude
that commitment holds in this case as well. This completes the proof of the claim.

Claim 51 (Correctness) Suppose that the dealer remains uncorrupted throughout the sharing
phase. Then, correctness holds with all but negligible probability.

Proof Clearly, a dealer that remains uncorrupted throughout the sharing phase certainly follows
the protocol. Observe that when n > 2t there exists k ∈ [η] such that all parties in Sk ∪ {D}
are honest. Furthermore, since (honest) parties in Sk ∪ {D} never conflict or contradict with
one another, the dealer never broadcasts in round 3 of the WICP protocols with receiver set Sk.
Combining this with the non-triviality condition, we see that recflagk will be set to 1 at the end of
the sharing phase. (See also proof of Claim 49.) Thus, we conclude that the dealer that remains
uncorrupted throughout the sharing phase does not get disqualified.

Correctness holds when resolvedS(s) = 1 since an honest dealer broadcasts s(D) = s in this
case. For the rest of the proof, we assume that resolvedS(s) = 0 holds. Given this, observe that
the protocol can terminate either because |U| > 0, or by running the local computation step of
WICPS(s). In the former case, applying Claim 49, we conclude that s is reconstructed with high
probability. In the latter case, applying Claim 46, we conclude that, with high probability, s is
reconstructed here as well. This completes the proof of correctness.

We will denote an SICP protocol with D as dealer with input s, and S as the set of receivers
using the notation SICPS(s).

In our VSS protocol, we will execute (exponentially) many instances of SICP subprotocols in
parallel. In each instance, honest parties will use independent randomness. This will allow us to
argue the following. Suppose ` instances of SICP subprotocols are executed in parallel. Then, using
a simple union bound, we see that correctness property holds for each of the ` SICP subprotocols
except with probability O(`n32n/|F|). Similarly, we see that the commitment property holds for
each of the ` SICP subprotocols except with probability O(`n22n/|F|).

6.2 An Inefficient 3-Round Statistical VSS Protocol

Recall that SICP provided the unconditional version of the guarantees provided by an ICP protocol
between the dealer and a virtual party S. Here, we show that this is sufficient to obtain a statistical
VSS protocol. At a high level, our protocol runs parallel instances of SICP protocols that are
executed between the dealer (using input an additive share of s) and each of η = O(2n) virtual
parties. The strong properties guaranteed by SICP ensures that every share (and, thus the secret)
is recovered in the reconstruction phase.
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6.2.1 The Protocol

We now formally describe our statistical VSS protocol that tolerates t < n/2 malicious parties. Our
protocol requires 3 rounds in the sharing phase, and an additional 2 rounds in the reconstruction
phase.

Sharing phase. The sharing phase consists of three rounds.

Round 1: The dealer holds s. Let S1, . . . , Sη be distinct subsets of P\{D} of size-t. The following
steps are carried out in parallel:

– The dealer chooses a random η-sharing s1, . . . , sη such that s = s1 + . . .+ sη.

– For each k ∈ [η], the dealer executes round 1 of the SICP protocol with Sk as receivers
on input sk. We refer to this instance of the SICP protocol as SICPSk(sk).

Round 2: For each k ∈ [η], the dealer executes round 2 of SICPSk(sk).

Round 3: For each k ∈ [η], the dealer executes round 3 of SICPSk(sk).

Local computation. Each party locally carries out the local computation following the sharing
phase of SICPSk(sk) for each k ∈ [η].

Reconstruction phase. The reconstruction phase consists of two rounds. If the dealer is not
already disqualified, parties run the 2-round reconstruction phase of SICPSk(sk) for each k ∈ [η].
Else, each party outputs s′ = ⊥, and terminates the reconstruction protocol.

Local Computation. For each k ∈ [η], let s′k denote the value reconstructed at the end of
SICPSk(sk). If for some k ∈ [η] it holds that s′k = ⊥, then each party outputs s′ = ⊥ and
terminates the protocol. Else, each party outputs s′ = s′1 + . . .+ s′η and terminates the protocol.

6.2.2 Proofs

We now prove that the protocol given in the previous section is a statistical VSS protocol tolerating
t < n/2 parties when κ > max(λ, 10n). (Recall |F| = 2κ.)

Lemma 52 (Privacy) If the dealer remains uncorrupted throughout the sharing phase, privacy is
preserved.

Proof Let C denote the set of parties corrupted by the end of the sharing phase. Given n > 2t
and |C| ≤ t, there must exist k ∈ [η] such that C ∩Sk = ∅ holds, i.e., all parties in Sk ∪ {D} remain
honest at the end of the sharing phase. (Recall |Sk| = t.) We can apply Claim 47 to conclude that
SICPSk(sk) when considered individually preserves privacy of share sk (which is the dealer’s input
in that execution. Furthermore, since instances of SICP subprotocols (in particular, those involving
some subset of parties in Sk) employ independent randomness (in particular, independent of the
share sk), privacy is preserved even when exponentially many such subprotocols are run in parallel
(even among overlapping sets of receivers). Therefore, at the end of the sharing phase, the view of
the adversary is independent of the value of sk and consequently, independent of the dealer’s secret
s. This completes the proof of privacy.

We will now make an observation about executing multiple instances of SICP subprotocols
in parallel with one another. Recall that when ` instances of SICP subprotocols are run in par-
allel, then (a) the correctness property holds for each of the ` instances except with probability
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O(`n32n/|F|), and (b) the commitment property holds for each of the ` instances except with prob-
ability O(`n22n/|F|). From the claim above, we see that rest of the VSS execution other than the
SICP subprotocols yields no information to the adversary that it already does not know. Finally,
in our SICP subprotocol, we see that ` = O(η) = O(2n), and since |F| > 2max(λ,10n), we see that
except with negligible probability, correctness and conditional commitment holds for every SICP
subprotocol simultaneously. We will use this fact repeatedly in our proofs. We are now ready to
prove that our protocol satisfies the commitment and correctness properties.

Lemma 53 (Commitment) Even when the dealer is malicious, commitment holds with all but
negligible probability.

Proof The claim trivially holds when the dealer is disqualified in the sharing phase. Suppose
the dealer is not disqualified, we will apply Claim 50 which states that except with negligible
probability, the values s′k reconstructed were all defined by the joint view of the honest parties (in
P) at the end of the sharing phase of SICPSk(sk). Since instances of SICP subprotocols employ
independent randomness, commitment holds with high probability even when exponentially many
such subprotocols are run in parallel. This is because we This follows from a simple union bound:
suppose each instance of SICP fails to satisfy the commitment property with probability O(n3η/|F|)
(as proved in Claim 50), then when η independent instances of SICP are run, the commitment
property fails to hold in any one of them (and consequently in the VSS protocol) with probability
O(n3η2/|F|). Recalling that η < 2n and |F| = 2κ > 2max(λ,10n), we see that the lemma is immediate.

Lemma 54 (Correctness) Suppose that the dealer remains uncorrupted throughout the sharing
phase. Then, correctness holds with all but negligible probability.

Proof Clearly, a dealer that remains uncorrupted throughout the sharing phase certainly follows
the protocol, and never disqualified. We will apply Claim 51 which states that except with neglligi-
ble probability, the value sk is reconstructed at the end of protocol SICPSk(sk). Since instances of
SICP subprotocols employ independent randomness, correctness holds with high probability even
when exponentially many such subprotocols are run in parallel. This follows from a simple union
bound: suppose each instance of SICP fails to satisfy the commitment property with probability
O(n2η/|F|) (as proved in Claim 50), then when η independent instances of SICP are run, the cor-
rectness property fails to hold in any one of them (and, consequently in the VSS protocol) with
probability O(n2η2/|F|). Recalling that η < 2n and |F| = 2κ > 2max(λ,10n), we see that the lemma
is immediate.

By Lemmas 52, 53, and 54, we conclude that the following theorem holds.

Theorem 55 There exists 3-round statistical VSS protocol tolerating t < n/2 parties.

Using a standard transformation, any VSS protocol can be used to construct a protocol for
coin-tossing with similar security guarantees and resilience. In more detail, consider a protocol in
which each Pi chooses random ri ∈ F, and executes VSS in parallel with every other party. At
the end of the reconstruction phase, each party obtains {r′j} as the output of the VSS protocols,
and sets the random coin r′ = r′1 + . . . + r′n. The resulting protocol is a secure protocol for coin-
tossing since (a) by the privacy property of VSS, each malicious party’s choice of the random field
element is independent of the choices of every honest party, and (b) by the commitment property
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of VSS, each malicious party is committed to some field element which cannot be changed later
upon knowing the choices of the honest parties. Furthermore, note that the transformation outlined
above is round preserving. We omit the proofs and merely state the following.

Corollary 56 There exists a 5-round protocol for statistically secure coin-tossing tolerating t < n/2
parties.

It might be instructive to compare the above corollary with the results of Katz and Ostro-
vsky [66], who prove a similar upper bound on the number of rounds required to perform two-party
coin tossing. In more detail, they show a 5-round protocol for coin-tossing (and for general secure
computation) in the two-party setting. Furthermore, they show that no 4-round protocol for coin-
tossing exists in the two-party setting. We remark that the question of whether a 4-round protocol
for coin-tossing exists in the honest majority setting (i.e., n > 2t) is open. In particular, we observe
that the 2-round impossibility for statistical VSS shown by Patra et al. [76] might not rule out 4-
round protocols for coin-tossing. Finally, we note that our protocol has complexity exponential in
the number of parties, and leave the construction of an efficient round-optimal coin-tossing protocol
as an open question.

6.3 An Efficient 4-Round Statistical VSS Protocol

We now show an efficient 4-round statistical VSS protocol tolerating t < n/2 corrupted parties. In
our protocol, the dealer shares a symmetric bivariate polynomial among all parties. We then employ
some standard round reduction techniques from literature. (See e.g., [43].) Our main novelty is to
allow the reconstruction phase of some ICP subprotocols to begin while concurrently executing the
(last round of the) sharing phase of all ICP subprotocols. (We use a sequence of flag variables to
keep track of the state of concurrent executions.) This is a necessary step in our protocol to ensure
that a malicious dealer is committed to some secret at the end of the 4-round sharing phase.

6.3.1 The Protocol

We now formally describe an efficient statistical VSS protocol that tolerates t < n/2 malicious
parties. Our protocol requires 4 rounds in the sharing phase, and additional 2 rounds in the
reconstruction phase.

Sharing phase. The sharing phase consists of four rounds.

Round 1: The dealer holds s. The following steps are carried out in parallel:

– The dealer chooses a random symmetric bivariate polynomial F (x, y) of degree t in each
variable such that F (0, 0) = s. Note that F (x, i) = F (i, x) since F is symmetric. Let
fi(x) := F (i, x).

– The dealer executes the first round of the ICP protocol (described in Section 6.1.1) with
Pi ∈ P \ {D} as receiver on input fi(j) for each j ∈ [n]. We refer to such an instance of
the ICP protocol as ICPD,i(fi(j)). Let s′i,j denote the value received by Pi.

– Each party Pi ∈ P picks a random value ri,j for every Pj ∈ P \ {Pi} and executes the
first round of the ICP protocol with Pj as receiver on input ri,j . We refer to this instance
of the ICP protocol as ICPi,j(ri,j). Let r′i,j denote the value received by Pj .
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– For every j 6= i, party Pi executes the first round of the ICP protocol with D as receiver
on input ri,j (used in the previous step). We refer to this instance of the ICP protocol

as ICPi,D(ri,j). Let r
(D)
i,j denote the value received by D.

– For all ordered pairs (i, j), each party Pk ∈ P initializes flagD,i(fi(j)) = 0, flagi,j(ri,j) =
0, and flagi,D(ri,j) = 0.

Round 2: Each party Pi does the following:

– If the values {(j, s′i,j)}j do not lie on a degree-t polynomial, then broadcast “invalid
share”.

– Run round 2 of ICPi,j(ri,j), for all j 6= i.

– Run round 2 of ICPi,D(ri,j), for all j 6= i.

– For all j 6= i, broadcast ai,j := s′i,j + ri,j .

– For all j 6= i, broadcast bi,j := s′i,j + r′j,i.

In parallel with the above, the dealer D does the following for all ordered pairs (i, j):

– Run round 2 of ICPD,i(fi(j)).

– Broadcast a
(D)
i,j = fi(j) + r

(D)
i,j .

– Broadcast b
(D)
i,j = fi(j) + r

(D)
j,i .

Round 3: Each party Pi does the following for all j 6= i:

– Run round 3 of ICPi,j(ri,j). If Pi conflicts with Pj , or ai,j 6= bj,i, or aj,i 6= bi,j , or

ai,j 6= a
(D)
i,j , or bi,j 6= b

(D)
i,j , then Pi does the following steps.

– Run round 1 of the reconstruction phase of ICPD,i(fi(j)).

– Run round 1 of the reconstruction phase of ICPj,i(rj,i).

– Run round 3 of ICPi,D(ri,j). If Pi conflicts with D, then Pi does the following:

– For all k ∈ [n], run round 1 of the reconstruction phase of ICPD,i(fi(k)).

In parallel with the above, the dealer D does the following for all ordered pairs (i, j):

– Run round 3 of ICPD,i(fi(j)). If D conflicts with Pi, or ai,j 6= a
(D)
i,j , or ai,j = ⊥, or Pi

broadcasted “invalid share” in round 2 of the sharing phase, then D does the following:

– Broadcast f
(D)
i (x) := fi(x).

– For all k ∈ [n], run round 1 of the reconstruction phase of ICPi,D(ri,k).

– For all k ∈ [n], run round 1 of the reconstruction phase of ICPk,D(rk,i).

Round 4: Define U = {Pi | D broadcasted f
(D)
i (x) in round 3 of the sharing phase}. If |U| > t,

then each party disqualifies the dealer, and outputs some default secret.

Each party Pk updates local variables in the following way. For all order pairs (i, j), if round 1
of the reconstruction phase of ICPD,i(fi(j)), ICPi,j(ri,j), or ICPi,D(ri,j) was executed in the
previous round, then the corresponding variables flagD,i(fi(j)), flagi,j(ri,j), ICPi,D(ri,j) are
set to 1.

Each party Pk does the following for all ordered pairs (i, j):

– Run round 2 of the reconstruction phase of ICPD,i(fi(j)) if flagD,i(fi(j)) = 1.
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– Run round 2 of the reconstruction phase of ICPi,j(ri,j) if flagi,j(ri,j) = 1.

– Run round 2 of the reconstruction phase of ICPi,D(ri,j) if flagi,D(ri,j) = 1.

Local computation. Each party locally carries out the following steps.

1. Each party disqualifies the dealer, and outputs some default secret if the dealer does not
follow the protocol.

2. For all ordered pairs (i, j) do the following.

(.1) If D broadcasted f
(D)
i (x) in round 3 of the sharing phase, then set s̃i,j := f

(D)
i (j), and

flagD,i(fi(j)) = 1. Else if flagD,i(fi(j)) = 1, then perform the local computation steps
following the reconstruction phase of ICPD,i(fi(j)), and let s̃i,j denote the reconstructed
value.

(.2) If flagi,j(ri,j) = 1, then perform the local computation steps following the reconstruction
phase of ICPi,j(ri,j), and let r̃i,j denote the reconstructed value.

(.3) If flagi,D(ri,j) = 1, then perform the local computation steps following the reconstruction

phase of ICPi,D(ri,j), and let r̃
(D)
i,j denote the reconstructed value.

3. Each party disqualifies the dealer, and outputs some default secret if for some pair (i, j) any
of the following conditions are violated:

(.1) The points in the set {(k, s̃i,k) | (flagD,i(fi(k)) = 1)∧(s̃i,k 6= ⊥)} must lie on a polynomial
of degree at most t.

(.2) There is a unique value c ∈ F satisfying each of the following:

i. Suppose D broadcasted f
(D)
i (x), then f

(D)
i (j) = c holds.

ii. Suppose D broadcasted f
(D)
j (x), then f

(D)
j (i) = c holds.

iii. Suppose flagD,i(fi(j)) = 1, then s̃i,j = c holds.

iv. Suppose flagD,j(fj(i)) = 1, then s̃j,i = c holds.

(.3) Suppose flagi,D(ri,j) = 1 holds. Then r̃
(D)
i,j 6= ⊥ also holds.

(.4) Suppose D broadcasted f
(D)
j (x) and suppose flagi,D(ri,j) = 1 holds. Further, if Pi did

not conflict with D, then a
(D)
i,j = b

(D)
j,i = f

(D)
j (i) + r̃

(D)
i,j must hold.

Reconstruction phase. The reconstruction phase consists of two rounds.

Round 1: The following steps are carried out in parallel for all ordered pairs (i, j).

– Run round 1 of the reconstruction phase of ICPD,i(fi(j)) if flagD,i(fi(j)) = 0.

– Run round 1 of the reconstruction phase of ICPi,j(ri,j) if flagi,j(ri,j) = 0.

– Run round 1 of the reconstruction phase of ICPi,D(ri,j) if flagi,D(ri,j) = 0.

Round 2: The following steps are carried out in parallel for all ordered pairs (i, j).

– Run round 2 of the reconstruction phase of ICPD,i(fi(j)) if flagD,i(fi(j)) = 0.

– Run round 2 of the reconstruction phase of ICPi,j(ri,j) if flagi,j(ri,j) = 0.
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– Run round 2 of the reconstruction phase of ICPi,D(ri,j) if flagi,D(ri,j) = 0.

Local Computation. Each party locally carries out the following steps.

1. For all ordered pairs (i, j) do the following.

(.1) If flagD,i(fi(j)) = 0, then perform the local computation steps following the reconstruc-
tion phase of ICPD,i(fi(j)), and let s̃i,j denote the reconstructed value.

(.2) If flagi,j(ri,j) = 0, then perform the local computation steps following the reconstruction
phase of ICPi,j(ri,j), and let r̃i,j denote the reconstructed value.

(.3) If flagi,D(ri,j) = 0, then perform the local computation steps following the reconstruction

phase of ICPi,D(ri,j), and let r̃
(D)
i,j denote the reconstructed value.

2. Initialize REC = ∅. Add Pi to REC if either of the following holds.

(.1) Pi is contained in U .

(.2) For all j ∈ [n], s̃i,j 6= ⊥ holds, and the points in the set {(j, s̃i,j)}j lie on a degree-t
polynomial.

3. Delete Pi 6∈ U from REC if for some Pj any of the following hold:

(.1) Pj ∈ U and s̃i,j 6= f
(D)
j (i).

(.2) r̃i,j 6= ⊥ and s̃i,j + r̃i,j 6= ai,j .

(.3) Pj did not conflict with Pi and bi,j − r̃j,i 6= s̃i,j .

4. For Pi ∈ REC, define f ′i(x) to be the degree-t polynomial which passes through all of the
points in {(j, s̃i,j)}j . Reconstruct a symmetric bivariate polynomial F ′(x, y) of degree-t from
{(i, f ′i(x))}Pi∈REC. Each party outputs s′ = F ′(0, 0).

6.3.2 Proofs

We prove that the protocol given in the previous section is a statistical VSS protocol that tolerates
t < n/2 malicious parties when κ > max(λ, 10n). (Recall |F| = 2κ.)

Lemma 57 (Privacy) If the dealer is not corrupted by the end of the sharing phase, privacy is
preserved.

Proof Let C denote the set of parties corrupted by the end of the sharing phase. We show
that if the dealer remains uncorrupted, then the view of the adversary can be simulated given the
polynomials {fi(x)}Pi∈C . Since F (x, y) is a random symmetric bivariate polynomial of degree at
most t and |C| ≤ t, a standard argument implies that the view of the adversary is independent of
the dealer’s input s.

Recall that when the dealer and receiver are honest, by Claim 39, ICP subprotocols when
considered individually, guarantee privacy of dealer’s input in an information-theoretic sense. Fur-
thermore, observe that honest parties use independent randomness within each ICP subprotocol,
and therefore, parallel executions of these ICP subprotocols (i.e., those involving an honest dealer
and receiver) still preserves privacy of each execution. Also, honest parties are guaranteed to follow
the protocol, and thus will never conflict (within an ICP subprotocol) with another honest party,
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nor will they broadcast “invalid share” and force the dealer to reveal a secret share held by an
honest party. Other conditions that force participating parties to begin reconstruction phase of
ICP subprotocols in the sharing phase, are never satisfied for honest parties. In particular, this
implies that no honest party is contained in U .

As for the values broadcast in round 2, consider an ordered pair (Pi, Pj) of parties who remain
honest throughout the sharing phase. Since the dealer is honest, we have s′i,j = F (i, j) = F (j, i) =

s′j,i and, since Pi, Pj are honest, ri,j = r′i,j = r
(D)
i,j and rj,i = r′j,i = r

(D)
j,i . Thus, in round 2, parties

Pi, Pj , and D all broadcast the same “blinded” values F (i, j) + ri,j and F (j, i) + rj,i. Since ri,j and
rj,i are completely random field elements, this does not leak any information about the {fi(x)}Pi 6∈C
that the adversary does not already know.

We will now make an observation about executing multiple instances of ICP subprotocols in
parallel with one another. Recall that when ` instances of ICP subprotocols are run in parallel,
then (a) the correctness property holds for each of the ` instances except with probability O(`t/|F|),
and (b) the conditional commitment property holds for each of the ` instances except with prob-
ability O(`/|F|). We also observe that concurrently executing round 3 of the sharing phase along
with round 1 of the reconstruction phase does not affect the correctness or conditional commit-
ment properties of ICP subprotocols. In more detail, the correctness property is preserved since
“verification points” (held by honest verifiers) are never revealed, so a dishonest receiver cannot
broadcast a different polynomial which will get accepted by the honest parties. The conditional
commitment property is slightly more complicated. First, note that if the dealer did not conflict
with the receiver, then conditional commitment is preserved since the “multiplier” is chosen by the
honest receiver after the dealer sends out verification points to the honest receivers. Of course,
a malicious dealer can always conflict, and change the secret share that it originally sent to an
honest receiver. (Nevertheless, this conflict happens in the sharing phase, and trivially implies that
commitment will hold at the end of the sharing phase.) In our proofs we will explicitly apply the
conditional commitment property only in ICP subprotocols where the dealer does not conflict with
the receiver.

From the claim above, we see that rest of the VSS protocol other than the ICP subprotocols
yields no information to the adversary that it already does not know. Finally, in our VSS protocol,
we see that ` = O(n2), and since |F| > 2max(λ,10n), we see that except with negligible probability,
correctness and conditional commitment holds for every ICP subprotocol simultaneously. We will
use this fact repeatedly in our proofs. We are now ready to prove that our protocol satisfies the
commitment and correctness properties. We do this by a series of claims.

Claim 58 If the dealer is not disqualified in the sharing phase, then for every honest Pi and for

every Pj ∈ U , except with negligible probability s̃i,j = f
(D)
j (i) holds.

Proof Suppose Pi ∈ U . Then in round 4 of the sharing phase, s̃i,j := f
(D)
i (j). Furthermore, if

f
(D)
j (i) 6= f

(D)
i (j), then D is disqualified during local computation of the sharing phase. Since we

are given that D is not disqualified, we have s̃i,j = f
(D)
j (i).

Suppose Pi 6∈ U . We can conclude that D did not conflict with Pi in the sharing phase, and
except with negligible probability s′i,j= s̃i,j must hold for an honest Pi. On the other hand, since

Pj ∈ U , D must have broadcasted f
(D)
j (x) and also must have revealed r

(D)
i,j in the sharing phase.

There are two cases to consider. First, suppose Pi conflicted with D (in round 3 of the sharing
phase). In this case, Pi reveals s′i,j during the sharing phase. During local computation of the
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sharing phase, parties check if the reconstructed s̃i,j satisfies s̃i,j = f
(D)
j (i), and disqualify D if it

doesn’t. Since D was not disqualified, it must be the case that s̃i,j= f
(D)
j (i).

Second, suppose Pi did not conflict with D. Then, since Pi is honest, r̃
(D)
i,j = ri,j holds with

all but negligible probability. Furthermore, if a
(D)
i,j 6= ai,j , then D is required to broadcast f

(D)
i (x),

and Pi would be contained in U . But since Pi 6∈ U , we conclude that a
(D)
i,j = ai,j . Thus, except with

negligible probability, both a
(D)
i,j = ai,j and r̃

(D)
i,j = ri,j hold. Recall that when Pi 6∈ U , s′i,j= s̃i,j

must hold, and therefore, ai,j = s̃i,j + ri,j must hold as well. We conclude that a
(D)
i,j − r̃

(D)
i,j = s̃i,j .

Now, if a
(D)
i,j − r̃

(D)
i,j 6= f

(D)
j (i), then clearly D is disqualified during local computation of the sharing

phase. Therefore, it must be the case that s̃i,j = f
(D)
j (i).

Claim 59 If the dealer is not disqualified in the sharing phase, then for every honest Pi, it holds
that Pi ∈ REC with all but negligible probability.

Proof If Pi ∈ U , then by construction Pi ∈ REC holds. Suppose Pi 6∈ U . We can conclude that
D did not conflict with Pi in the sharing phase, and except with negligible probability s′i,j= s̃i,j
must hold for an honest Pi. Furthermore, the values {(j, s′i,j)}j must lie on a degree-t polynomial.
Otherwise, Pi would have reconstructed s̃i,j in the sharing phase (starting from round 2 of the
sharing phase), and consequently, D would have been disqualified in the local computation of the
sharing phase. Since s′i,j= s̃i,j holds except with negligible probability, we conclude that values
{(j, s̃i,j)}j must lie on a degree-t polynomial with all but negligible probability. Thus, Pi must have
been added to REC. Given this, we will now show that, except with negligible probability, none of
the deletion rules apply to an honest Pi.

1. For each Pj ∈ U , except with negligible probability, we have s̃i,j = f
(D)
j (i) by Claim 58.

2. When Pi 6∈ U , s′i,j = s̃i,j must hold except with negligible probability. Thus, ai,j = s̃i,j + ri,j .
Since Pi is honest, r̃i,j revealed by every Pj must satisfy r̃i,j ∈ {⊥, ri,j} with all but negligible
probability. We conclude that ai,j = s̃i,j + r̃i,j holds with high probability.

3. Suppose Pj did not conflict with Pi. Then, with high probability, r̃j,i= r′j,i holds. Recalling
that when Pi 6∈ U , s̃i,j= s′i,j holds with high probability, we see that bi,j = s′i,j+r′j,i = s̃i,j+ r̃j,i
holds with high probability.

Thus, every honest Pi is contained in REC.

Claim 60 If the dealer is not disqualified in the sharing phase, then for every honest Pj, and for
every Pi ∈ REC, it holds that s̃i,j = s̃j,i with all but negligible probability.

Proof The case when Pi ∈ U is handled by Claim 58. Also, the case when Pj ∈ U follows from
the deletion rule in local computation of the reconstruction phase. For the rest of the proof, assume
that Pi, Pj 6∈ U . Recall that when Pi, Pj 6∈ U , it is expected that the reconstructed values s̃i,j , s̃j,i
(resp.), are equal to the values s′i,j , s

′
j,i (resp.) received from D in the first round. Furthermore,

the reconstructed values s̃i,j , s̃j,i are expected to be consistent with broadcasted values, ai,j , bj,i,
aj,i, and bi,j . (Indeed for honest Pj ∈ U , except with negligible probability, s̃j,i = s′j,i holds, and
consequently aj,i = s̃j,i + rj,i and bj,i = s̃j,i + r′i,j hold as well.) This will motivate the rest of the
proof.
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Next, suppose ai,j 6= bj,i, or aj,i 6= bi,j , or both Pi and Pj conflicted with each other. Observe
that in all these cases, Pi and Pj are required to reveal s′i,j and s′j,i respectively. In the event that
the reconstructed values s̃i,j and s̃j,i are not equal, D is disqualified in the local computation of the
sharing phase. Hence, we conclude that if any of the above cases hold, then the lemma is true. For
the rest of the proof, assume that ai,j = bj,i, aj,i = bi,j , and at least one of Pi, Pj did not conflict
with the other.

We consider two cases. First, suppose Pj did not conflict with Pi. In this case, except with
negligible probability, Pi can reveal r̃j,i either as ⊥ or the correct value rj,i. Recall that since
Pi ∈ REC, bi,j − r̃j,i = s̃i,j must hold, otherwise Pi is deleted from REC. Also, recall that for an
honest Pj ∈ U , we have aj,i = s̃j,i + rj,i. Thus, we conclude that r̃j,i = rj,i, and since aj,i = bi,j , we
have s̃j,i = s̃i,j .

Second, suppose Pi did not conflict with Pj . In this case, except with negligible probability, Pj
successfully reveals r̃i,j = r′i,j . Since bj,i = s̃j,i + r′i,j , and by assumption ai,j = bj,i, we conclude
that ai,j = s̃j,i + r̃i,j . This implies that s̃j,i = s̃i,j , as otherwise ai,j 6= s̃i,j + r̃i,j , and Pi will be
deleted from REC.

Thus, we have shown that in all cases, s̃j,i = s̃i,j holds.

Claim 61 If the dealer is not disqualified in the sharing phase, then for every Pi, Pj ∈ REC, it
holds that s̃i,j = s̃j,i with all but negligible probability.

Proof Observe that when t < n/2, there are at least n− t ≥ t+ 1 honest parties. By Claim 59,
REC contains at least t+ 1 honest parties. Denote the first t+ 1 such honest parties in REC by H.
The polynomials {f ′k(x)}Pk∈H define a bivariate polynomial F̂ (x, y) in the natural way: namely, let

F̂ be such that F̂ (x, k) = f ′k(x) for each Pk ∈ H. By Claim 59 and Claim 60, we can conclude that

F̂ is a bivariate symmetric polynomial of degree at most t in each variable.
Since H ⊆ REC, using Claim 60, we see that f ′i(k) = f ′k(i) holds for every Pk ∈ H. Substituting,

we have f ′i(k) = F̂ (i, k) for all Pk ∈ H. Since |H| > t and f ′i(x) is a polynomial of degree at most
t, it must hold that F̂ (i, x) = f ′i(x). Similarly, F̂ (j, x) = f ′j(x) for some Pj ∈ REC. Finally, since F̂

is symmetric, we have that s̃i,j = f ′i(j) = F̂ (i, j) = F̂ (j, i) = f ′j(i) = s̃j,i.

Lemma 62 (Commitment) Even when the dealer is malicious, commitment holds with all but
negligible probability.

Proof The lemma trivially holds when the dealer is disqualified in the sharing phase. For the
rest of the proof, we assume that the dealer is not disqualified in the sharing phase. From the proof
of Claim 61, with all but negligible probabiilty there exists a bivariate symmetric polynomial F̂ of
degree at most t in each variable such that f ′i(x) = F̂ (i, x) for every Pi ∈ REC. Since |REC| > t
(follows from Claim 59), F ′ = F̂ will be reconstructed at the end of the reconstruction phase. The
key observation we make is that F̂ is completely defined by the joint view of the honest parties at
the end of the sharing phase. Indeed, the values {s̃i,j}Pi,Pj∈H (which are all known by the end of

the sharing phase) completely define the bivariate symmetric polynomial F̂ and consequently the
reconstructed secret s′ = F̂ (0, 0). This concludes the proof of the lemma.

Lemma 63 (Correctness) If the dealer is not corrupted by the end of the sharing phase, then
correctness holds with all but negligible probability.
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Proof When the dealer is honest, it executes ICP subprotocols using the correct input. In
particular, each Pi will obtain s′i,j = F (i, j). Furthermore, when Pi is honest, it is easily verified

that s̃i,j = F (i, j). Thus F̂ , which is completely defined by shares held by honest parties, will
be equal to F . If the dealer is not disqualified during the sharing phase, s = F (0, 0) will be
reconstructed at the end of the protocol, and the lemma holds.

It remains to show that an honest dealer will never be disqualified during the sharing phase.
We first argue that |U| ≤ t when D is honest. Recall that no conflicts occur in an ICP protocol as

long as dealer and receiver are honest. Also, when Pi is honest, it is easy to see that ai,j = a
(D)
i,j

always holds. Thus, parties contained in U have to be corrupted, and thus |U| ≤ t.
Next, we argue that when D is honest during the sharing phase, none of conditions checked

in local computation of the sharing phase are violated. The correctness property of the ICP
subprotocols implies that except with negligible probability, every Pi will reconstruct a value s̃i,j ∈
{⊥, F (i, j)}. Since D is honest, these values will lie on a polynomial of degree at most t. Also,

if D broadcasted f
(D)
i (x), then f

(D)
i (x) = F (i, x) will hold. Similarly, broadcasted f

(D)
j (x) will

always equal F (j, x), and since honest D ensures that F is a symmetric polynomial, a
(D)
i,j = b

(D)
j,i =

f
(D)
j (i) + r

(D)
i,j also holds. Finally, the commitment property of the ICP subprotocols implies that

for an honest D, we have flagi,D(ri,j) 6= ⊥, and also the reconstructed value r̃
(D)
i,j equals r

(D)
i,j as

long as Pi did not conflict with D in the sharing phase.
From the above it is clear that D is never disqualified in the sharing phase. This concludes the

proof of the lemma.

82



Chapter 7

Conclusions

In this dissertation, we have explored stronger security models for broadcast, and shown improve-
ments regarding the round complexity of information-theoretic VSS.

We have addressed two important issues related to broadcast. The first issue is that almost all
existing protocols do not distinguish between corrupted parties (who do not follow the protocol)
and honest parties whose secret keys have been compromised (but who continue to behave hon-
estly). The second issue is that all existing protocols for broadcast are insecure against an adaptive
adversary who can choose which parties to corrupt as the protocol progresses. We have proposed
new security models that capture these issues, and presented tight feasibility and impossibility
results.

We have shown two improvements regarding the round complexity of information-theoretic
VSS. First, we have argued that if the ultimate goal is to minimize round complexity of VSS for
point-to-point networks, then it is important to focus on minimizing the number of rounds in which
broadcast is used in addition to minimizing the total number of rounds. Towards this end, we have
constructed an efficient perfectly secure VSS protocol tolerating t < n/3 corrupted parties that is
simultaneously optimal in both the number of rounds and the number of invocations of broadcast.
Second, we have constructed a statistically secure VSS protocol tolerating t < n/2 corrupted parties
that has optimal round complexity, and an efficient statistical VSS protocol tolerating t < n/2
corrupted parties that requires one additional round.

Some problems are left open by this dissertation, and we discuss these below:

Efficient Round Optimal Statistical VSS with Honest Majority. We have shown an efficient
statistical VSS protocol that requires four rounds in the sharing phase when t < n/2. It will be
interesting to see if it is possible to construct an efficient statistical VSS protocol which is also
round optimal.

Total Round Complexity of Statistical VSS with Honest Majority. We have shown a
statistical VSS protocol which is round-optimal in the sharing phase but requires two rounds in
the reconstruction phase. Thus, the total round complexity of our construction is five. The best
known lower bound on the total round complexity of statistical VSS with honest majority is four.
It will be interesting to close the gap between the lower and upper bounds for this problem.

Exact Round Complexity of Information-Theoretic Secure Computation. In this disser-
tation we have studied the exact round complexity of perfect VSS when t < n/3 and statistical VSS
when t < n/2. Our study of VSS has been motivated by the fact that VSS serves as an important
building block in protocols for information-theoretic secure computation. Thus, it is important to

83



extend our study to focus on the exact round complexity of information-theoretic secure computa-
tion. Partial progress towards this has been made in [59, 43], but a complete answer is yet to be
obtained.
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